RU2715799C1 - Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации - Google Patents

Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации Download PDF

Info

Publication number
RU2715799C1
RU2715799C1 RU2018145597A RU2018145597A RU2715799C1 RU 2715799 C1 RU2715799 C1 RU 2715799C1 RU 2018145597 A RU2018145597 A RU 2018145597A RU 2018145597 A RU2018145597 A RU 2018145597A RU 2715799 C1 RU2715799 C1 RU 2715799C1
Authority
RU
Russia
Prior art keywords
output
pass filter
low
input
frequency
Prior art date
Application number
RU2018145597A
Other languages
English (en)
Inventor
Елена Владимировна Кудряшова
Николай Владимирович Кузнецов
Ольга Александровна Кузнецова
Михаил Юрьевич Лобачев
Тимур Назирович Мокаев
Марат Владимирович Юлдашев
Ренат Владимирович Юлдашев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)"
Priority to RU2018145597A priority Critical patent/RU2715799C1/ru
Priority to EA201900555A priority patent/EA201900555A3/ru
Application granted granted Critical
Publication of RU2715799C1 publication Critical patent/RU2715799C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D13/00Circuits for comparing the phase or frequency of two mutually-independent oscillations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

Изобретение относится к области электротехники, в частности к радиоэлектронике и компьютерным архитектурам, может использоваться в приемо-передающих устройствах и технике связи и управления, радиоавтоматике, системах авторегулирования, в частности, при проектировании различных типов систем фазовой автоподстройки частоты (ФАПЧ). Технический результат - повышение помехоустойчивости и улучшение фильтрующих свойств системы. Заявленное изобретение позволяет эффективно определять оптимальные параметры систем ФАПЧ, позволяющие достигать синхронизма внутри одного биения, определять границы рабочего диапазона систем фазовой автоподстройки и моделировать работу систем ФАПЧ посредством выбора синусоидальной и косинусоидальной форм эталонного и подстраиваемого сигналов соответственно, выбора фильтра нижних частот второго порядка и его передаточной функции и выбора частоты подстраиваемого сигнала. 2 н.п. ф-лы, 3 ил.

