RU2713763C1 - Method of producing a porous composite coating - Google Patents

Method of producing a porous composite coating Download PDF

Info

Publication number
RU2713763C1
RU2713763C1 RU2019120716A RU2019120716A RU2713763C1 RU 2713763 C1 RU2713763 C1 RU 2713763C1 RU 2019120716 A RU2019120716 A RU 2019120716A RU 2019120716 A RU2019120716 A RU 2019120716A RU 2713763 C1 RU2713763 C1 RU 2713763C1
Authority
RU
Russia
Prior art keywords
coating
nickel
minutes
carried out
formation
Prior art date
Application number
RU2019120716A
Other languages
Russian (ru)
Inventor
Алексей Сергеевич Орыщенко
Михаил Александрович Марков
Алексей Владимирович Красиков
Алина Дмитриевна Быкова
Антон Николаевич Беляков
Original Assignee
Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") filed Critical Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей")
Priority to RU2019120716A priority Critical patent/RU2713763C1/en
Application granted granted Critical
Publication of RU2713763C1 publication Critical patent/RU2713763C1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires

Abstract

FIELD: technological processes.
SUBSTANCE: invention relates to electroplating and can be used in machine building in order to improve functional characteristics of mechanisms operating in aggressive media, as well as in oil refining products. Method includes micro-arc oxidation (MAO) of metal surface and subsequent cathodic electrodeposition of nickel with formation of solid coating, wherein MAO is carried out in silicate-phosphate-alkaline electrolyte with density of anode direct current of 5–15 A/dm2 in the voltage range of 300–700 V for 15–60 minutes with formation of ceramic oxide coating in thickness range of 20–60 mcm with open porosity of not more than 15 % with average pore diameter of 15–25 mcm, having mainly round shape and uniformly distributed on surface, and nickel cathode electrodeposition is carried out inside pores of oxide film in water-based electrolyte for 40–60 minutes.
EFFECT: high microhardness, corrosion resistance of coatings and their thickness.
3 cl, 1 ex

Description

Изобретение относится к области создания беспористых композиционных покрытий на основе оксидных композиций титана, алюминия и металлического никеля, может быть использовано в машиностроении с целью повышения функциональных характеристик механизмов, работающих в агрессивных средах, а так же в изделиях нефтеперерабатывающей промышленности.The invention relates to the field of creating non-porous composite coatings based on oxide compositions of titanium, aluminum and metallic nickel, can be used in mechanical engineering with the aim of improving the functional characteristics of mechanisms operating in aggressive environments, as well as in products of the oil refining industry.

Способ включает в себя микродуговое оксидирование (МДО) изделий из алюминия, титана, и их сплавов в силикатно-фосфатно-щелочных электролитах и последующее катодное осаждение металлического никеля, для формирования сплошного покрытия, обладающего повышенными защитными характеристиками.The method includes microarc oxidation (MAO) of products made of aluminum, titanium, and their alloys in silicate-phosphate-alkaline electrolytes and subsequent cathodic deposition of metallic nickel, to form a continuous coating with enhanced protective characteristics.

В большинстве случаев заполнение матричного пористого керамического покрытия, сформированного методом микродугового оксидирования (МДО) осуществляют полимерными материалами. Так, известен способ получения композиционных покрытий на сплавах вентильных металлов RU 2527110 C1 C25D 11/18. Согласно способу проводят осаждение сверхмолекулярного полиэтилена в поры покрытия универсальными методами, такими как микроплазменное распыление, оплавление горелкой, шликером. К недостаткам изобретения следует отнести тот факт, что:In most cases, the filling of the matrix porous ceramic coating formed by the method of microarc oxidation (MAO) is carried out with polymeric materials. Thus, a known method for producing composite coatings on valve metal alloys RU 2527110 C1 C25D 11/18. According to the method, supermolecular polyethylene is deposited in the pores of the coating by universal methods, such as microplasma spraying, fusion with a burner, slip. The disadvantages of the invention include the fact that:

- при микроплазменным напылении формируются тонкие пленки, которые закрывают лишь поверхность поры, не заполняя ее полностью;- with microplasma spraying, thin films are formed that cover only the surface of the pore, not filling it completely;

- при использовании шликера и оплавления наблюдается неравномерное, «островковое» распределение полимера по поверхности покрытия;- when using slip and fusion, an uneven, “island” distribution of the polymer over the coating surface is observed;

- полимер не повышает твердость и, соответственно, прочностные характеристики композиционного покрытия.- the polymer does not increase the hardness and, accordingly, the strength characteristics of the composite coating.

