RU2715510C1 - Комплексный сплав для микролегирования и раскисления стали на основе железа - Google Patents

Комплексный сплав для микролегирования и раскисления стали на основе железа Download PDF

Info

Publication number
RU2715510C1
RU2715510C1 RU2019119977A RU2019119977A RU2715510C1 RU 2715510 C1 RU2715510 C1 RU 2715510C1 RU 2019119977 A RU2019119977 A RU 2019119977A RU 2019119977 A RU2019119977 A RU 2019119977A RU 2715510 C1 RU2715510 C1 RU 2715510C1
Authority
RU
Russia
Prior art keywords
boron
steel
alloy
iron
aluminum
Prior art date
Application number
RU2019119977A
Other languages
English (en)
Inventor
Илья Николаевич Кель
Владимир Иванович Жучков
Олег Вадимович Заякин
Александр Владимирович Сычев
Анатолий Алексеевич Бабенко
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН)
Priority to RU2019119977A priority Critical patent/RU2715510C1/ru
Application granted granted Critical
Publication of RU2715510C1 publication Critical patent/RU2715510C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C35/00Master alloys for iron or steel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано в сталеплавильном производстве для микролегирования и раскисления металлического железоуглеродистого расплава бором. Комплексный сплав содержит, мас.%: бор 0,5-2,5, алюминий 10,0-15,0, кремний 50,0-60,0, железо и примеси остальное. Изобретение обеспечивает высокую и стабильную степень усвоения бора сталью. 1 табл.