Description

Изобретение относится к области электротехники, в частности к радиоэлектронике и компьютерным архитектурам, может использоваться в приемо-передающих устройствах и технике связи и управления, радиоавтоматике, системах авторегулирования, в частности, при проектировании различных типов систем фазовой автоподстройки частоты (далее ФАПЧ), отличающееся возможностью определять оптимальные параметры для достижения синхронного режима в пределах одного биения и стабильной работы систем ФАПЧ, что способствует повышению помехоустойчивости и улучшению фильтрующих свойств системы.
Известно, что тестирование реальной модели является трудоемким процессом и не может гарантировать правильность работы системы фазовой автоподстройки при всевозможных значениях начальных данных и параметров ее компонент, таких как начальная разность фаз эталонного и подстраиваемого генераторов, начальное состояние фильтра нижних частот, поэтому такой способ достаточно редко применяется на практике.
Известно, что анализ моделей систем фазовой автоподстройки в пространстве сигналов является сложной задачей, так как данные модели описываются неавтономными нелинейными дифференциальными уравнениями [1].
Известно, что наиболее распространенным способом, используемым при проектировании и анализа систем ФАПЧ, является способ моделирования и анализ созданных моделей фазовой автоподстройки в пространстве фаз сигналов [2, 3]. В частности, модели ФАПЧ в пространстве фаз сигналов используются для нахождения оценок диапазона разностей частот эталонного и подстраиваемого генераторов, соответствующему режиму, при котором синхронизация достигается внутри одного биения как при начале работы системы ФАПЧ, так и при мгновенном переключении частоты эталонного генератора. Такой диапазон называют полосой захвата без проскальзывания [4-6]. Несмотря на то что нахождение таких диапазонов является сложным и трудоемким, оценки допустимого отклонения частоты существуют [7]. Однако из-за применения упрощенных фильтров нижних частот при проектировании таких систем соответствующие системы обладают недостаточно высокой помехоустойчивостью.
Известно устройство фазовой автоподстройки частоты [8], суть которого в повышении устойчивости, определяющей полосу захвата частоты, при сохранении высокой точности фазовой синхронизации. Однако известное устройство является недостаточно стабильным за счет того, что при его работе допускается фазовая синхронизация с биениями, а также определение полосы захвата без проскальзывания с помощью известного устройства является сложной задачей.
Известна схема [9], работа которой основана на формировании двух управляющих сигналов с помощью фазового детектора, который получает два высокостабильных по частоте сигнала, генерируемых эталонным и подстраиваемым генератором, и блока измерения разности частот, подключенного к выходу фазового детектора и генерирующего сигнал, соответствующий разности частот. Однако определение полосы захвата без проскальзывания с помощью известного устройства является трудоемким и обладает недостаточной точностью.
Известны способ для определения рабочих параметров фазовой автоподстройки частоты генератора и устройство для его реализации [10], основанные на задании дополнительного сигнала в зависимости от двух заданных высокостабильных по частоте колебания эталонного и подстраиваемого сигнала. Дополнительный сигнал используется для определения рабочих параметров системы фазовой синхронизации и снижает трудоемкость их определения. Недостатком известных способа и устройства является то, что биения в процессе синхронизации системы выявляются опытным путем, и такое выявление является трудоемким. Помимо этого, известные способ и устройство являются недостаточно информативными для определения рабочего диапазона, при котором фазовая синхронизация достигается внутри одного биения.
Известны способ для определения границ рабочего диапазона импульсного генератора систем фазовой синхронизации и устройство для его реализации [11], наиболее близкие к заявленной группе изобретений, принятые в качестве прототипа для заявленного изобретения. Сущность известного способа состоит в том, что задают два высокостабильных по частоте колебания прямоугольных сигнала, один из которых выбирают эталонным, а второй подстраиваемым, причем диапазон частот первого и второго сигналов выбирают от 20 кГц до 20 ГГц, задают первый и второй коэффициенты передаточной функции фильтра нижних частот, после чего по соотношению эталонного и подстраиваемого сигналов задают дополнительный сигнал, который с помощью фильтра нижних частот подвергают фильтрации, с помощью усилителя постоянного тока увеличивают его амплитуду, и дополнительный сигнал используют в качестве управляющего сигнала, причем допустимое отклонение частоты подстраиваемого сигнала от эталонного задается по соответствующим формулам, выбор которых зависит от функции сравнения.
Недостатками данного прототипа являются недостаточная помехоустойчивость в силу применения упрощенных фильтров нижних частот, а также невозможность применения известного способа к системам с эталонным и подстраиваемым сигналами гармонической формы.
