RU2717069C1 - Способ прямого синтеза азотированных графеновых пластин - Google Patents

Способ прямого синтеза азотированных графеновых пластин Download PDF

Info

Publication number
RU2717069C1
RU2717069C1 RU2019120091A RU2019120091A RU2717069C1 RU 2717069 C1 RU2717069 C1 RU 2717069C1 RU 2019120091 A RU2019120091 A RU 2019120091A RU 2019120091 A RU2019120091 A RU 2019120091A RU 2717069 C1 RU2717069 C1 RU 2717069C1
Authority
RU
Russia
Prior art keywords
nitrogen
plasma
graphene
synthesis
graphene plates
Prior art date
Application number
RU2019120091A
Other languages
English (en)
Inventor
Марина Борисовна Шавелкина
Равиль Хабибулович Амиров
Александр Семенович Тюфтяев
Нина Ойзеровна Спектор
Original Assignee
Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН)
Priority to RU2019120091A priority Critical patent/RU2717069C1/ru
Application granted granted Critical
Publication of RU2717069C1 publication Critical patent/RU2717069C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение может быть использовано в топливных элементах, литий-ионных батареях, суперконденсаторах, электросорбционных установках очистных сооружений. Углеводород из ряда (CnH2n+n), например метан, используемый в качестве источника углерода, подают в термическую плазму предварительно смешанным с азотом в массовых соотношениях от 1:10 до 1:5 и обрабатывают в термической плазме, формируемой в плазмотроне, при пониженном давлении 300-700 Торр. Полученную парогазовую смесь на выходе из плазмотрона резко охлаждают до 300-600°С. Изобретение позволяет получить допированные азотом графеновые пластины, содержащие 80-92 ат.% углерода, без использования подложек и сложного оборудования. 2 ил., 7 пр.