Известен способ осаждения металлов в поры анодного оксида на поверхности алюминия для изготовления дисплея, патент Японии №2003-257344, 12.09.2003. Display, and manufacturing method therefor. В известном способе на слое напыленного на подложку алюминия методом анодного оксидирования формируют пористый оксид алюминия, затем в поры оксида последовательно встраивают никель, затем золото. Предложенный способ формирования композитного слоя имеет ряд недостатков:A known method of deposition of metals in the pores of the anodic oxide on the surface of aluminum for the manufacture of a display, Japanese patent No. 2003-257344, 09/12/2003. Display, and manufacturing method therefor. In the known method, porous alumina is formed on a layer of aluminum sprayed onto a substrate by the method of anodic oxidation, then nickel is subsequently embedded in the pores of the oxide, then gold. The proposed method of forming a composite layer has several disadvantages:

- высокая трудоемкость, так как для формирования слоистых многокомпонентных структур требуется создание сложной конфигурации пористого слоя оксида;- high complexity, since the formation of layered multicomponent structures requires the creation of a complex configuration of the porous oxide layer;

- по прочностным характеристикам керамическое оксидное покрытие, полученное методом МДО, существенно превосходит анодированный алюминий;- in terms of strength characteristics, the ceramic oxide coating obtained by the MAO method significantly exceeds anodized aluminum;

- данный метод не является универсальным и не позволяет наносить покрытия на изделия не из алюминиевых материалов.- this method is not universal and does not allow coating non-aluminum products.

Известен электролитический способ нанесения защитных и электроизоляционных покрытий RU 2367727 C1 C25D 11/02 с низкой пористостью, в котором результат обеспечивается проведением МДО под давлением, что приводит к низкой пористости формируемого покрытия. Однако, данный метод не исключает наличия сквозных пор до металла и является трудоемким за счет использования автоклава. Кроме того, толщина формируемого покрытия не превышает 25 мкм. Данный метод не является универсальным и не позволяет наносить покрытия на изделия не из титановых материалов.A known electrolytic method for applying protective and insulating coatings RU 2367727 C1 C25D 11/02 with low porosity, in which the result is achieved by conducting MAO under pressure, which leads to low porosity of the formed coating. However, this method does not exclude the presence of through pores to the metal and is time-consuming due to the use of an autoclave. In addition, the thickness of the formed coating does not exceed 25 microns. This method is not universal and does not allow coating non-titanium materials.

Известен способ получения нанокомпозитных покрытий RU 2471021 C25D 15/00 C25D 11/20, взятый в качестве прототипа. Способ включает микродуговое оксидирование поверхности изделий из титановых сплавов в щелочном электролите с твердофазными ингредиентами в виде порошков, при этом используют нанопорошки оксида титана с размером менее 0,05 мкм, а окончательное покрытие формируют при катодной обработке в кислотном электролите при температуре 450°С высаживанием металлической фазы внутри пор оксидного покрытия.A known method of producing nanocomposite coatings RU 2471021 C25D 15/00 C25D 11/20, taken as a prototype. The method includes microarc oxidation of the surface of titanium alloy products in an alkaline electrolyte with solid-phase ingredients in the form of powders, using titanium oxide nanopowders with a size of less than 0.05 microns, and the final coating is formed by cathodic treatment in an acid electrolyte at a temperature of 450 ° C by planting a metal phase inside the pores of the oxide coating.