Технический результат, достигаемый новым решением, является общим для всей группы объектов заявленного изобретения (способу для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройству для его реализации), и состоит в повышении устойчивости относительно помех и шумов за счет проектирования фильтров нижних частот в более широком диапазоне параметров.
Указанный технический результат достигается тем, что в способе для определения границ рабочего диапазона систем фазовой автоподстройки, в котором задают два высокостабильных по частоте колебания сигнала, один из которых выбирают эталонным, а второй выбирают подстраиваемым, причем диапазон их частот выбирают от 20 кГц до 20 ГГц, после чего по соотношению этих двух сигналов задают дополнительный сигнал, который с помощью фильтра нижних частот подвергают фильтрации, и дополнительный сигнал используют в качестве управляющего сигнала, в соответствии с заявленным изобретением формы эталонного и подстраиваемого сигналов выбирают синусоидальной и косинусоидальной соответственно, а в качестве фильтра нижних частот выбирают фильтр нижних частот второго порядка с передаточной функцией вида:
Figure 00000001
где H(s) - передаточная функция фильтра нижних частот,
s - комплексная переменная,
а>0, b>0 и c>0 - первый, второй и третий коэффициенты передаточной функции фильтра нижних частот, удовлетворяющие соотношениям:
а(а+b)>1, ab ≠ 1,
а частоту подстраиваемого сигнала выбирают не более чем на
Figure 00000002
от частоты эталонного сигнала, причем допустимое отклонение частоты
Figure 00000002
задается по соотношению:
Figure 00000003
где K - коэффициент усиления усилителя постоянного тока.
Указанный технический результат достигается также новым устройством для определения границ рабочего диапазона систем фазовой автоподстройки, выполненном в корпусе, содержащем эталонный генератор высокостабильного по частоте колебания, выход которого подключен к первому входу фазового детектора, который выполнен в виде перемножителя двух сигналов, выход фазового детектора подключен к первому входу фильтра нижних частот, выход фильтра нижних частот подключен к первому входу усилителя постоянного тока, выход усилителя постоянного тока подключен к управляющему входу подстраиваемого генератора высокостабильного по частоте колебания, выход подстраиваемого генератора подключен ко второму входу фазового детектора, блок определения границ рабочего диапазона, выполненного в виде арифметического контроллера с обеспечением точности вычислений не менее четырех знаков после запятой, выход которого подключен к регистратору, который фиксирует границы рабочего диапазона системы фазовой автоподстройки частоты, блок задания коэффициента усиления усилителя постоянного тока, первый выход которого подключен ко второму входу усилителя постоянного тока, второй выход блока задания коэффициента усиления усилителя постоянного тока подключен к первому входу блока определения границ рабочего диапазона, в котором, в соответствии с заявленным изобретением, дополнительно установлен блок задания первого коэффициента передаточной функции фильтра нижних частот, первый выход которого подключен ко второму входу фильтра нижних частот, а второй выход блока задания первого коэффициента передаточной функции фильтра нижних частот подключен ко второму входу блока определения границ рабочего диапазона, блок задания второго коэффициента передаточной функции фильтра нижних частот, первый выход которого подключен к третьему входу фильтра нижних частот, второй выход блока задания второго коэффициента передаточной функции фильтра нижних частот подключен к третьему входу блока определения границ рабочего диапазона, блок задания третьего коэффициента передаточной функции фильтра нижних частот, первый выход которого подключен к четвертому входу фильтра нижних частот, второй выход блока задания третьего коэффициента передаточной функции фильтра нижних частот подключен к четвертому входу блока определения границ рабочего диапазона.
В основу заявленного изобретения поставлена техническая задача повышения точности, достоверности и стабильности работы системы ФАПЧ, снижении трудоемкости определения рабочего диапазона при проектировании и тестировании системы фазовой автоподстройки.
Сущность заявленного способа поясняется Фиг. 2, Фиг. 3, на которых представлены функциональные зависимости эталонного и подстраиваемого сигналов от времени.
В заявленном способе один из двух высокостабильных по частоте сигналов выбирают эталонным с синусоидальной формой, который изображен на Фиг. 2 как функция зависимости от времени, где «A1» - амплитуда, «ω1» - частота, а
Figure 00000004
- период сигнала. Второй из двух высокостабильных по частоте сигналов выбирают подстраиваемым с косинусоидальной формой, который изображен на Фиг. 3 как функция зависимости от времени, где «А2» - амплитуда, «ω2» - частота, а
Figure 00000005