Description

Изобретение относится к области нанотехнологий и предназначено для получения модифицированных графеновых пластин.
Графен представляет собой единичную графитовую плоскость, в которой sp2-гибридизированные атомы углерода образуют гексагональную решетку. Повышенный интерес к графену связан с рядом его уникальных свойств: механических, электронных, оптических и других. Листы графена, легированные азотом, привлекают большое внимание благодаря своей исключительной производительности в качестве компонентов топливных элементов, литий-ионных батарей и суперконденсаторов.
Азотированный графен находит широкое применение в научных исследованиях в области малой энергетике[Ying Wang, Yuyan Shao, Dean W. Matson, Jinghong Li, Yuehe Lin. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing // ACS Nano. - 2010. - Vol. 4. - Pp. 1790-1798.] и [Zhong Jin, Jum Yao, Carter Kittrell, James M. Tour. Large-scale Growth and Characterizations of Nitrogen-doped Monolayer Graphene Sheets // ACS Nano. - 2011. - Vol. 5. -Pp. 4112-4117].
Масштабное производство графеновых материалов в настоящий момент связано с жидкофазным методом Хаммерса [W.S. Hummers and R.Е. Offeman, "Preparation of Graphitic Oxide" // J.Am. Chem. Soc. - 1958. - 80 (6) - 1339.] и методом химического газофазного осаждения (CVD - chemical vapor deposition) на подложку [P. Ayala, F.L. Freire Jr., M.H. Rummeli, A. Gr .. uneis, T. Pichler Chemical Vapor Deposition of Functionalized Single-Walled Carbon Nanotubes with defined nitrogen doping // Phys. Status Solidi. - 2007. - Vol. 244. - Pp. 40-51].
Преимуществами данных методов является относительная простота и дешевизна исходных компонентов.
Недостаток методов связан с многостадийностью процессов, сложностью подготовительных работ, с низкой производительностью, загрязнением поверхности графеновых пластин примесями среды, что, в целом, ограничивает применение конечного продукта и повышает его стоимость. Кроме того, для CVD-метода общим существенным признаком является синтез неизбежно деформированного N - графена вследствие неравномерного роста на каталитических подложках. Таким образом, это дорогие, трудоемкие и опасные (требуют использование химикатов) технологии.
Известен способ L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Synthesis, structure and properties of boron and nitrogen doped graphene // Adv. Mater 21 (2009) 4726, в котором используют дуговой разряд между графитовыми электродами в атмосфере из смеси водорода, гелия и пиридина или смеси водорода, гелия и аммиака при 200-500 Торр. Этот вариант не имеет явных преимуществ для получения модифицированного графена, поскольку не позволяет избежать любых потенциальных повреждений графеновой плоскости. Низкая производительность, связанная с размером электродов, опасность из-за жесткого контроля концентрации водорода.
Из Yung-Chang Lin, Chih-Yueh Lin, Po-Wen Chiu. Controllable graphene N-doping with ammonia plasma // Appl. Phys. Lett. - 2010. - Vol. 96. - P. 133110 известно, что применяя газофазное легирование с помощью воздействия плазмы NH3 с последующим отжигом, получается азотированный графен. Процесс является очень гибким и технологичным для графеновой электроники. Многостадийность предложенного технологического процесса, крайне низкая концентрация азота 1.5×1013 cm-2, содержание в N-графен металлических примесей не позволяют рассматривать такой подход пригодным для массового производства.
Известен способ синтеза, предложенный в N. Bundaleska, J. Henriques, M. Abrashev, A. M. Botelho do Rego, A. M. Ferraria, A.Almeida 4, F.M. Dias, E. Valcheva, B. Arnaudov, К.K. Upadhyay, M.F. Montemor, E. Tatarova Large-scale synthesis of free-standing N-doped graphene using microwave plasma // Scientific Reports 2018, 8, Article number: 12595 DOI:10.1038/s41598-018-30870-3, где получают прямой сборкой N-графен с относительно высоким выходом (~1,3 мг /мин). Синтез графена в виде свободных листиков был проведен с использованием микроволновой плазмы при атмосферном давлении. Синтез осуществляется в одну стадию. Этанольный раствор аммиака (4 мас. %) использовали в качестве источника как углерода, так и азота. Аргон использовался в качестве фонового газа. Ассистирование процесса аргоновой плазмой с высокой плотностью энергии приводит к селективному синтезу N-графена (уровень легирования ~0,4%) в узком диапазоне внешне контролируемых рабочих условий, то есть потоков предшественника и фонового газа (аргона), конструкции плазменного реактора и мощности СВЧ. Применение инфракрасного (ИК) и ультрафиолетового (УФ) облучения к потоку отдельно стоящих листов в зоне послесвечения приводит к изменению процента sp2 типа легирования N и кислородных функциональных групп. Существенным недостатком метода является значительное содержание кислорода в структуре графена, так как исходным материал является жидкость - этанол. Это крайне нежелательно при применении в топливных элементах. Другой недостаток это дополнительное применение процесса облучения в зоне послесвечения для улучшения структур графена (разрушения связей с кислородом). Это удорожает процесс синтеза.
Наиболее близким по технической сущности является способ из N Bundaleska, N Bundaleski, A Dias, F М Dias, М Abrashev,
Figure 00000001
U Cvelbar,
Figure 00000002