Недостатком данного способа является воздействие на образец кислотного агрессивного электролита при температуре 450°С, что может привести к трещинам в оксидном слое и питтинговой коррозии. Не учитывается влияние открытой пористости покрытия и геометрии пор на эффективность равномерного осаждения металла в поры покрытия. Так же данный метод не является универсальным и не позволяет наносить покрытия на изделия не из титановых материалов.The disadvantage of this method is the impact on the sample of an aggressive acidic electrolyte at a temperature of 450 ° C, which can lead to cracks in the oxide layer and pitting corrosion. The effect of open coating porosity and pore geometry on the efficiency of uniform metal deposition into coating pores is not taken into account. Also, this method is not universal and does not allow coating non-titanium materials.

Техническим результатом изобретения является создание универсального нетоксичного способа получения беспористого металлокерамического покрытия «оксид металла - никель» на изделиях из алюминия, титана и их сплавов, что приведет к повышению функциональных свойств изделий: коррозионной стойкости, поверхностной микротвердости за счет существенного снижения пористости, а так же к увеличению толщины покрытия.The technical result of the invention is the creation of a universal non-toxic method of obtaining a porous metal-oxide-nickel ceramic-metal coating on products from aluminum, titanium and their alloys, which will lead to an increase in the functional properties of the products: corrosion resistance, surface microhardness due to a significant reduction in porosity, as well as to increase the thickness of the coating.

Технический результат достигается за счет того, что микродуговым оксидированием (МДО) в силикатно-фосфатно-щелочных электролитах при задании анодного постоянного тока плотностью 5-15 А/дм2 в диапазоне напряжений 300-700 В на поверхности алюминия, титана и их сплавов, при продолжительности процесса 15-60 минут формируют керамическое оксидное покрытие в диапазоне толщин 20-60 мкм с открытой пористостью не более 15% со средним диаметром пор 15-25 мкм, имеющих преимущественно округлую форму и равномерно распределенных по поверхности. Затем внутри пор оксидной пленки высаживают металлическую фазу никеля, обрабатывая катодным методом в электролите на водной основе [1] в течение 40-60 минут. Электролит имеет следующий состав:The technical result is achieved due to the fact that microarc oxidation (MAO) in silicate-phosphate-alkaline electrolytes when setting the anode direct current with a density of 5-15 A / dm 2 in the voltage range of 300-700 V on the surface of aluminum, titanium and their alloys, the duration of the process is 15-60 minutes, a ceramic oxide coating is formed in a thickness range of 20-60 microns with an open porosity of not more than 15% with an average pore diameter of 15-25 microns, having a predominantly rounded shape and uniformly distributed over the surface. Then, the metallic phase of nickel is planted inside the pores of the oxide film by cathodic treatment in a water-based electrolyte [1] for 40-60 minutes. The electrolyte has the following composition:

- никель сернокислый35,0-55,0 г/л;- Nickel sulfate 35.0-55.0 g / l;

- ацетат натрия 25,0-30,0 г/л;- sodium acetate 25.0-30.0 g / l;

- уксусная кислота 4,5-5,0 мл/л;- acetic acid 4.5-5.0 ml / l;

- натрий лаурилсульфат 0,1-1,0 г/л.- sodium lauryl sulfate 0.1-1.0 g / l.

При задании анодного постоянного тока плотностью более 15 А/дм2 формируемые покрытия подвержены образованию трещин вокруг пор, так как мощность дуговых разрядов становится критичной. Наличие дефектной структуры приводит к формированию внутренних пор сложной геометрии, которые объединяются с открытыми порами. Данный факт приводит к неравномерному осаждению металлического никеля в сформированных порах. При задании анодного постоянного тока плотностью менее 5 А/дм2 происходит разрыхление поверхности керамического слоя, что приводит к существенному ухудшению прочностных и адгезионных свойств матричного оксидного покрытия. Продолжительность МДО-процесса 15-60 минут приводит к образованию оксидного слоя толщиной 20-60 мкм. С дальнейшим увеличением продолжительности МДО-процесса происходит увеличение толщины покрытия и изменение геометрии открытых пор, что затрудняет процесс электрохимического никелирования и приводит к неравномерному росту металлического слоя.When setting the anode direct current with a density of more than 15 A / dm 2, the formed coatings are prone to cracking around the pores, since the power of the arc discharges becomes critical. The presence of a defective structure leads to the formation of internal pores of complex geometry, which combine with open pores. This fact leads to an uneven deposition of metallic nickel in the formed pores. When setting the anode direct current with a density of less than 5 A / dm 2 , the surface of the ceramic layer is loosened, which leads to a significant deterioration in the strength and adhesive properties of the matrix oxide coating. The duration of the MAO process of 15-60 minutes leads to the formation of an oxide layer with a thickness of 20-60 microns. With a further increase in the duration of the MAO process, an increase in the coating thickness and a change in the geometry of open pores occur, which complicates the process of electrochemical nickel plating and leads to an uneven growth of the metal layer.