- период сигнала. Дополнительный сигнал выбирают равным половине суммы двух синусоидальных сигналов с частотами, равными «ω12» и «ω12», и амплитудами, равными
Figure 00000006
Заявленное изобретение было апробировано в лабораторных условиях Санкт-Петербургского государственного университета и результаты апробации приведены в виде конкретных примеров.
Примеры реализации способа для определения границ рабочего диапазона импульсного генератора систем фазовой синхронизации.
Пример 1.
Было проведено моделирование границ рабочего диапазона классической системы ФАПЧ с фазовым детектором типа перемножитель для двух высокостабильных по частоте сигналов, один из которых был принят эталонным с синусоидальной формой, а второй принят подстраиваемым с косинусоидальной формой. При этом первый, второй и третий коэффициенты передаточной функции фильтра нижних частот были заданы равными а = 0.1, b = 11, с = 1 и коэффициент усиления усилителя постоянного тока был задан равным K = 10. Частота эталонного сигнала была задана равной ω1 = 30 кГц. Допустимое отклонение частоты
Figure 00000007
было получено по оригинальной формуле, представленной в заявке. Отклонение частоты подстраиваемого сигнала от частоты эталонного сигнала было выбрано не превышающим допустимое отклонение частоты:
Figure 00000008
По результатам работы ФАПЧ полученная величина (частота подстраиваемого сигнала
Figure 00000009
равная 30,01 кГц) принадлежит рабочему диапазону ФАПЧ, для которого синхронизация происходит внутри одного биения. При этом при выборе отклонения частоты подстраиваемого сигнала от частоты эталонного сигнала
Figure 00000010
превышающим допустимое отклонение частоты, выборе частоты подстраиваемого сигнала
Figure 00000011
и мгновенном изменении частоты эталонного сигнала ω1 с 30 кГц до 30,03 кГц повторная синхронизация ФАПЧ происходила с биениями. При этом при выборе коэффициентов передаточной функции а = 0.1, b = 1, нарушающем требуемое неравенство а(а+b)>1, выборе частоты подстраиваемого сигнала
Figure 00000012
и мгновенном изменении частоты эталонного сигнала ω1 с 30 кГц до 30,02 кГц синхронизация не наблюдалась.
Универсальность предлагаемого изобретения основана на реализации изменения допустимого отклонения частоты подстраиваемого сигнала от частоты эталонного сигнала, в зависимости от значений коэффициентов передаточной функции фильтра нижних частот и коэффициента усиления усилителя постоянного тока, по оригинальной формуле, представленной в заявке. Для этого, как видно из заявленного способа, определяется допустимое отклонение частоты и выбирается отклонение частоты подстраиваемого сигнала, не превышающее полученное допустимое значение.
Как показывают результаты исследования примера 1, использование единого способа вычисления допустимого отклонения частоты позволяет эффективно выбирать отклонения частоты подстраиваемого сигнала, гарантирующие достижение синхронного режима внутри одного биения, что существенно снижает трудоемкость.
Пример 2
Заявленный способ поясняется также конкретным примером использования устройства для реализации этого способа, схема которого представлена на Фиг. 1.
Устройство для определения границ рабочего диапазона систем фазовой автоподстройки, выполненное в корпусе (1) и содержащее эталонный генератор высокостабильного по частоте колебания (2), выход которого подключен к первому входу фазового детектора (3), который выполнен в виде перемножителя двух сигналов, выход фазового детектора подключен к первому входу фильтра нижних частот (4), выход фильтра нижних частот подключен к первому входу усилителя постоянного тока (5), выход усилителя постоянного тока подключен к управляющему входу подстраиваемого генератора высокостабильного по частоте колебания (6), выход подстраиваемого генератора подключен ко второму входу фазового детектора, блок определения границ рабочего диапазона (11), выполненного в виде арифметического контроллера с обеспечением точности вычислений не менее четырех знаков после запятой, выход которого подключен к регистратору (12), который фиксирует границы рабочего диапазона системы фазовой автоподстройки частоты, блок задания коэффициента усиления усилителя постоянного тока (10), первый выход которого подключен ко второму входу усилителя постоянного тока, второй выход блока задания коэффициента усиления усилителя постоянного тока подключен к первому входу блока определения границ рабочего диапазона, устройство также содержит блок задания первого коэффициента передаточной функции фильтра нижних частот (7), первый выход которого подключен ко второму входу фильтра нижних частот, а второй выход блока задания первого коэффициента передаточной функции фильтра нижних частот подключен ко второму входу блока определения границ рабочего диапазона, блок задания второго коэффициента передаточной функции фильтра нижних частот (8), первый выход которого подключен к третьему входу фильтра нижних частот, второй выход блока задания второго коэффициента передаточной функции фильтра нижних частот подключен к третьему входу блока определения границ рабочего диапазона, блок задания третьего коэффициента передаточной функции фильтра нижних частот (9), первый выход которого подключен к четвертому входу фильтра нижних частот, второй выход блока задания третьего коэффициента передаточной функции фильтра нижних частот подключен к четвертому входу блока определения границ рабочего диапазона.
