RU2715339C1 - Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации - Google Patents

Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации Download PDF

Info

Publication number
RU2715339C1
RU2715339C1 RU2019138242A RU2019138242A RU2715339C1 RU 2715339 C1 RU2715339 C1 RU 2715339C1 RU 2019138242 A RU2019138242 A RU 2019138242A RU 2019138242 A RU2019138242 A RU 2019138242A RU 2715339 C1 RU2715339 C1 RU 2715339C1
Authority
RU
Russia
Prior art keywords
block
unit
aosn
control
output
Prior art date
Application number
RU2019138242A
Other languages
English (en)
Inventor
Павел Владимирович Илюшин
Александр Леонидович Куликов
Антон Алексеевич Лоскутов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ)
Priority to RU2019138242A priority Critical patent/RU2715339C1/ru
Application granted granted Critical
Publication of RU2715339C1 publication Critical patent/RU2715339C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/24Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices
    • G05F1/26Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices combined with discharge tubes or semiconductor devices
    • G05F1/30Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices combined with discharge tubes or semiconductor devices semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/24Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Использование: в области электроэнергетики. Технический результат – обеспечение учета особенностей промышленных энергорайонов с источниками распределенной генерации при автоматическом ограничении снижения напряжения. Система автоматического ограничения снижения напряжения (АОСН) в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации, содержит устройство(а) АОСН, включающее блок последовательного отключения групп присоединений, блок последовательного включения присоединений, блок определения режимов электрической сети, блок анализа, блок задания уставок устройства АОСН. Дополнительно введены блок хранения результатов моделирования и выбора варианта противоаварийного управления, блок пусковых органов АОСН, блок контроля предшествующего режима, блок выдачи (блокировки) управляющих воздействий и блок превентивных управляющих воздействий, а блок анализа выполнен с возможностью контроля систем технологической безопасности промышленного производства энергорайона. 2 ил.