Zh Kissovski, J Henriques and E Tatarova Microwave N2-Ar plasmas applied for N-graphene post synthesis // Materials Research Express 2018, V.5, N 9, где N-графен в виде хлопьев получали при атмосферном давлении помощью плазменной струи, состоящей из газовой смеси Ar и N2. В зависимости от содержания азота в газовой смеси авторы получали различные углерод-азотные структуры. Высокий уровень легирования азотом (~ 25%) свободно стоящих графеновых пластин был достигнут с помощью удаленной области микроволновой плазмы Ar-N2. Достоинство метода, заключается в возможности варьирования доли азота в газовой смеси. Для смеси, содержащей 5% N2, около 2,7 ат. % азота вводили в форме имидной группы и графитных связей (70%) и в виде N, связанного с углеродом sp3 (30%). Увеличение количества азота до 40% приводит к получению образцов с содержанием азота до 25%. Недостаток метода связан с тем, что он не является прямым. Листы графена, использованные в этом способе, были синтезированы с использованием микроволновой плазмы аргона, а затем их обрабатывали на подложке плазмой послесвечения из смеси Ar и N2.
В основу изобретения положена задача прямого получения допированного азотом графена из струи плазмы, состоящей из азота и углеводорода алканового ряда (CnH2n+2).
Поставленная задача решается применением термической плазмы для обработки азотсодержащей среды, в которую помещен источник углерода. В качестве источника углерода используется углеводород из ряда (CnH2n+n), который подается в термическую плазму предварительно смешанным с азотом в массовых соотношениях от 1:10 до 1:5, соответственно, и пониженном давлении 300-700 Торр, при этом формирующаяся в плазменном потоке паро-газовая смесь на выходе из плазмотрона резко охлаждается до температур 300-600°C с образованием твердого депозита, содержащего 80-92 ат % углерода в виде графеновых пластин.
В способе реализуется плазмохимический процесс с использованием доступного сырья в виде газообразного углеводорода и плазмообразующего газа - технического газообразного азота; плазмотрона постоянного тока мощностью 40 кВт - в качестве источника термической плазмы; и динамического регулирования давления среды с помощью водокольцевого насоса.
Принципиальная схема получения азотированных графеновых пластин показана на рисунке 1.
В состав установки входит система подачи газов 1 и камеры смешения 2, плазмотрон 3 с расширяющимся каналом и вихревой стабилизацией плазменной струи, цилиндрическая реакторная камера 4 из нержавеющей стали с охлаждаемой крышкой и установленным на ней графитовой вставкой 5, и система откачки газа 6, система охлаждения 7, коллектор 8 для сбора продуктов синтеза. Использование в плазмотроне 3 расширяющегося канала выходного электрода позволяет существенно повысить скорость холодного газа на входе в канал и интенсифицировать теплообмен между дугой и плазмообразующим газом, а это уменьшает длину дуги и более равномерно распределяет тепловые потоки в стенки электрода. Тангенциальная подача газовой смеси в канал плазмотрона 3 со стороны катода при помощи кольца закрутки обеспечивает вихревую стабилизацию струи. Это позволяет изменять длину электрической дуги в плазмотроне в широких пределах, варьируя род и расход газа и силу тока разряда.
Суть метода синтеза с помощью плазмы заключается в высокой скорости охлаждения паро-газовой смеси, образованной из продуктов конверсии азота и метана, и конденсации твердого углерода в объеме коллектора, перпендикулярно устанавливаемого паро-газовому потоку.
Способ осуществляют следующим образом. Предварительно в камере смешения 2 смешивают один из алканов (CnH2n+2) с азотом в массовых соотношениях от 1:10 до 1:5, затем смесь поступает в разрядный промежуток плазмотрона 3 при давлении 300-700 Торр. При протекании электрического тока через разрядный промежуток плазмотрона 3 образуется плазменная струя с температурой 10000-12000 К, которая в динамических условиях резко охлаждается до 600-800 К. В холодной зоне из струи конденсируется твердый углерод в виде графеновых пластин, содержащих азот. Ток дуги составляет 200-350 А.
Найденные параметры обеспечивают высокую степень диссоциации азота, так что молекулы генерируют значительное количество реакционноспособных атомов азота, которые могут быть включены в растущую структуру углеродной решетки. Рентгеноструктурным анализом проиллюстрировано, что средняя толщина стопок графеновых пластин составляет 2÷3 нанометра, что существенно меньше, чем для других известных расщепленных (или расширенных) графитов.
Предлагаемый способ позволяет получать графен, состоящий из атомов углерода и азота, с содержанием азота в интервале 8,00÷10,00 ат. %. Размер графеновых пластин колеблется в диапазоне 50-600 нм. В зависимости от условий синтеза (в том числе соотношения компонентов в газовом потоке) размер графеновых структур может статистически колебаться в большую или меньшую сторону.
Предлагаемый способ имеет следующие преимущества:
1. Смешивание углеводородов (пропан, бутан, метан) и рабочего газа (обычный технический азот) происходит до ввода в плазмотрон, что позволяет варьировать их соотношение в потоке; тангенциальный ввод обеспечивает лучшее испарение углеводорода.
Массовые соотношения углеводорода и азота соответственно от 1:10 до 1:5 подобраны экспериментально из условия максимальной производительности процесса синтеза азотированных графеновых пластин.
2. Для предлагаемого интервала рабочего давления 300-700 Торр не требуется дорогостоящего вакуумного оборудования. При давлении Р в разрядном промежутке за пределами указанного интервала происходит образование трубок (Р<300 Торр) или сажи (Р>700 Торр).