Работа заявленного устройства осуществляется следующим образом. Фильтр нижних частот выполнен как фильтр нижних частот второго порядка с передаточной функцией
Figure 00000013
где H(s) - передаточная функция фильтра нижних частот,
s - комплексная переменная,
а, b и с - первый, второй и третий коэффициенты передаточной функции фильтра нижних частот.
Блок задания коэффициента усиления усилителя постоянного тока генерирует значение коэффициента усиления K, а блоки задания первого, второго и третьего коэффициентов передаточной функции фильтра нижних частот генерируют первый, второй и третий коэффициенты передаточной функции а>0, b>0 и с>0, удовлетворяющие соотношениям: а(а+b)>1, ab ≠ 1.
Значения K, а, b и с поступают на входы блока определения границ рабочего диапазона, где производится определение допустимого отклонения частоты сигнала подстраиваемого генератора от частоты сигнала эталонного генератора
Figure 00000014
в соответствии со следующим соотношением:
Figure 00000015
Регистратор, подключенный к выходу блока определения границ рабочего диапазона, регистрирует допустимое отклонение частоты сигнала подстраиваемого генератора от частоты сигнала эталонного генератора.
Эталонный генератор высокостабильного по частоте колебания генерирует синусоидальный сигнал f1(t) в диапазоне 20 кГц - 20 ГГц с частотой ω1, а подстраиваемый генератора высокостабильного по частоте колебания генерирует косинусоидальный сигнал f2(t) в диапазоне 20 кГц - 20 ГГц с частотой
Figure 00000016
которую задают не более чем
Figure 00000014
от частоты ω1 эталонного сигнала.
Сигналы эталонного и подстраиваемого генераторов поступают на вход фазового детектора, на выходе которого получают сигнал, удовлетворяющий следующему соотношению:
f(t) = f1(t)f2(t),
где f(t) - выход фазового детектора.
Сигнал с выхода фазового детектора через первый вход фильтра нижних частот поступает на последовательно соединенные фильтр нижних частот, через первый вход усилителя постоянного тока, и через управляющий вход подстраиваемого генератора, чем и достигается технический результат, который состоит в упрощении и снижении трудоемкости определения рабочего диапазона классических систем ФАПЧ, повышении достоверности и точности за счет достижения режима синхронизма внутри одного биения, повышении информативности и стабильности работы системы.
Ниже приведен пример конкретной реализации устройства для определения границ рабочего диапазона ФАПЧ, подтверждающий работоспособность и достижение указанного выше технического результата заявленным способом.
Конкретный пример работы устройства для определения границ рабочего диапазона ФАПЧ состоит в следующем: эталонный и подстраиваемый генераторы генерируют сигналы, имеющие следующий вид:
f1(t) = A1sin (ω1t),
f2(t) = A2cos(w2(t)t),
где частота сигнала эталонного генератора ω1 = 30 кГц, частота сигнала подстраиваемого генератора ω2(t) меняется в зависимости от управляющего входа, с помощью блока задания коэффициента усиления задают коэффициент усиления усилителя постоянного тока K = 10, и с помощью блоков задания первого, второго и третьего коэффициентов передаточной функции фильтра нижних частот задают а = 0.1, b = 11, с = 1. Заданное значение коэффициента усиления поступает на соответствующий вход усилителя постоянного тока, а заданные значения первого, второго и третьего коэффициентов передаточной функции фильтра нижних частот поступают на соответствующие входы фильтра нижних частот. Кроме того, заданные значения- коэффициента усиления, первого, второго и третьего коэффициентов передаточной функции фильтра нижних частот поступают на соответствующие входы блока определения границ рабочего диапазона. Значение допустимого отклонения частоты
Figure 00000017
вычисляется блоком определения границ рабочего диапазона в соответствии с заявленным соотношением, т.е.
Figure 00000018
Вычисленное значение допустимого отклонения частоты
Figure 00000017
фиксируется регистратором.
Для достижения заявленного технического результата частоту сигнала подстраиваемого генератора задают не более чем
Figure 00000017
от частоты сигнала эталонного генератора, т.е.
Figure 00000019
Сигналы от эталонного и подстраиваемого генераторов поступают на соответствующие входы фазового детектора, выполненного как перемножитель, на выходе которого получают сигнал следующего вида:
Figure 00000020
Далее полученный сигнал проходит через последовательно соединенные фильтр нижних частот и усилитель постоянного тока, образуя управляющий сигнал, который поступает на управляющий вход подстраиваемого генератора.