Description

Изобретение относится к электроэнергетике и может быть применено в противоаварийной автоматике промышленных энергорайонов 6-220 кВ с источниками распределенной генерации для предотвращения недопустимого по условиям устойчивости снижения напряжения на шинах питающих подстанций.
Известна система комбинированной автоматики ограничения снижения напряжения на шинах подстанции и ограничения перегрузки трансформатора[Патент на полезную модель РФ № 127959 «Система комбинированной автоматики ограничения снижения напряжения на шинах подстанции и ограничения перегрузки трансформатора» МПК G05F 1/00, H02H 3/08, опубл. 10.05.2013г., Бюл. № 13], включающая автоматику ограничения снижения напряжения (АОСН), систему автоматики отключения нагрузок (САОН), автоматику повторного включения (АПВ) нагрузок, а также автоматику ограничения перегрузки трансформатора (АОПТ).
Техническое решение является комбинированным и может выполнять функции АОСН. Однако устройство предназначено для отдельной подстанции, а его функции не могут в полной мере учесть особенности реализации противоаварийной автоматики в энергорайонах с источниками распределенной генерации.
Известна автоматика ограничения снижения напряжения на шинах подстанции[Патент наполезную модель РФ №67302 «Автоматика ограничения снижения напряжения на шинах подстанции» МПК G05F 1/30, опубл. 10.10.2007 г., Бюл. №28],выполненная на базе микропроцессорных терминалов релейной защиты в виде блоков автоматики отключения потребителей, блоков разрешения автоматического повторного включения фидеров, коммутатора связи между блоками.
Однако такое устройство не предлагает комплексного подхода к организации АОСН, а также не позволяет в полной мере учесть особенности реализации противоаварийной автоматики в энергорайонах с источниками распределенной генерации.
Наиболее близким техническим решением является система автоматического ограничения снижения напряжения (АОСН)в электрических сетях 35-220 кВ [Патент на изобретение РФ № 2574819 «Система автоматического ограничения снижения напряжения» МПК G05F 1/00, H02H 3/24, опубл. 10.02.2016 г., Бюл. № 4], содержащая устройство (а) АОСН, включающее блок сравнения с напряжением отключения, блок выдержки времени на отключение, блок последовательного отключения групп присоединений, блок сравнения с напряжением включения присоединений, блок выдержки времени на включение, блок последовательного включения отдельных присоединений. Согласно предложения на вход системы введены последовательно соединенные блок определения режимов электрической сети, блок анализа, блок определения присоединений, подключаемых под действие АОСН, блок задания уставок устройств АОСН, причем блок определения режимов электрической сети выполнен с возможностью определения напряжения на шинах подстанций энергорайона в нормальном, ремонтных и послеаварийных режимах; блок анализа выполнен с возможностью определения подстанций, на которых необходимо установить устройства АОСН, если напряжение на шинах не превышает 0,77 номинального напряжения; блок определения присоединений, подключаемых под действие АОСН, выполнен с возможностью установления приоритетности присоединений в зависимости от социальной значимости потребителей электрической энергии, наличия автоматического ввода резерва (АВР) на шинах 6,10,20 кВ подстанций; блок задания уставок устройств АОСН выполнен с возможностью задания уставок по напряжению и времени отключения и включения с учетом групп присоединений.
Техническое решение устройства-прототипа не позволяет в полной мере учесть особенности реализации противоаварийной автоматики в энергорайонах с источниками распределенной генерации.
В промышленных энергорайонах с источниками распределенной генерации (РГ) возможно снижение уровней напряжения до минимально допустимых значений в отдельных узлах нагрузки. Указанные режимы возникают в периоды максимальных нагрузок, а также при выводе в плановое техническое обслуживание/ремонт (ТОиР) генерирующих установок (ГУ) источников РГ или средств компенсации реактивной мощности (СКРМ).
Дефицит реактивной мощности в сети внутреннего электроснабжения промышленного энергорайона может усугубляться высокой загрузкой линий электропередачи (ЛЭП), питающих данный энергорайон. Загрузка приводит к возрастанию величины потерь реактивной мощности и дальнейшему снижению напряжений в узлах промышленного энергорайона.
В таких схемно-режимных условиях аварийные отключения ГУ источников РГ, СКРМ или электросетевого оборудования в сети внешнего электроснабжения промышленного энергорайона могут привести к резкому снижению напряжения ниже аварийно допустимых значений с высокой вероятностью развития «лавины напряжения». Это, в свою очередь, может вызвать полное или частичное нарушение электроснабжения электроприемников и повлечь за собой значительные финансовые ущербы.
Если напряжения в узлах промышленного энергорайона снижаются по причине аварийных отключений и перегрузок электросетевых элементов, то могут возникать опрокидывания электродвигателей, рост потребления ими активной и, особенно, реактивной мощности. Это может спровоцировать возникновение «лавины напряжения», которая, при различных условиях электроснабжения и электропотребления, начавшись в одном узле, способна охватить весь энергорайон. Установившиеся значения напряжений, по результатам расчетов электрических режимов, после «лавины напряжения» находятся в диапазоне 10-40 % U ном. Возможности самозапуска электродвигателей и, соответственно, необходимые объемы их отключения, зависят от множества факторов, а не только от величины контролируемого напряжения в момент времени, когда сработает устройство АОСН. Очевидно, что чем раньше будет выполнено отключение части электродвигателей, тем меньший объем отключения нагрузки (ОН) в целом потребуется.
Пример развития «лавины напряжения» на шинах 6 кВ в промышленном энергорайоне с нагрузкой, состоящей в основном из синхронных (СД) и асинхронных двигателей (АД), показан на фиг. 1. Здесь нулевому времени соответствует самое низкое действующее значение напряжения (в этот момент времени электрический центр качаний практически совпадал с шинами 6 кВ, на которых выполнялись измерения). После того, как напряжение на шинах 6 кВ приблизилось к 5 кВ, возник самопроизвольный лавинный процесс; напряжение понизилось в среднем до 2,3 кВ (некоторое повышение среднего напряжения после t ≈ 2 c было обусловлено отключениями части электроприемников). В определенный момент времени напряжение на шинах оказалось ниже критического, поэтому работа большинства электроприемников была нарушена в темпе развития «лавины напряжения».