3. Резкое охлаждение паро-газовая смеси на выходе из плазмотрона до интервалатемператур 300-600°С необходимо для формирования графеновых структур. При температуре смеси Т<300°С и Т>700°С происходит образование графитизированных частиц.
4. Широкое варьирование мощности плазмотрона и параметров синтеза (скорость расхода, давление, температура) в реакторе позволяет создавать условия синтеза допированных азотом графеновых пластин с учетом свойств различных углеводородов.
5. Не требуется предварительного синтеза графеновых пластин, процесс одностадийный.
Найденные параметры обеспечивают высокую степень диссоциации азота, так что молекулы генерируют значительное количество реакционноспособных атомов азота, которые могут быть включены в растущую структуру углеродной решетки. Рентгеноструктурным анализом проиллюстрировано, что средняя толщина стопок графеновых пластин составляет 2÷3 нанометра, что существенно меньше, чем для других известных расщепленных (или расширенных) графитов.
Реактивность плазмы исследовалась методом оптической эмиссионной спектроскопии азотной плазмы и плазмы с добавкой алканов (CnH2n+2). Фактически, этот метод позволяет идентифицировать активные виды углерода, азота и водорода, присутствующих в плазме во время синтеза в выходном газовом потоке и рассчитать температуру плазменной струи.
Для определения элементного состава образцов использовался метод экспресс - гравиметрии. При оптимальных условиях концентрация азота составляет 8-10 ат. %, а углерода 80-92 ат. %.
Ниже приведены примеры для иллюстрации условий реализации предложенного способа.
Пример 1. Способ осуществляют следующим образом. Технический метан СН4 (чистота 99.96 масс. %) подают одновременно с техническим азотом (чистота 99.96 масс. %) в плазмотрон. Расход азота 1,5 г/с. Расход метана 0,153 г/с. Давление среды 350 Торр. Продолжительность плазмохимического процесса составляет - 6-10 мин. Продукт синтеза на выходе - порошок черного цвета. Выход (собран в коллекторе) - 5 г. Морфология продукта - графеновые пластины. Содержание азота составило 5,28 масс %. Содержание кислорода - не более 4 масс %.
Пример 2. Реализован состав газовой смеси для получения графеновых пластин, в котором происходил пиролиз пропан-бутановой смеси (70:30 масс. %) в плазме азота. Расход азота 2,0 г/с. Расход пропан-бутановой смеси 0,301 г/с. Давление среды 350 Торр. Продолжительность плазмохимического процесса составляет - 10 мин. Продукт синтеза -порошок черного цвета. Выход- 5 г. Морфология продукта - графеновые пластины. Содержание азота 11 масс %. Кислород не обнаружен.
Пример 3. Реализован пиролиз газовой смеси из пропана и азота для получения графеновых пластин. Расход азота 1,5 г/с. Расход технического пропана 0,15 г/с. Давление среды 350 Торр. Продолжительность плазмохимического процесса составляет - 10 мин. Продукт синтеза - порошок черного цвета. Выход - 3,5 г. Морфология продукта - графеновые пластины. Содержание азота 9,31 масс %. Кислород не обнаружен.
Пример 4. Технический бутан (чистота 99.96 масс. %) подают в плазмотрон одновременно с техническим азотом (чистота 99.96 масс %). Расход азота 1,0 г/с. Расход бутана 0,093 г/с. Давление среды 500 Торр. Продолжительность плазмохимического процесса составляет - 6-10 мин. Продукт синтеза на выходе- порошок черного цвета. Выход (собран в коллекторе) - 5 г. Морфология продукта - графеновые пластины. Содержание азота 5,28 масс %. Содержание кислорода не превысило 4 масс %.
Пример 5. Технический пропан-бутан (70:30 масс %) подают в плазмотрон одновременно с техническим азотом. Расход азота 2,0 г/с. Расход бутана 0,003 г/с. Давление среды 150 Торр. Продолжительность плазмохимического процесса составляет - 6-10 мин. Продукт синтеза на выходе - порошок черного цвета. Выход (собран в коллекторе) - 1,5 г. Морфология продукта - дендритные образования (рис. 6). Содержание азота 0,81 масс %. Содержание кислорода 10 масс %.
Пример 6. Реализован состав газовой смеси для получения графеновых пластин, в котором использовалась пропан-бутановая смесь (70:30 масс. %) и азот. Расход азота 2,0 г/с. Расход пропан-бутановой смеси 0,301 г/с. Давление среды 740 Торр. Продолжительность плазмохимического процесса составляет - 6 мин. Продукт синтеза - порошок серо-черного цвета. Выход- 1 г. Температура объема коллектора 1000°С. Морфология продукта - сажа. Содержание азота 0,0 масс %. Кислород не обнаружен.
Пример 7. Реализован состав газовой смеси метан-азот. Расход азота 2,0 г/с. Расход метана 0,368 г/с. Давление среды 100 Торр. Продолжительность плазмохимического процесса составляет - 10 мин. Продукт синтеза - порошок черного цвета. Выход - 5 г. Морфология продукта - углеродные нанотрубки. Содержание азота 0,11 масс %. Кислород не обнаружен.
На рисунке 2 представлена морфология допированных азотом графеновых пластин.
Полученный с помощью этого изобретения допированный азотом графен может быть эффективно использован в сфере энергетики: в качестве устойчивого носителя к окислению в топливных элементах. Электричество, произведенное топливными элементами, может использоваться для питания зданий, приборов, машин или в военных и космических приложениях. Кроме того, азотированный графен может быть применен в суперконденсаторах, в электросорбционных установках очистных сооружений.
Таким образом, благодаря использованию заявляемого способа синтеза возможно получать допированные азотом графеновые пластины с высокой производительностью и низких эксплуатационных расходах.