Как показывают результаты исследования по примеру 2, использование единого способа вычисления границы рабочего диапазона позволяет задать частоту косинусоидального сигнала подстраиваемого генератора гарантированно внутри рабочего диапазона, что упрощает и снижает трудоемкость выбора отклонения частоты подстраиваемого сигнала, а так же за счет синхронизации ФАПЧ внутри одного биения достигается повышение достоверности и точности работы ФАПЧ.
Результаты проведенных исследований, изложенных в примерах 1 и 2, моделирующих конкретные условия реализации заявленных способа и устройства, показали работоспособность, достоверность и универсальность изобретения. Достижение технического результата стало возможным также за счет учета обнаруженной авторами универсальной зависимости допустимого отклонения частоты подстраиваемого сигнала от коэффициента усиления усилителя постоянного тока и коэффициентов передаточной функции фильтра нижних частот и возможности использования фильтра нижних частот второго порядка, что на апробировании многих моделей подтвердило универсальность заявленного способа и устойчивость работы устройства для всего допустимого диапазона рабочих параметров классической ФАПЧ с эталонным и подстраиваемым генераторами, генерирующими гармонические сигналы, по сравнению с известным способом-прототипом.
Технико-экономическая эффективность заявленного изобретения в целом состоит в оптимизации и снижении трудоемкости при проектировании ФАПЧ за счет определения границы рабочего диапазона, повышении стабильности (устойчивости) работы устройства за счет достижения ФАПЧ режима синхронизма внутри одного биения, расширении области рабочих параметров ФАПЧ за счет обнаруженной авторами универсальной зависимости допустимого отклонения частоты подстраиваемого сигнала от коэффициента усиления усилителя постоянного тока и коэффициентов передаточной функции фильтра нижних частот, и повышении достоверности (точности) работы системы за счет учета указанной закономерности.
Заявленное изобретение позволяет успешно решать задачи, связанные с определением рабочего диапазона классических ФАПЧ и моделированием работы ФАПЧ, с определением оптимальных параметров, соответствующих быстрому достижению синхронного режима и стабильной работы ФАПЧ, с построением более сложных ФАПЧ, применяющихся при беспроводной передачи информации, а также в многоядерных и многопроцессорных компьютерных архитектурах.
Используемые источники информации
1. Kudrewicz J., Wasowicz S. Equations of phase-locked loop. Dynamics on circle, torus and cylinder. World Scientific, 2007.
2. Aleksandrov, K.D., Kuznetsov, N.V., Leonov, G.A.,
Figure 00000021
, P., Yuldashev, M.V., Yuldashev, R.V. Computation of the lock-in ranges of phase-locked loops with PI filter. IFAC-PapersOnLine, 2016.
3. Kudryashova, E.V., Kuznetsov, N.V., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V. Nonlinear analysis of PLL by the harmonic balance method: limitations of the pull-in range estimation. IFAC-PapersOnLine, 2017.
4. Gardner, F.M. Phaselock Techniques. Wiley, 3rd edition, 2005.
5. Stensby, J.L. Phase-Locked Loops: Theory and Applications. Taylor & Francis, 1997.
6. Leonov, G.A., Kuznetsov, N.V., Yuldashev, M.V., Yuldashev, R.V. Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and limitations of classical theory. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015.
7. Leonov, G.A., Reitmann, V., Smirnova, V.B. Non-Local Methods for Pendulum-Like Feedback Systems. Stuttgart: Teubner, 1992.
8. Патент РФ №2565526 С1; МПК H03L 7/00.
9. USA Patent No. 0,285,467, Int. C1. H03L 7/103, H03L 7/0991, H03L 7/087.
10. Патент РФ №2449463 C1; МПК H03D 13/00.
11. Патент РФ №2625557 С1; МПК H03D 13/00, G06F 1/12 (прототип).
Используемые термины
Перемножитель двух сигналов: электронное устройство с двумя входами и одним выходом, генерирующий на выходе сигнал (напряжение) равный произведению сигналов (напряжений), поступающих на два входа.
Фазовый детектор (ФД): в электронике, устройство, сравнивающее фазы двух входных сигналов. Обычно, один из них генерируется генератором сигнала, управляемым напряжением, а второй берется из внешнего источника. ФД обычно имеет один выходной сигнал, управляющий стоящей за ним схемой фазовой автоподстройки (задача схемы фазовой автоподстройки сделать фазы входных сигналов одинаковыми), другими словами фазовым детектором называют устройство, предназначенное для создания сигнала, пропорционального разности фаз между генерируемым сигналом и эталонным сигналом. (Существуют различные электронные реализации ФД: например, перемножитель двух сигналов, XOR и др.)
Передаточная функция: один из способов математического описания динамической системы. Используется в основном в теории управления, связи и цифровой обработке сигналов. Представляет собой дифференциальный оператор, выражающий связь между входом и выходом линейной стационарной системы. Зная входной сигнал системы и передаточную функцию, можно восстановить выходной сигнал.
Фильтр нижних частот: электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза) и уменьшающий (подавляющий) частоты сигнала выше этой частоты. Степень подавления каждой частоты зависит от вида фильтра.