Поддержание напряжения в электролитической ванне в диапазоне 300-700 В необходимо для обеспечения условий протекания МДО-процесса, переходящего из анодирования.Maintaining the voltage in the electrolytic bath in the range of 300-700 V is necessary to ensure the flow conditions of the MAO process, passing from the anodizing.

При замене постоянного тока на импульсный понижается открытая пористость покрытия до 5-10%. Однако большинство пор в этом случае не являются сквозными, что приводит к формированию пористого металлокерамического покрытия при электроосаждении никелем.When replacing a direct current with a pulse, the open porosity of the coating decreases to 5-10%. However, the majority of pores in this case are not through, which leads to the formation of a porous cermet coating during electrodeposition by nickel.

При задании анодного постоянного тока плотностью 5-15 А/дм2 (в зависимости от оксидируемого металла) поверхность оксидного покрытия имеет открытые поры со средним диаметром 15-25 мкм округлой формы, и фактически состоит из вершин (наибольшая толщина оксида) и впадин (сквозных пор до металла, отсутствие защитного покрытия), где может начаться питтинговая коррозия. Открытая пористость формируемого покрытия не превышает 15%. Открытые поры равномерно распределяются по всей площади формируемого покрытия. Данные условия являются оптимальными для равномерного заполнения открытых сквозных пор никелем при электрохимическом осаждении в электролите на водной основе в течение 60 минут, при этом повышаются функциональные характеристики синтезируемых покрытий. В первую очередь, металлическое покрытие образуется на дне пор, заполняя их и выравнивая общий рельеф. Таким образом покрытие становится беспористым, увеличивается адгезия металлического покрытия из-за большей площади контакта и особенностей строения пористого оксидного слоя. При электроосаждении никеля свыше 60 минут происходит заполнение пор и нарастание сплошного металлического слоя на толщину более 5 мкм, что будет требовать дополнительной операции зашлифовки покрытия. При электроосаждении никеля менее 40 минут на поверхности покрытия наблюдаются единичные сквозные поры до металлической основы, что ухудшает функциональные характеристики покрытия.When setting the anode direct current with a density of 5-15 A / dm 2 (depending on the metal being oxidized), the surface of the oxide coating has open pores with an average diameter of 15-25 microns of rounded shape and actually consists of vertices (the largest oxide thickness) and depressions (through pore to metal, lack of a protective coating), where pitting corrosion can begin. The open porosity of the formed coating does not exceed 15%. Open pores are evenly distributed over the entire area of the formed coating. These conditions are optimal for uniform filling of open through pores with nickel during electrochemical deposition in a water-based electrolyte for 60 minutes, while the functional characteristics of the synthesized coatings increase. First of all, a metal coating is formed at the bottom of the pores, filling them and leveling the overall relief. Thus, the coating becomes non-porous, the adhesion of the metal coating increases due to the larger contact area and structural features of the porous oxide layer. When nickel is deposited for more than 60 minutes, the pores are filled and the continuous metal layer grows to a thickness of more than 5 microns, which will require an additional operation of grinding the coating. When nickel is deposited for less than 40 minutes, single through pores to the metal base are observed on the surface of the coating, which affects the functional characteristics of the coating.

Состав электролита является оптимальным для электроосаждения беспористого слоя металлического никеля на титан, алюминий, и их сплавы, при комнатной температуре [1].The electrolyte composition is optimal for electrodeposition of a non-porous layer of metallic nickel on titanium, aluminum, and their alloys, at room temperature [1].