Claims (1)

  1. Способ получения допированных азотом графеновых пластин, состоящий в применении термической плазмы для обработки азотсодержащей среды, в которую помещен источник углерода, отличающийся тем, что в качестве источника углерода используется углеводород из ряда (CnH2n+n), который подается в термическую плазму предварительно смешанным с азотом в массовых соотношениях от 1:10 до 1:5, соответственно, и пониженном давлении 300-700 Торр, при этом формирующаяся в плазменном потоке парогазовая смесь на выходе из плазмотрона резко охлаждается до температур 300-600°С.
RU2019120091A 2019-06-27 2019-06-27 Способ прямого синтеза азотированных графеновых пластин RU2717069C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019120091A RU2717069C1 (ru) 2019-06-27 2019-06-27 Способ прямого синтеза азотированных графеновых пластин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019120091A RU2717069C1 (ru) 2019-06-27 2019-06-27 Способ прямого синтеза азотированных графеновых пластин

Publications (1)

Publication Number Publication Date
RU2717069C1 true RU2717069C1 (ru) 2020-03-17

Family

ID=69898645

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019120091A RU2717069C1 (ru) 2019-06-27 2019-06-27 Способ прямого синтеза азотированных графеновых пластин

Country Status (1)

Country Link
RU (1) RU2717069C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750709C1 (ru) * 2020-10-19 2021-07-01 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Графен, модифицированный атомами азота, и способ его приготовления