Claims (19)

1. Способ для определения границ рабочего диапазона систем фазовой автоподстройки, заключающийся в том, что задают два высокостабильных по частоте колебания сигнала, один из которых выбирают эталонным, а второй выбирают подстраиваемым, причем диапазон их частот выбирают от 20 кГц до 20 ГГц, после чего по соотношению этих двух сигналов задают дополнительный сигнал, который с помощью фильтра нижних частот подвергают фильтрации, и дополнительный сигнал используют в качестве управляющего сигнала, отличающийся тем, что формы эталонного и подстраиваемого сигналов выбирают синусоидальной и косинусоидальной соответственно, в качестве фильтра нижних частот выбирают фильтр нижних частот второго порядка с передаточной функцией вида:
Figure 00000022
где H(s) - передаточная функция фильтра нижних частот,
s - комплексная переменная,
а>0, b>0 и с>0 - первый, второй и третий коэффициенты передаточной функции фильтра нижних частот, удовлетворяющие соотношениям:
а(а+b)>1, ab ≠ 1,
а частоту подстраиваемого сигнала выбирают таким образом, чтобы абсолютное значение разности частоты эталонного и подстраиваемого сигналов было меньше либо равно допустимому отклонению частоты ωl, причем допустимое отклонение частоты ωl задается по соотношению:
Figure 00000023
где K - коэффициент усиления усилителя постоянного тока.
2. Устройство для определения границ рабочего диапазона систем фазовой автоподстройки, выполненное в корпусе и содержащее эталонный генератор высокостабильного по частоте колебания, выход которого подключен к первому входу фазового детектора, который выполнен в виде перемножителя двух сигналов, выход фазового детектора подключен к первому входу фильтра нижних частот второго порядка, передаточная функция которого задана соотношением:
Figure 00000024
где H(s) - передаточная функция фильтра нижних частот,
s - комплексная переменная,
а>0, b>0 и с>0 - первый, второй и третий коэффициенты передаточной функции фильтра нижних частот, удовлетворяющие соотношениям:
а(а+b)>1, ab ≠ 1,
выход фильтра нижних частот подключен к первому входу усилителя постоянного тока, выход усилителя постоянного тока подключен к управляющему входу подстраиваемого генератора высокостабильного по частоте колебания, выход подстраиваемого генератора подключен ко второму входу фазового детектора, блок определения границ рабочего диапазона, выполненного в виде арифметического контроллера с обеспечением точности вычислений не менее четырех знаков после запятой, определяющего допустимое отклонение частоты ωl сигнала подстраиваемого генератора от частоты сигнала эталонного генератора по формуле:
Figure 00000025
где K - коэффициент усиления усилителя постоянного тока,
выход блока определения границ рабочего диапазона подключен к регистратору, который фиксирует границы рабочего диапазона системы фазовой автоподстройки частоты, блок задания коэффициента усиления усилителя постоянного тока, первый выход которого подключен ко второму входу усилителя постоянного тока, второй выход блока задания коэффициента усиления усилителя постоянного тока подключен к первому входу блока определения границ рабочего диапазона, отличающееся тем, что устройство дополнительно содержит блок задания первого коэффициента передаточной функции фильтра нижних частот, первый выход которого подключен ко второму входу фильтра нижних частот, а второй выход блока задания первого коэффициента передаточной функции фильтра нижних частот подключен ко второму входу блока определения границ рабочего диапазона, блок задания второго коэффициента передаточной функции фильтра нижних частот, первый выход которого подключен к третьему входу фильтра нижних частот, второй выход блока задания второго коэффициента передаточной функции фильтра нижних частот подключен к третьему входу блока определения границ рабочего диапазона, блок задания третьего коэффициента передаточной функции фильтра нижних частот, первый выход которого подключен к четвертому входу фильтра нижних частот, второй выход блока задания третьего коэффициента передаточной функции фильтра нижних частот подключен к четвертому входу блока определения границ рабочего диапазона.
RU2018145597A 2018-12-20 2018-12-20 Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации RU2715799C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2018145597A RU2715799C1 (ru) 2018-12-20 2018-12-20 Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации
EA201900555A EA201900555A3 (ru) 2018-12-20 2019-12-13 Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018145597A RU2715799C1 (ru) 2018-12-20 2018-12-20 Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2715799C1 true RU2715799C1 (ru) 2020-03-03