Технико-экономическое преимущество изобретения по сравнению с прототипом выражается в том, что предлагаемый способ может быть внедрен на производстве со значительно меньшими материальными затратами, т.к. исключает необходимость в применении кислотного электролита, нагретого до 450°С, что в свою очередь сократит расходы на очистительные сооружения, а так же является универсальным.The technical and economic advantage of the invention compared to the prototype is expressed in the fact that the proposed method can be implemented in production with significantly lower material costs, because eliminates the need for the use of an acid electrolyte heated to 450 ° C, which in turn will reduce the cost of treatment facilities, and is also universal.

ПримерExample

Проведено нанесение беспористого металокерамического покрытия на пластины размером 50×10×2 мм из алюминия А5 и титана ВТ1-0 по следующей технологии:A non-porous cermet coating was applied to plates of size 50 × 10 × 2 mm from A5 aluminum and VT1-0 titanium using the following technology:

1. Подготовка поверхности образца:1. Sample surface preparation:

Figure 00000001
Figure 00000001

2. Формирование оксидного слоя на поверхности металлических пластин в силикатно-фосфатно-щелочных электролитах.2. The formation of the oxide layer on the surface of metal plates in silicate-phosphate-alkaline electrolytes.

3. Нанесение никелевого покрытия из электролитов на оксидный слой изделия3. The application of a nickel coating of electrolytes on the oxide layer of the product

4. Промывка в теплой проточной воде.4. Rinsing in warm running water.

5. Сушка.5. Drying.

6. Результаты6. Results

Figure 00000002
Figure 00000002

ЛитератураLiterature

[1] Заявка на патент RU 2543584 С2 C25D 3/22 «Электролит на водной основе для никелирования изделий из стали, алюминия, титана, меди и их сплавов».[1] Patent application RU 2543584 C2 C25D 3/22 “Water-based electrolyte for nickel plating of steel, aluminum, titanium, copper and their alloys”.

Claims (3)

1. Способ получения беспористого композиционного покрытия на металлической поверхности изделия, включающий микродуговое оксидирование металлической поверхности и последующее катодное электроосаждение никеля с формированием сплошного покрытия, отличающийся тем, что микродуговое оксидирование проводят в силикатно-фосфатно-щелочном электролите при плотности анодного постоянного тока 5-15 А/дм2 в диапазоне напряжений 300-700 В в течение 15-60 минут с формированием керамического оксидного покрытия в диапазоне толщин 20-60 мкм с открытой пористостью не более 15% со средним диаметром пор 15-25 мкм, имеющих преимущественно округлую форму и равномерно распределенных по поверхности, а затем внутри пор оксидной пленки проводят катодное электроосаждение никеля в электролите на водной основе в течение 40-60 минут.1. The method of obtaining a non-porous composite coating on the metal surface of the product, including microarc oxidation of the metal surface and subsequent cathodic electrodeposition of nickel with the formation of a continuous coating, characterized in that the microarc oxidation is carried out in a silicate-phosphate-alkaline electrolyte at an anode direct current density of 5-15 A / dm 2 in the voltage range of 300-700 V for 15-60 minutes with the formation of a ceramic oxide coating in the thickness range of 20-60 μm with open porous no more than 15% with an average pore diameter of 15–25 μm, having a predominantly rounded shape and uniformly distributed over the surface, and then cathodic electrodeposition of nickel in a water-based electrolyte is carried out within the pores of the oxide film for 40-60 minutes. 2. Способ по п. 1, отличающийся тем, что катодное электроосаждение никеля проводят с использованием нетоксичного электролита при комнатной температуре.2. The method according to p. 1, characterized in that the cathodic electrodeposition of Nickel is carried out using a non-toxic electrolyte at room temperature. 3. Способ по п.1, отличающийся тем, что металлическая поверхность изделия, подвергающаяся обработке, выполнена из алюминия, титана и их сплавов.3. The method according to claim 1, characterized in that the metal surface of the product to be processed is made of aluminum, titanium and their alloys.
RU2019120716A 2019-07-01 2019-07-01 Method of producing a porous composite coating RU2713763C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019120716A RU2713763C1 (en) 2019-07-01 2019-07-01 Method of producing a porous composite coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019120716A RU2713763C1 (en) 2019-07-01 2019-07-01 Method of producing a porous composite coating