К основным факторам, вызывающим повышение критических напряжений и вероятность возникновения лавины напряжения в промышленных энергорайонах с источниками РГ, следует отнести:
- большая загрузка ЛЭП, питающих рассматриваемый энергорайон, и пониженные напряжения в сети внешнего электроснабжения;
- преобладание АД в составе нагрузки, особенно двигателей 6-10 кВ;
- использование СД с cosϕ≈ 1 и без непрерывного автоматического регулирования возбуждения (АРВ);
- преобладание электродвигателей с тяжелыми условиями пуска;
- применение прямых пусков мощных электродвигателей.
Величины критических напряжений на шинах АД и СД могут быть оценены по условиям их статической устойчивости, а для остальных электроприемников U кр ≈ 0,75 U ном, что в основном связано с возможностью их самоотключения. В различных узлах энергорайона величины критических напряжений могут быть различны и находиться в диапазоне 20-90 % U ном. Крайние случаи, с которыми приходилось сталкиваться на практике, когда U кр ≈ 0,2-0,3 U ном характерны для мало загруженных центробежных компрессоров и U кр ≈ 0,9 U ном – для СД с большой активной мощностью, без выдачи реактивной мощности и с отключенными устройствами АРВ. Обычный диапазон вариаций величин критического напряжения по имеющимся данным составляет U кр ≈ 0,6-0,9 U ном.
Важно отметить, что значения U кр в узлах напряжением 110-220 кВ, удаленных от шин электроприемников, могут быть существенно больше, чем критические напряжения на шинах самих электроприемников, так как при пониженных напряжениях потери напряжения в сети возрастают. Поэтому для правильного определения U кр следует дополнять расчетную схему основными ЛЭП и силовыми трансформаторами, связывающими рассматриваемый узел с шинами 6-10 кВ, к которым подключены электродвигатели в промышленном энергорайоне. В большинстве случаев требуемые расчеты электрических режимов не проводятся, что не позволяет определить фактические величины U кр и осуществить обоснованный выбор параметров настройки пусковых органов АОСН.
Особенность «лавины напряжения» в промышленных энергорайонах с источниками РГ заключается в том, что она развивается быстро (соответственно малым постоянным времени большинства АД) - за время не более нескольких десятых долей секунды. Если начальный провал напряжения значителен (90 % и более), то вращающие моменты АД и СД, пропорциональные U 2, падают почти до нуля и их скорости вращения снижаются с постоянными времени T J / k загр (где k загр - коэффициенты загрузки в доаварийном режиме). Самозапуски групп электродвигателей не осуществимы, если их скольжения достигают величин, приблизительно вдвое превышающих их критические скольжения s кр. Это состояние достигается через время Δt от начала повала напряжения: Δt ≈ s кр T J / k загр. В обычных случаях при s кр< 0,1; k загр ≈ 0,6-0,8;T J 1 с величина Δt составляет не более 0,2-0,3 с.
Находящиеся в эксплуатации устройства АОСН отстроены по времени от тех кратковременных снижений напряжения, при которых управляющие воздействия (УВ) не нужны или вредны. Излишние отключения электроприемников, которые могли бы успешно продолжать работу после восстановления напряжения, недопустимы. Поэтому выдержки времени ступеней АОСН находятся в диапазоне 4-22 с и являются вынужденными. Их величина согласуется с уставками по времени устройств релейной защиты (РЗ), а также АВР и АПВ, имеющими наименьшее быстродействие, но от срабатывания которых зависит процесс восстановления контролируемого напряжения на шинах.
Одновременно, значительные выдержки времени (4-22 с) существенно снижают эффективность разгрузки по напряжению в наиболее опасных схемно-режимных условиях. Наибольший эффект в этих случаях дает первая ступень АОСН с максимальным быстродействием, если под нее заведен наибольший объем нагрузки. Отключение нагрузки второй и последующими ступенями АОСН, с учетом интервала времени между ступенями в 3-4 с, либо бесполезно, так как в энергорайоне уже прошла «лавина напряжения», либо их срабатывание никогда не произойдет, так как затяжные режимы со снижением напряжения, особенно в узлах промышленной нагрузки, маловероятны. Равномерное распределение нагрузки между ступенями АОСН в этом случае является неэффективным.
В промышленных энергорайонах применение быстродействующей ступени АОСН с выдержкой времени 0,5-0,7 с и блокировкой при КЗ и АПВ становится абсолютно неэффективной мерой, так как именно КЗ на питающей ЛЭП может провоцировать возникновение «лавины напряжения» в энергорайоне. Использование разрешающего сигнала на срабатывание ступеней АОСН от измерительного органа максимальной скорости изменения напряжения прямой последовательности (dU/dt) в этом случае также неэффективно, так как с учетом времени реализации УВ на ОН, отключение произойдет после прохождения «лавины напряжения».
Значения критического времени перерыва электроснабжения (T кр) для различных видов промышленной нагрузки различны, а именно:
- порядка 0,1 с - когда при провале напряжения сложный и непрерывный производственный процесс необратимо нарушается по причине самоотключений магнитных пускателей, срабатываний технологических блокировок, не имеющих выдержек времени, и аналогичным причинам;
- единицы секунд (КЗ с последующим АВР, АПВ и т. п.) - когда причиной нарушения работы промышленного энергорайона является увеличение длительности перерыва электроснабжения на время бес токовой паузы устройств АВР или АПВ;
- секунды или десятки секунд - когда ограничивающим фактором является невозможность осуществления самозапусков всех ответственных электродвигателей из-за значительных величин пусковых токов и низких напряжений, а последовательные повторные пуски электродвигателей после восстановления питания не эффективны, так как производственный процесс нарушается раньше, чем может быть реализована программа повторных пусков;