Family

ID=69768341

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018145597A RU2715799C1 (ru) 2018-12-20 2018-12-20 Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации

Country Status (2)

Country Link
EA (1) EA201900555A3 (ru)
RU (1) RU2715799C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767510C1 (ru) * 2020-12-14 2022-03-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" Способ для ускоренной синхронизации систем фазовой автоподстройки в электрических сетях и устройство для его реализации

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845692A (en) * 1987-04-17 1989-07-04 Centre National D'etudes Spatiales Clocking device of substantially constant stability for short-term and long-term time measurement
US6396881B1 (en) * 1999-02-19 2002-05-28 Stanley A. White Minimum-delay frequency-shift-compensating complex demodulator with arbitrary phase adjustment
RU2345373C1 (ru) * 2007-11-19 2009-01-27 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ измерения ухода частоты несущей в сигнале дальнего эха в коммутируемом двухпроводном канале телефонной сети общего пользования
RU2449463C1 (ru) * 2010-12-06 2012-04-27 Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет Способ для определения рабочих параметров фазовой автоподстройки частоты генератора и устройство для его реализации
RU2565526C1 (ru) * 2014-12-19 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Устройство фазовой автоподстройки частоты
RU171585U1 (ru) * 2016-09-07 2017-06-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) Регистратор рабочего диапазона систем цифровой связи
RU2625557C1 (ru) * 2016-09-06 2017-07-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) Способ для определения границ рабочего диапазона импульсного генератора систем фазовой синхронизации и устройство для его реализации

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845692A (en) * 1987-04-17 1989-07-04 Centre National D'etudes Spatiales Clocking device of substantially constant stability for short-term and long-term time measurement
US6396881B1 (en) * 1999-02-19 2002-05-28 Stanley A. White Minimum-delay frequency-shift-compensating complex demodulator with arbitrary phase adjustment
RU2345373C1 (ru) * 2007-11-19 2009-01-27 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ измерения ухода частоты несущей в сигнале дальнего эха в коммутируемом двухпроводном канале телефонной сети общего пользования
RU2449463C1 (ru) * 2010-12-06 2012-04-27 Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет Способ для определения рабочих параметров фазовой автоподстройки частоты генератора и устройство для его реализации
RU2565526C1 (ru) * 2014-12-19 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Устройство фазовой автоподстройки частоты
RU2625557C1 (ru) * 2016-09-06 2017-07-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) Способ для определения границ рабочего диапазона импульсного генератора систем фазовой синхронизации и устройство для его реализации
RU171585U1 (ru) * 2016-09-07 2017-06-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) Регистратор рабочего диапазона систем цифровой связи

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767510C1 (ru) * 2020-12-14 2022-03-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" Способ для ускоренной синхронизации систем фазовой автоподстройки в электрических сетях и устройство для его реализации

Also Published As

Publication number Publication date
EA201900555A3 (ru) 2020-11-30
EA201900555A2 (ru) 2020-08-31

Similar Documents

Publication Publication Date Title
Leonov et al. Nonlinear dynamical model of Costas loop and an approach to the analysis of its stability in the large
Kuznetsov et al. Analytical methods for computation of phase-detector characteristics and PLL design
US20080116982A1 (en) Digital phase locked loop
RU2715799C1 (ru) Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации
Leonov et al. Differential equations of Costas loop
Sumathi et al. Phase locking scheme based on look-up-table-assisted sliding discrete Fourier transform for low-frequency power and acoustic signals
RU2625557C1 (ru) Способ для определения границ рабочего диапазона импульсного генератора систем фазовой синхронизации и устройство для его реализации
RU2449463C1 (ru) Способ для определения рабочих параметров фазовой автоподстройки частоты генератора и устройство для его реализации
CN111147073B (zh) 一种微波频率锁定装置
RU171585U1 (ru) Регистратор рабочего диапазона систем цифровой связи
US10630298B2 (en) Thermally locked oven controlled crystal oscillator
RU2005126309A (ru) Импульсный модулятор и способы импульсной модуляции
Kuznetsov et al. Elegant analytic computation of phase detector characteristic for non-sinusoidal signals
RU172814U1 (ru) Гибридный синтезатор частот с улучшенными спектральными характеристиками
Bonnin et al. Phase model reduction and synchronization of periodically forced nonlinear oscillators
EA040762B1 (ru) Устройство и способ для определения границ рабочего диапазона классических систем фазовой автоподстройки
Kuznetsov et al. Nonlinear analysis of the Costas loop and phase-locked loop with squarer
Kuznetsov et al. High-frequency analysis of phase-locked loop and phase detector characteristic computation
RU2594336C1 (ru) Способ формирования микроволновых сигналов с малым шагом сетки частот
Kuznetsov et al. Solution of the Gardner problem on the lock-in range of phase-locked loop
RU2767510C1 (ru) Способ для ускоренной синхронизации систем фазовой автоподстройки в электрических сетях и устройство для его реализации
RU2523219C2 (ru) Способ для определения рабочих параметров системы цифровой связи и устройство для его реализации
JPS58209232A (ja) 発振回路
JP5783539B2 (ja) 同定装置及び同定方法
Alexandrov et al. Best's conjecture on pull-in range of two-phase Costas loop