Publications (1)

Publication Number Publication Date
RU2713763C1 true RU2713763C1 (en) 2020-02-07

Family

ID=69625540

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019120716A RU2713763C1 (en) 2019-07-01 2019-07-01 Method of producing a porous composite coating

Country Status (1)

Country Link
RU (1) RU2713763C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757642C1 (en) * 2021-02-15 2021-10-19 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) Coating for the protection of magnesium and its alloys from corrosion and a method for its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1070219A1 (en) * 1982-05-14 1984-01-30 Одесский Ордена Трудового Красного Знамени Государственный Университет Им.И.И.Мечникова Electrolyte for producing composite nickel-based coatings
RU2471021C1 (en) * 2011-04-20 2012-12-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Method for obtaining nanocomposite coatings
RU2671311C2 (en) * 2016-06-10 2018-10-31 Акционерное общество "МАНЭЛ" Electrolyte for coating valve metals and alloys thereof, method of coating and coating obtained by this method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1070219A1 (en) * 1982-05-14 1984-01-30 Одесский Ордена Трудового Красного Знамени Государственный Университет Им.И.И.Мечникова Electrolyte for producing composite nickel-based coatings
RU2471021C1 (en) * 2011-04-20 2012-12-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Method for obtaining nanocomposite coatings
RU2671311C2 (en) * 2016-06-10 2018-10-31 Акционерное общество "МАНЭЛ" Electrolyte for coating valve metals and alloys thereof, method of coating and coating obtained by this method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757642C1 (en) * 2021-02-15 2021-10-19 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) Coating for the protection of magnesium and its alloys from corrosion and a method for its production

Similar Documents

Publication Publication Date Title
TWI564437B (en) Non-metallic coating and method of its production
US9758891B2 (en) Low stress property modulated materials and methods of their preparation
US5415761A (en) Process for applying a structured surface coating on a component
Gębarowski et al. Influence of the cathodic pulse on the formation and morphology of oxide coatings on aluminium produced by plasma electrolytic oxidation
JP4554542B2 (en) Electrode for electrolysis
CN101260555B (en) Plasma liquid phase electrolysis method for ceramic film deposited on surface of copper and alloy thereof
JP4986267B2 (en) Electrode manufacturing method
RU2713763C1 (en) Method of producing a porous composite coating
CN103849916B (en) A kind of micro-arc oxidation prepares method and the microarc oxidation solution of titanium alloy surface best bright finish ceramic wearing coat
US6893551B2 (en) Process for forming coatings on metallic bodies and an apparatus for carrying out the process
JP5614671B2 (en) Oxide film and method for forming the same
CN110714219A (en) Method for electroplating nickel on magnesium alloy micro-arc oxidation surface
NO120227B (en)
KR102352209B1 (en) Chitosan used in electrolytic plasma process of magnesium alloy
CN1644760B (en) Manufacture of composite aluminum products
CN110872721A (en) Metal molded body having anodic oxide film, method for producing same, piston, and internal combustion engine
RU2471021C1 (en) Method for obtaining nanocomposite coatings
CN115323460A (en) Electrolytic coloring method for aluminum profile
KR100777176B1 (en) Method for Treating the Surface of Magnesium and Its Alloys
CN113774457A (en) Method for manufacturing medical titanium-containing material with micro-porous structure surface
CN110512249B (en) Preparation method of titanium carbonitride and hydroxyapatite composite coating
CN112663105A (en) Method for preparing oxide ceramic coating by catholyte plasma electrolysis
KR101313014B1 (en) Method for Treating the Surface of the Heat Sink for LED
HU et al. Discharge channel structure revealed by plasma electrolytic oxidation of AZ31Mg alloy with magnetron sputtering Al layer and corrosion behaviors of treated alloy
TWI835152B (en) Manufacturing method of preparing ceramic membrane on stainless steel surface