- бόльшие отрезки времени, вплоть до нескольких часов включительно, когда производственный процесс имеет значительную инерцию и в течение некоторого времени может быть возобновлен без значительного ущерба. Однако если технологические параметры вышли из области допустимых значений, то происходит нарушение процесса с негативными последствиями (выбросы веществ в атмосферу из химических реакторов при неуправляемом повышении давления и температуры; застывание расплавов в электропечах и др.).
На промышленных предприятиях, оснащенных автоматизированными системами управления технологическим процессом (АСУ ТП) на последние возлагаются функции контроля, как самого производственного процесса, так и условий электроснабжения отдельных электроприемников, включая возможность отключения технологических линий при возникновении анормальных режимов в сети электроснабжения. Известны случаи, когда в АСУ ТП были выбраны такие уставки защит, в соответствии с зарубежными нормативами времени ликвидации КЗ (уставка срабатывания по снижению напряжения U = 0,8 U ном, выдержка времени 0,2 с), которые приводили к полному останову непрерывного технологического процесса при незначительных отклонениях параметров режима в сети электроснабжения.
Необходимость в создании системы АОСН в промышленных энергорайонах с источниками распределенной генерации продиктована свойствами двигательной нагрузки, особенностями процессов со снижением напряжения, величиной ущербов при нарушении производственных процессов, а также статистическими данными по частоте возникновения нарушений в сетях внешнего электроснабжения.
Учитывая вышеизложенное, для каждого промышленного энергорайона алгоритмы работы и параметры настройки системы АОСН будут различными, а их выбор должен основываться на анализе результатов комплексных расчетов электрических режимов в различных схемно-режимных ситуациях. При этом очевидна целесообразность автоматической реализации мероприятий по предотвращению возможности возникновения «лавины напряжения».
Дополнительно следует отметить, что реализация превентивных УВ, по отношению к УВ на ОН, дает возможность повысить уровни напряжения в узлах нагрузки. К превентивным УВ следует отнести:
- автоматическое изменение коэффициентов трансформации силовых трансформаторов;
- форсировку выдачи реактивной мощности батареями статических конденсаторов и другими СКРМ;
- увеличение загрузки ГУ, в том числе источников РГ, по реактивной мощности;
- комплексное управление загрузкой ГУ, в том числе источников РГ, по активной и реактивной мощности, обеспечивающее наибольшее повышение напряжения в узлах промышленного энергорайона.
С учетом отмеченных выше особенностей промышленных энергорайонов с источниками РГ реализовать быстродействующий адаптивный алгоритм АОСН в локальном устройстве противоаварийного управления, расположенном на одной подстанции, не представляется возможным. В указанных условиях требуется разработка централизованной системыАОСН предназначенной специально для промышленных энергорайонов с источниками РГ.
Задача изобретения - разработка системы автоматического ограничения снижения напряжения, учитывающей особенности промышленных энергорайонов с источниками распределенной генерации.
Поставленная цель достигается системой автоматического ограничения снижения напряжения (АОСН) в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации, содержащей устройство(а) АОСН, включающее блок последовательного отключения групп присоединений, блок последовательного включения присоединений, блок определения режимов электрической сети, блок анализа, блок задания уставок устройства АОСН. Согласно предложения введены блок хранения результатов моделирования и выбора варианта противоаварийного управления, блок пусковых органов АОСН, блок контроля предшествующего режима, блок выдачи (блокировки) управляющих воздействий и блок превентивных управляющих воздействий, а блок анализа выполнен с возможностью контроля систем технологической безопасности промышленного производства энергорайона, причем первый, второй и третий выходы блока определения режимов электрической сети подключены к первым входам блока хранения результатов моделирования и выбора варианта противоаварийного управления, блока пусковых органов АОСН, блока контроля предшествующего режима, первый выход блока хранения результатов моделирования и выбора варианта противоаварийного управления через блок задания уставок устройства АОСН подключен ко второму входу блока пусковых органов АОСН, к третьему входу блока пусковых органов АОСН подключен первый выход блока контроля предшествующего режима, второй выход блока контроля предшествующего режима подключен к первому входу блока выдачи (блокировки) управляющих воздействий, ко второму, третьему и четвертому входам блока выдачи (блокировки) управляющих воздействий подключены соответственно выход блока пусковых органов АОСН, второй выход блока хранения результатов моделирования и выбора варианта противоаварийного управления, выход блока анализа, с первого по третий выходы блока выдачи (блокировки) управляющих воздействий подключены к входам соответственно блока последовательного включения присоединений, блока превентивных управляющих воздействий, блока последовательного отключения групп присоединений, четвертый выход блока выдачи (блокировки) управляющих воздействий является информационным и предназначен для информирования дежурного персонала энергорайона о действиях АОСН, на вход блока последовательного включения присоединений выдается разрешающий сигнал на включение нагрузки от дежурного персонала энергорайона, выход блока последовательного включения присоединений является выходом для выдачи управляющих воздействий на включение нагрузки, выходы блока превентивных управляющих воздействий являются выходами соответственно для реализации управляющих воздействий на изменение конфигурации сети, загрузку и пуск генераторов, изменение режимов возбуждения генераторов, изменение состояния средств компенсации реактивной мощности, изменения коэффициентов трансформации силовых трансформаторов, выходы блока последовательного отключения групп присоединений предназначены для выдачи управляющих воздействий на блокировку систем технологической безопасности промышленного производства энергорайона, а также отключение нагрузки.