Description

Изобретение относится к черной металлургии, а именно к ферросплавному производству, и может быть использовано при выплавке стали для ее микролегирования и раскисления.
Существует большое количество сплавов, содержащих бор, которые состоят из одного (ферробор) или нескольких ведущих компонентов (титан, алюминий, никель, марганец, кремний и т.д.).
Ввод микродобавок бора в сталь значительно улучшает ее механические свойства. Однако, в настоящее время широкому распространению производства сталей, легированных бором, препятствуют сложности, связанные с высокозатратным производством борсодержащих ферросплавов, нестабильным получением заданных концентраций и усвоением бора и других компонентов в обрабатываемом металле. Получение ферросплавов с высоким содержанием бора является дорогим из-за высокой стоимости шихтовых материалов и технологии их получения. Поэтому более рационально получать сплавы с пониженным содержанием бора (до 2,5%), имеющие в своем составе химически активные компоненты (Al, Ti, Si и т.д.). Преимуществами таких комплексных ферросплавов по сравнению с традиционными являются возможность использования более дешевых шихтовых материалов и высокие технико-экономические показатели при их получении.
В отечественной и зарубежной металлургической промышленности для микролегирования и раскисления стали широко используют ферробор с содержанием 6-20% В. Его химический состав, мас. %: В≥6, Si 2-10; Al 3-10; Fe - остальное (ГОСТ 14848-69). Однако, как показывает практика, использование этого ферросплава с высоким содержанием бора (марки ФБ6-ФБ20) может приводить к низкому и неравномерному усвоению, ликвации бора (Голубцов В.А. Теория и практика введения добавок в сталь вне печи. - Челябинск. - 2006. - 421 с). Кроме того, при его производстве используются дефицитные шихтовые материалы.
Известен комплексный сплав для микролегирования и раскисления стали на основе железа, содержащий бор, кремний, хром, железо и примеси при следующем соотношении компонентов, мас. %: бор 0,5-2,0, хром 20,0-35,0, кремний 35,0-55,0, железо и примеси - остальное (патент РФ №2537677, опубликовано 10.01.2015).
К недостаткам данного сплава относится высокий уровень хрома, и пониженный кремний, ограничивающие применение сплава для широкого диапазона марок стали и существенно удорожающий его.
Известен комплексный сплав на основе железа для микролегирования и раскисления стали, состоящий из бора, кремния, алюминия, марганца и бария, при этом указанные компоненты взяты в следующем соотношении, мас. %: бор 0,5-3,0; кремний 41,0-68,0; алюминий 1,0-2,5, марганец 0,2-0,4; барий 0,1-1,5; железо - остальное (Евразийский патент №022416, опубликовано 30.12.2015).
Недостатками данного сплава является широкий диапазон содержания кремния (41,0-68,0 мас. %), при максимальном усвоении бора сталью 71-72%.
Известен комплексный ферросплав с бором, близкий по составу к предлагаемому сплаву, мас. %: бор - 0,5-2,0; кремний - 15,0-20,0; марганец 65-70; углерод - 1,0-2,5; алюминий 0,1-2,0; барий 0,1-3,0; остальное железо (Евразийский патент №022174 «Комплексный сплав для микролегирования и раскисления стали», опубликовано 30.11.2015, который был принят за прототип).
Наличие в сплаве большого количества марганца, а также бария, ограничивает область его применения в сталеплавильном производстве.
Максимальная степень усвоения бора сталью 73-75%
Техническим результатом предлагаемого изобретения является то, заявленный комплексный сплав с бором для раскисления и микролегирования стали, содержащий минимальное количество элементов, обеспечивает высокое и стабильное усвоение бора за счет присутствия химически активных элементов (Si и А1) в определенном соотношении.
Указанный технический результат достигается тем, что комплексный сплав для микролегирования и раскисления стали на основе железа, содержащий бор, алюминий и кремний, согласно изобретению содержит указанные компоненты при следующем соотношении, мас. %: бор 0,5-2,5, алюминий 10-15, кремний 50-60, железо и примеси - остальное.
Ранее было экспериментально установлено, что для наиболее благоприятной концентрации бора в стали (0,001-0,003%) в ферросплаве достаточно иметь содержание бора в диапазоне 0,5-2,5%. Данное количество ферросплава обеспечивает стабильный уровень бора в стали без усложнения технологии выплавки. При меньшем содержании бора в сплаве необходимо значительно увеличивать количество вводимого ферросплава, при большем происходит снижение физической массы сплава и усвоения бора.
Кремний в предлагаемом сплаве служит для раскисления стали. Он связывает кислород и азот в оксиды и нитриды, предохраняя бор от взаимодействия с ними. Экспериментально установлено, что для успешного раскисления стали в сплаве необходимо 50,0-60,0% Si. Этого количества кремния достаточно для защиты бора от окисления и высокого усвоения его сталью.