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265939B1 (ko) * 2011-06-10 2013-05-21 한국세라믹기술원 유도 열 플라즈마를 이용한 그래핀 제조방법
WO2017213045A1 (ja) * 2016-06-08 2017-12-14 国立研究開発法人産業技術総合研究所 窒素ドープグラフェン膜とその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265939B1 (ko) * 2011-06-10 2013-05-21 한국세라믹기술원 유도 열 플라즈마를 이용한 그래핀 제조방법
WO2017213045A1 (ja) * 2016-06-08 2017-12-14 国立研究開発法人産業技術総合研究所 窒素ドープグラフェン膜とその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
N. BUNDALESKA et al. Microwave N2-Ar plasmas applied for N-graphene post synthesis, Mat. Res. Express, 2018, v. 5, no. 9. *
YUYAN SHAO et al. Nitrogen-doped graphene and its electrochemical applications, J. Mater. Chem., 2010, v. 20, p.p. 7491-7496. *
ВИЛКОВ О. Ю. Электронная структура нанокомпозитных материалов на основе графена, Диссертация на соискание учёной степени кандидата физико-математических наук, Санкт-Петербург, 2015, с. 54. *
УСАЧЁВ Д.Ю. Синтез и управление электронной структурой систем на основе графена, Диссертация на соискание учёной степени доктора физико-математических наук, Санкт-Петербург, 2015, с. 123. *
УСАЧЁВ Д.Ю. Синтез и управление электронной структурой систем на основе графена, Диссертация на соискание учёной степени доктора физико-математических наук, Санкт-Петербург, 2015, с. 123. ВИЛКОВ О. Ю. Электронная структура нанокомпозитных материалов на основе графена, Диссертация на соискание учёной степени кандидата физико-математических наук, Санкт-Петербург, 2015, с. 54. YUYAN SHAO et al. Nitrogen-doped graphene and its electrochemical applications, J. Mater. Chem., 2010, v. 20, p.p. 7491-7496. N. BUNDALESKA et al. Microwave N2-Ar plasmas applied for N-graphene post synthesis, Mat. Res. Express, 2018, v. 5, no. 9. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750709C1 (ru) * 2020-10-19 2021-07-01 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Графен, модифицированный атомами азота, и способ его приготовления

Similar Documents

Publication Publication Date Title
US8486364B2 (en) Production of graphenic carbon particles utilizing methane precursor material
JP6359081B2 (ja) 窒化ホウ素ナノチューブ及びその製造方法
EP3167694B9 (en) Apparatus and method for plasma synthesis of graphitic products including graphene
Paul et al. A green precursor for carbon nanotube synthesis
Wu et al. Large-scale synthesis of high-quality graphene sheets by an improved alternating current arc-discharge method
EP3567130B1 (en) Reactor for fabrication of graphene
CN103145117B (zh) 一种制备石墨烯的方法
JP2023506422A (ja) カーボンナノ構造体の堆積のための方法及び装置
Czosnek et al. Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods
US8609189B2 (en) Method of forming carbon nanotubes from carbon-rich fly ash
Liu et al. Synthesis of structure controlled carbon nanomaterials by AC arc plasma process
Pagura et al. Large scale and low cost production of pristine and oxidized single wall carbon nanohorns as material for hydrogen storage
RU2717069C1 (ru) Способ прямого синтеза азотированных графеновых пластин
WO2020036532A1 (en) Process and apparatus for synthesizing multiwall carbon nanotubes from high molecular polymeric wastes
Mori et al. Effect of oxygen and hydrogen addition on the low-temperature synthesis of carbon nanofibers using a low-temperature CO/Ar DC plasma
Amirov et al. Synthesis of high-purity multilayer graphene using plasma jet
Shavelkina et al. The effect of reactor geometry on the synthesis of graphene materials in plasma jets
Nakamura et al. High quality chemical vapor deposition diamond growth on iron and stainless steel substrates
Sahu et al. Spheroidal growth of graphite in arc plasma treatment
Iqbal et al. Synthesis and Structural Analysis of Multilayered Graphene via Microwave Atmospheric Pressure Plasma
US20230238506A1 (en) Production of graphenic carbon particles utilizing hydrocarbon precursor materials
Ding et al. Recent research progress of carbon nanotube arrays prepared by plasma enhanced chemical vapor deposition method
Kawale et al. Carbon nanotube: An indirect~ 0 eV band gap material
Amirov et al. Large-scale synthesis of graphene materials using hydrocarbons in a thermal plasma jet
Zhang Study on the synthesis process of carbon nanotubes