На фиг. 1 показан пример развития «лавины напряжения» на шинах 6 кВ в промышленном энергорайоне с нагрузкой, состоящей в основном из синхронных (СД) и асинхронных двигателей (АД). Для переходного процесса (фиг. 1) с «лавиной напряжения»: а - напряжение на шинах электроприемников; б - потребление нагрузкой активной и реактивной мощности.
На фиг. 2 представлена функциональная схема системы автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации.
Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВс источниками распределенной генерации (фиг. 2) включает: блок последовательного отключения групп присоединений 1, блок последовательного включения присоединений 2, блок определения режимов электрической сети 3, блок анализа 4, блок задания уставок устройства АОСН 5, блок хранения результатов моделирования и выбора варианта противоаварийного управления 6, блок пусковых органов АОСН 7, блок контроля предшествующего режима 8, блок выдачи (блокировки) управляющих воздействий 9 и блок превентивных управляющих воздействий 10. Блок анализа 4 выполнен с возможностью контроля систем технологической безопасности промышленного производства энергорайона.
Блоки системы автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации(фиг. 2) соединены следующим образом: первый, второй и третий выходы блока определения режимов электрической сети 3 подключены к первым входам блока хранения результатов моделирования и выбора варианта противоаварийного управления 6, блока пусковых органов АОСН 7, блока контроля предшествующего режима 8, первый выход блока хранения результатов моделирования и выбора варианта противоаварийного управления 6 через блок задания уставок устройства АОСН 5 подключен ко второму входу блока пусковых органов АОСН 7, к третьему входу блока пусковых органов АОСН 7 подключен первый выход блока контроля предшествующего режима 8, второй выход блока контроля предшествующего режима 8 подключен к первому входу блока выдачи (блокировки) управляющих воздействий 9, ко второму, третьему и четвертому входам блока выдачи (блокировки) управляющих воздействий 9 подключены соответственно выход блока пусковых органов АОСН 7, второй выход блока хранения результатов моделирования и выбора варианта противоаварийного управления 6, выход блока анализа 4, с первого по третий выходы блока выдачи (блокировки) управляющих воздействий 9 подключены к входам соответственно блока последовательного включения присоединений 2, блока превентивных управляющих воздействий 10, блока последовательного отключения групп присоединений 1, четвертый выход блока выдачи (блокировки) управляющих воздействий 9 является информационным и предназначен для информирования дежурного персонала энергорайона о действиях АОСН, на вход блока последовательного включения присоединений 2 выдается разрешающий сигнал на включение нагрузки от дежурного персонала энергорайона, выход блока последовательного включения присоединений 2 является выходом для выдачи управляющих воздействий на включение нагрузки, выходы блока превентивных управляющих воздействий 10 являются выходами соответственно для реализации управляющих воздействий на изменение конфигурации сети, загрузку и пуск генераторов, изменение режимов возбуждения генераторов, изменение состояния средств компенсации реактивной мощности, изменения коэффициентов трансформации силовых трансформаторов, выходы блока последовательного отключения групп присоединений 1 предназначены для выдачи управляющих воздействий на блокировку систем технологической безопасности промышленного производства энергорайона, а также отключение нагрузки.
Создание системы АОСН в промышленных энергорайонах продиктована свойствами двигательной нагрузки, особенностями процессов со снижением напряжения, величиной ущербов при нарушении производственных процессов, а также статистическими данными по частоте возникновения нарушений в сетях внешнего электроснабжения.
Таким образом, для каждого промышленного энергорайона принципы функционирования и параметры настройки системы АОСН будут различными, а их выбор должен основываться на анализе результатов имитационного моделирования и комплексных расчетов электрических режимов в различных схемно-режимных ситуациях.
Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации функционирует следующим образом.
Для обеспечения эффективного функционирования системы АОСН реализуется предварительное имитационное моделирование, целью которого является:
- определение нормальных и аварийных режимов функционирования промышленного энергорайона, с учетом возможного проведения ремонтных и эксплуатационных работ;
- выявление утяжеленных нормальных режимов, в которых быстродействующая разгрузка действием АОСН целесообразна (когда вероятность того, что разгрузка будет избыточной, мала, а вероятность возникновения «лавины напряжения» при запаздывании разгрузки велика). Такие условия могут, например, сложиться, если наблюдается утяжеленный режим и одновременно возникает: КЗ на одной из основных питающих промышленный энергорайон ЛЭП; КЗ двухфазное на землю или трехфазное в любой точке прилегающей сети 110-220 кВ;
- определение нагрузки, подлежащей отключению системой АОСН в каждом режиме;
- распределение нагрузки, подлежащей отключению системой АОСН, по присоединениям и очередям для конкретных потребителей энергорайона;
- определение величины и последовательности включения нагрузок потребителей промышленного энергорайона.
При реализации предлагаемойсистемы АОСН в промышленных энергорайонах 6-220 кВс источниками распределенной генерации выполняется предварительное имитационное моделирование с целью определения вариантов функционирования АОСН в различных режимах работы энергорайона. Результаты имитационного моделирования вносятся в память блока 6 хранения результатов моделирования и выбора варианта противоаварийного управления (фиг. 2) для последующего выбора варианта функционирования АОСН в определенном аварийном режиме работы энергорайона.
Для мониторинга режимов функционирования энергорайона задействуется блок 3 определения режимов электрической сети, реализованный, например, на основе SCADA-системы. В блок 3 поступает информация из систем диспетчерско-технологического управления энергорайона (например, оперативно-информационного комплекса -ОИК) о токах и напряжениях в узлах, а также данные о положениях коммутационных аппаратов системы внешнего и внутреннего электроснабжения энергорайона, определяющие состояние («отключено»/«в работе») электрооборудования (ГУ источников РГ, ЛЭП, силовых трансформаторов, электроприемников потребителей и др.).