Алюминий, имеющий большее сродство к кислороду, чем бор и кремний, также способствует предотвращению образования нитридов и оксидов, это дополнительно повышает усвоение бора сталью. Наличие алюминия в получаемом сплаве в заявляемых пределах 10,0-15,0% улучшает эффективность применения комплексного ферросплава с бором. Нижний предел содержания алюминия равен 10,0%, этого количества достаточно для обеспечения высокой степени перехода бора в сталь. Верхний пределалюминия - 15,0%, обусловлен тем, что такое количество алюминия обеспечивает максимальную степень усвоения бора сталью, а дальнейшее повышение приводит лишь к увеличению затрат на производство сплава.
Наличие железа в сплаве обеспечивает более равномерное распределение и более полное усвоение компонентов сплава сталью.
Количество железа в сплаве обусловлено технологическими условиями восстановительной выплавки ферросиликоалюминия с бором.
Углерод присутствует в комплексном борсодержащем сплаве в качестве примеси в количестве не более 1,0% и положительно влияет на структуру обрабатываемой стали, увеличивая прочность и твердость металла.
Правильность выбора состава предлагаемого борсодержащего ферросплава, позитивно влияющего на степень усвоения бора сталью при ее микролегировании, подтверждается следующими примерами.
Примеры конкретного осуществления
Опытные образцы борсодержащих ферросплавов получали в высокотемпературной лабораторной электропечи при 1550-1600°C путем сплавления ферросилиция (58,0-68,0% Si), чушкового алюминия, ферробора и пруткового железа.
Процесс плавления происходил в защитной атмосфере инертного газа. В расплав жидкого ферросилиция добавляли чушковый алюминий и прутки железа. Затем к полученному жидкому расплаву присаживали ферробор и выдерживали при постоянной температуре в течение 10 минут. После этого расплав разливался в чугунные изложницы.
Состав полученных ферросплавов представлен в таблице.
Микролегирование стали бором проводились в огнеупорных тиглях, помещенных в лабораторную электропечь с графитовым нагревателем. Обрабатываемая сталь во всех опытах была одного химического состава, мас. %: С 0,2; Mn 0,6; Si 0,4; S 0,02. Критерием эффективности состава борсодержащего ферросплава являлась степень усвоения бора сталью (α):
α=[Вс]/[Вф]⋅100,
где Вф - количество введенного ферросплавом бора; [Вс] - количество бора в обработанной сплавом стали.
Степень усвоения ведущих элементов комплексного сплава сталью является главной характеристикой, влияющей на его расход и стабильность состава стали.
Из данных таблицы следует, что лучшие показатели усвоения бора сталью, обработанной сплавами разного состава, у образцов 3-5 и 7-10, ниже у образцов 2 и 6. Образец 1 (прототип), несмотря на содержание в нем бора, кремния и других элементов (Ва, Mn), не обеспечил высокую степень перехода бора в сталь (73%).
Содержание бора в сплаве 0,5-2,5% связано с тем, что менее 0,5% В приведет к увеличению физической массы ферросплава, вводимого в жидкую сталь, и увеличению степени охлаждения обрабатываемого расплава. Увеличение в сплаве бора более 2,5%, не повышая степень его усвоения сталью приведет к удорожанию сплава. Результаты, приведенные в таблице, показывают, что на усвоение бора сталью оказывает влияние количество в сплаве кремния и алюминия.
Figure 00000001
Содержание в сплаве кремния в интервале 50,0-60,0% обусловлено тем, что при меньшем его количестве усвоение бора снижается до 78% при оптимальных значениях других элементов (образец 2), а при кремнии больше 60,0% степень усвоения бора не увеличивается, а стоимость сплава необоснованно растет (образец 5).
Присутствие в сплаве алюминия связано с тем, что он одновременно с предохранением от окисления бора проводит эффективное раскисление стали. Нижний предел содержания алюминия (10,0%) связан с тем, что при 8,5% алюминия (образец 6) усвоение бора значительно ниже (78%), чем при более 10,0% алюминия (83-84%). Повышение в сплаве алюминия более 15% не увеличивает степень усвоения бора сталью.
Кроме того, предлагаемые пределы содержания в сплаве кремния и алюминия (50,0-60,0% Si и 10,0-15,0% А1) связаны с прогрессивной и малозатратной технологией получения комплексного сплава ферросиликоалюминия с бором, получаемого путем присадки в ковш борсодержащего материала на струю выпускаемого из рудовосстановительной электропечи расплава железо-кремний-алюминия.
Экспериментами показано, что по содержанию бора оптимальными являются сплавы, содержащие от 0,5 до 2,5% В, не подходят сплавы образцов 2 и 5 из-за пониженного и повышенного содержания кремния соответственно и сплавы образцов 6 и 9 из-за низкой и высокой концентрации алюминия.
Таким образом, отличие предлагаемого сплава от прототипа (образец 1) состоит в том, что по степени усвоения бора, содержащегося в этих ферросплавах, сталью он превосходит его, кроме того, не содержит дорогих легирующих элементов, проще по технологии выплавки и дешевле.

Claims (2)

  1. Комплексный сплав для микролегирования и раскисления стали, содержащий бор, алюминий, кремний, железо и примеси, отличающийся тем, что он содержит компоненты при следующем соотношении, мас. %:
  2. Бор 0,5-2,5 Алюминий 10,0-15,0 Кремний 50,0-60,0 Железо и примеси Остальное
RU2019119977A 2019-06-25 2019-06-25 Комплексный сплав для микролегирования и раскисления стали на основе железа RU2715510C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019119977A RU2715510C1 (ru) 2019-06-25 2019-06-25 Комплексный сплав для микролегирования и раскисления стали на основе железа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019119977A RU2715510C1 (ru) 2019-06-25 2019-06-25 Комплексный сплав для микролегирования и раскисления стали на основе железа

Publications (1)

Publication Number Publication Date
RU2715510C1 true RU2715510C1 (ru) 2020-02-28

Family

ID=69768238

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019119977A RU2715510C1 (ru) 2019-06-25 2019-06-25 Комплексный сплав для микролегирования и раскисления стали на основе железа

Country Status (1)

Country Link
RU (1) RU2715510C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229072A (ja) * 1998-02-13 1999-08-24 Kubota Corp 耐肌荒れ性にすぐれる黒鉛晶出ハイス系鋳鉄材
CN101812643B (zh) * 2009-11-30 2012-05-30 济南钢铁股份有限公司 一种含硼齿轮钢的制备方法
RU2563400C1 (ru) * 2014-07-03 2015-09-20 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Способ микролегирования стали бором
EA022174B1 (ru) * 2011-08-05 2015-11-30 Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Национальный Центр По Комплексной Переработке Минерального Сырья Республики Казахстан" Комитета Промышленности Министерства Индустрии И Новых Технологий Республики Казахстан Комплексный сплав для микролегирования и раскисления стали
EA022416B1 (ru) * 2011-06-29 2015-12-30 УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МЕТАЛЛУРГИИ УРАЛЬСКОГО ОТДЕЛЕНИЯ РАН (ИМЕТ УрО РАН) Комплексный сплав для микролегирования и раскисления стали

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229072A (ja) * 1998-02-13 1999-08-24 Kubota Corp 耐肌荒れ性にすぐれる黒鉛晶出ハイス系鋳鉄材
CN101812643B (zh) * 2009-11-30 2012-05-30 济南钢铁股份有限公司 一种含硼齿轮钢的制备方法
EA022416B1 (ru) * 2011-06-29 2015-12-30 УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МЕТАЛЛУРГИИ УРАЛЬСКОГО ОТДЕЛЕНИЯ РАН (ИМЕТ УрО РАН) Комплексный сплав для микролегирования и раскисления стали
EA022174B1 (ru) * 2011-08-05 2015-11-30 Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Национальный Центр По Комплексной Переработке Минерального Сырья Республики Казахстан" Комитета Промышленности Министерства Индустрии И Новых Технологий Республики Казахстан Комплексный сплав для микролегирования и раскисления стали
RU2563400C1 (ru) * 2014-07-03 2015-09-20 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Способ микролегирования стали бором

Similar Documents

Publication Publication Date Title
CN106661705B (zh) 渗碳合金钢及其制备方法和应用
CN107058909B (zh) 一种改善超级奥氏体不锈钢热塑性的方法
EP0232061B1 (en) High-strength steel for valve springs process for producing the steel, and valve springs made of the same
CN112553528A (zh) 一种含氮高碳磨球用钢及其低成本冶炼工艺
CN115896634A (zh) 一种耐高温有色金属压铸成型模具钢材料及其制备方法
RU2715510C1 (ru) Комплексный сплав для микролегирования и раскисления стали на основе железа
RU2545856C2 (ru) Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения
CN114875302A (zh) 一种低合金钢及其制备方法与应用
SU1724716A1 (ru) Чугун дл металлических форм
SU1749294A1 (ru) Высокопрочный чугун
JP2004346402A (ja) ばね用鋼材の製鋼精錬方法
RU2813053C1 (ru) Способ производства коррозионно-стойкой стали
CN110453140B (zh) 一种低温球墨铸铁材料及其制备方法和应用
RU2795068C1 (ru) Комплексный сплав для микролегирования и раскисления стали на основе железа
RU2499839C1 (ru) Способ производства стали
SU1079686A1 (ru) Чугун
SU1421794A1 (ru) Чугун
SU840135A1 (ru) Способ получени нержавеющейСТАли
RU1803461C (ru) Износостойкий чугун
RU1775489C (ru) Лигатура дл стали
SU1014957A1 (ru) Чугун
SU1749310A1 (ru) Низкоуглеродиста свариваема сталь
RU1788068C (ru) Лигатура дл стали
SU1511290A1 (ru) Высокопрочный чугун
RU2209845C1 (ru) Сталь