Предусматривается передача информации в блок 4 анализа систем технологической безопасности промышленного производства (включение автоматики повторного пуска электродвигателей и/или пуск резервных технологических установок, передача команд технологического управления производством и т. п.).Это необходимо для реализации блокировки (исключения противоаварийного управления) системы автоматического ограничения снижения напряжения в схемно-режимных условиях, когда последние могут спровоцировать возникновение «лавины напряжения». Важно отметить, что для отдельных групп промышленных потребителей с учетом их технологического производства действие АОСН должно блокироваться, исходя, например, из экологических последствий или угрозы жизни людей при отключении конкретных электроприемников.
В каждый момент времени на основе входной информации блок 3 определяет текущий режим энергорайона. Данные с выходов блока 3 определения режимов электрической сети используется в блоке 6 для выбора варианта противоаварийного управления, в блоке 7 для обеспечения срабатывания пусковых органов АОСН, в блоке 8 контроля предшествующего режима.
Информация с выходов блока 6 хранения результатов моделирования и выбора варианта противоаварийного управления поступает на блок 5 задания уставок для формирования параметров срабатывания пусковых органов АОСН, а также в блок 9 для выдачи требуемых управляющих воздействий.
Условия, характеризующие утяжеленный режим в сети внешнего электроснабжения и фиксируемые блоком 8 контроля предшествующего режима, включают:
- значительное ослабление сети внешнего электроснабжения (вывод в ремонт одной или нескольких питающих энергорайон ЛЭП);
- напряжение в сети внешнего электроснабжения находится на уровне минимально допустимых значений;
- суммарное потребление энергорайона больше максимально допустимого (режим максимальных нагрузок при выводе в техническое обслуживание ГУ источников РГ).
В таких условиях в блоке 8 формируются блокирующие сигналы, передаваемые в блок 7 пусковых органов АОСН. Выбор состава пусковых органов блока 7 определяется режимными особенностями промышленного энергорайона. В наиболее простом случае в состав блока 7 могут быть включены пусковые органы, функционирующие по признаку снижения напряжения и скорости снижения напряжения. Однако как указывалось ранее применение пускового органа по скорости изменения напряжения прямой последовательности (dU/dt) в некоторых режимных ситуациях становится неэффективным, поэтому реализуется его блокировка по сигналу с выхода блока 8 контроля предшествующего режима.
С выхода блока 8 управляющие сигналы также передаются в блок 9 выдачи (блокировки) управляющих воздействий, а через него в блок 10 превентивных управляющих воздействий, для реализации соответствующих УВ, направленных на предотвращение аварийного режима и поддержание требуемых уровней напряжения в энергорайоне. Выходы блока 10 соответствуют цепям выдачи управляющих воздействий на:
- автоматическое изменение коэффициентов трансформации силовых трансформаторов;
- форсировку выдачи реактивной мощности батареями статических конденсаторов и другими СКРМ;
- увеличение загрузки ГУ, в том числе источников РГ, по реактивной мощности;
- комплексное управление загрузкой ГУ, в том числе источников РГ, по активной и реактивной мощности, обеспечивающее наибольшее повышение напряжения в узлах промышленного энергорайона.
Управляющие сигналы с выходов блока 9 также поступают на вход блока 1 последовательного отключения групп присоединений и блока 2 последовательного включения присоединений.
Дополнительно информационные сигналы с выхода блока 9 поступают дежурному персоналу энергорайона. Они необходимы для информирования дежурного персонала о действиях системы АОСН, а также для организации правильного восстановления электроснабжения потребителей энергорайона. Восстановление электроснабжения после работы АОСН возможно частями (ступенями) после получения разрешения от дежурного персонала энергорайона с контролем напряжения после включения каждой ступени и учетом особенностей технологии промышленного производства. Например, это позволяет не допускать включения следующих ступеней, пока полностью не завершился пуск предыдущей группы электродвигателей. Реализация функционирования АОСН при включении нагрузки осуществляется при наличии разрешающих сигналов на входе блока 2 от дежурного персонала и выдаче управляющих сигналов с выхода блока 2 на включение нагрузки.
Выдача управляющих воздействий на отключение нагрузки осуществляется блоком 1 последовательного отключения групп присоединений, с выходов которого наряду с сигналами на отключение нагрузки поступают сигналы на блокировку систем технологической безопасности промышленного производства энергорайона.
Следует отметить, что высокое быстродействие предлагаемой системы автоматического ограничения снижения напряжения в промышленных энергорайонах с источниками распределенной генерации обеспечивается заблаговременным расчетом управляющих воздействий (видов и объемов) в различных аварийных режимах, быстрой оценкой параметров текущего режима энергорайона, а также быстрой выдачей управляющих воздействий.
Реализация предлагаемой системы АОСН не имеет технических затруднений, так как площади промышленных энергорайонов составляют от единиц до десятков км2, при этом современные промышленные энергорайоны, как правило, имеют собственные информационные сети, используемые в АСУ ТП для передачи необходимой информации.
В заключении следует отметить, что предлагаемая система АОСН осуществляет как превентивные УВ, так и УВ при возникновении различных аварийных возмущений. При этом обеспечивается необходимое быстродействие для предотвращения возникновения «лавины напряжения», а также минимизация объемов отключаемой нагрузки или полный отказ от отключений в ряде схемно-режимных ситуаций. Таким образом достигается цель изобретения и учитываются особенности промышленных энергорайонов с источниками распределенной генерации.

Claims (1)

  1. Система автоматического ограничения снижения напряжения (АОСН) в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации, содержащая не менее одного устройства АОСН, включающее блок последовательного отключения групп присоединений, блок последовательного включения присоединений, блок определения режимов электрической сети, блок анализа, блок задания уставок устройства АОСН, отличающийся тем, что введены блок хранения результатов моделирования и выбора варианта противоаварийного управления, блок пусковых органов АОСН, блок контроля предшествующего режима, блок выдачи (блокировки) управляющих воздействий и блок превентивных управляющих воздействий, а блок анализа выполнен с возможностью контроля систем технологической безопасности промышленного производства энергорайона, причем первый, второй и третий выходы блока определения режимов электрической сети подключены к первым входам блока хранения результатов моделирования и выбора варианта противоаварийного управления, блока пусковых органов АОСН, блока контроля предшествующего режима, первый выход блока хранения результатов моделирования и выбора варианта противоаварийного управления через блок задания уставок устройства АОСН подключен ко второму входу блока пусковых органов АОСН, к третьему входу блока пусковых органов АОСН подключен первый выход блока контроля предшествующего режима, второй выход блока контроля предшествующего режима подключен к первому входу блока выдачи (блокировки) управляющих воздействий, ко второму, третьему и четвертому входам блока выдачи (блокировки) управляющих воздействий подключены соответственно выход блока пусковых органов АОСН, второй выход блока хранения результатов моделирования и выбора варианта противоаварийного управления, выход блока анализа, с первого по третий выходы блока выдачи (блокировки) управляющих воздействий подключены к входам соответственно блока последовательного включения присоединений, блока превентивных управляющих воздействий, блока последовательного отключения групп присоединений, четвертый выход блока выдачи (блокировки) управляющих воздействий является информационным и предназначен для информирования дежурного персонала энергорайона о действиях АОСН, на вход блока последовательного включения присоединений выдается разрешающий сигнал на включение нагрузки от дежурного персонала энергорайона, выход блока последовательного включения присоединений является выходом для выдачи управляющих воздействий на включение нагрузки, выходы блока превентивных управляющих воздействий являются выходами соответственно для реализации управляющих воздействий на изменение конфигурации сети, загрузку и пуск генераторов, изменение режимов возбуждения генераторов, изменение состояния средств компенсации реактивной мощности, изменения коэффициентов трансформации силовых трансформаторов, выходы блока последовательного отключения групп присоединений предназначены для выдачи управляющих воздействий на блокировку систем технологической безопасности промышленного производства энергорайона, а также отключение нагрузки.
RU2019138242A 2019-11-27 2019-11-27 Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации RU2715339C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019138242A RU2715339C1 (ru) 2019-11-27 2019-11-27 Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019138242A RU2715339C1 (ru) 2019-11-27 2019-11-27 Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации

Publications (1)

Publication Number Publication Date
RU2715339C1 true RU2715339C1 (ru) 2020-02-27

Family

ID=69631033

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019138242A RU2715339C1 (ru) 2019-11-27 2019-11-27 Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации

Country Status (1)

Country Link
RU (1) RU2715339C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744318C1 (ru) * 2020-07-08 2021-03-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Система мониторинга и управления качеством электрической энергии в промышленных энергорайонах 6-220 кВ
RU2792334C1 (ru) * 2022-11-07 2023-03-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076075A1 (en) * 2001-10-17 2003-04-24 Ma Thomas Lai Wai Control system and method for voltage stabilization in electric power system
RU67302U1 (ru) * 2007-04-28 2007-10-10 Открытое акционерное общество "Энера Инжиниринг" Автоматика ограничения снижения напряжения на шинах подстанций
RU127959U1 (ru) * 2013-01-24 2013-05-10 Алексей Дмитриевич Шмелькин Система комбинированной автоматики ограничения снижения напряжения на шинах подстанции и ограничения перегрузки транформатора
RU2574819C2 (ru) * 2013-10-22 2016-02-10 Публичное акционерное общество "Московская объединённая электросетевая компания" (ПАО "МОЭСК") Система автоматического ограничения снижения напряжения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076075A1 (en) * 2001-10-17 2003-04-24 Ma Thomas Lai Wai Control system and method for voltage stabilization in electric power system
RU67302U1 (ru) * 2007-04-28 2007-10-10 Открытое акционерное общество "Энера Инжиниринг" Автоматика ограничения снижения напряжения на шинах подстанций
RU127959U1 (ru) * 2013-01-24 2013-05-10 Алексей Дмитриевич Шмелькин Система комбинированной автоматики ограничения снижения напряжения на шинах подстанции и ограничения перегрузки транформатора
RU2574819C2 (ru) * 2013-10-22 2016-02-10 Публичное акционерное общество "Московская объединённая электросетевая компания" (ПАО "МОЭСК") Система автоматического ограничения снижения напряжения

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744318C1 (ru) * 2020-07-08 2021-03-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Система мониторинга и управления качеством электрической энергии в промышленных энергорайонах 6-220 кВ
RU2792334C1 (ru) * 2022-11-07 2023-03-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации

Similar Documents

Publication Publication Date Title
Abdulraheem et al. Power system frequency stability and control: Survey
Feltes et al. Black start studies for system restoration
US10935945B2 (en) Methods and apparatus for power generation and distribution
Nikolaidis et al. Design strategies for load-shedding schemes against voltage collapse in the Hellenic system
US20020109411A1 (en) Uninterruptible power generation system
Zhang et al. Remedial action schemes and defense systems
US20170214250A1 (en) Energization control for establishing microgrids
JP2004015883A (ja) 安定化電力供給システムおよびその運用方法、並びに電力安定供給の運用プログラム
US11418054B2 (en) Methods and apparatus for power generation and distribution
Feltes et al. Down, but not out: A brief overview of restoration issues
Wu Frequency stability for an island power system: Developing an intelligent preventive-corrective control mechanism for an offshore location
US11398729B1 (en) Adaptive load management based on system capacity in a microgrid environment
JP7017116B2 (ja) 電源システム
CN110912109A (zh) 低压直流供配电设备及方法
RU2715339C1 (ru) Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кВ с источниками распределенной генерации
Saboune et al. Adaptive decentralized fuzzy logic‐based underfrequency load shedding to enhance power system stability
Fazaeli et al. Adaptive under-frequency load shedding considering priority loads importance and voltage stability in power system
Smolovik et al. Special automation for isolated power systems emergency control
RU2692054C1 (ru) Способ противоаварийного управления режимом параллельной работы синхронных генераторов и делительной автоматики в электрических сетях
Shafiullah et al. Study of impacts on operation of island and frequency based auto load shedding to improve service reliability using CYME PSAF
RU2718113C1 (ru) Система управления накопителем электрической энергии для расширения области допустимых режимов генерирующих установок источников распределенной генерации при кратковременных отклонениях частоты
RU2721477C1 (ru) Система управления накопителями электрической энергии для расширения области допустимых режимов генерирующих установок источников распределенной генерации при провалах напряжения
Baiceanu et al. A Load Shedding Approach for Islanded Operation in Industrial Electrical Systems
Sishuba et al. Adaptive control system for continuity of supply using dispersed generators
Islam et al. A decentralized multi-agent approach to prevent voltage collapse in a large power system

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20201118

Effective date: 20201118