RU2713170C1 - Литой стеклокристаллический материал - Google Patents

Литой стеклокристаллический материал Download PDF

Info

Publication number
RU2713170C1
RU2713170C1 RU2019122209A RU2019122209A RU2713170C1 RU 2713170 C1 RU2713170 C1 RU 2713170C1 RU 2019122209 A RU2019122209 A RU 2019122209A RU 2019122209 A RU2019122209 A RU 2019122209A RU 2713170 C1 RU2713170 C1 RU 2713170C1
Authority
RU
Russia
Prior art keywords
size
microns
phases
mcm
spherulite
Prior art date
Application number
RU2019122209A
Other languages
English (en)
Inventor
Анна Михайловна Игнатова
Михаил Николаевич Игнатов
Владимир Иванович Верещагин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет"
Priority to RU2019122209A priority Critical patent/RU2713170C1/ru
Application granted granted Critical
Publication of RU2713170C1 publication Critical patent/RU2713170C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Изобретение описывает литой стеклокристаллический материал, содержащий оксиды кремния, магния, алюминия, титана, марганца и имеющий в структуре шпинельные фазы, при этом он дополнительно содержит оксиды кальция, железа (II), железа (III), натрия, калия, хрома, ванадия, серу S2 в соединении Fe2S при следующем соотношении ингредиентов, мас. %: SiO2 43,0-46,0; MgO 12,0-16,0; Al2O3 10,0-17,0; СаО 9,0-15,0; FeO 3,0-7,0; Fe2O3 1,0-1,2; TiO2 0,4-0,8; Na2O 0,3-1,0; K2O 0,33-1,10; MnO 0,20-0,30; Cr2O3 2,4-3,0; V2O5 0,1-0,2; S2- 0,02-0,06 (в соединении Fe2S), при этом его структура содержит шпинельные фазы в составе кристаллических сферолитных составляющих размером 4-7,5 мкм, состоящие из двух фаз: ядра сферолита - шпинелид размером 2-3 мкм и оболочки сферолита - пироксенид размером 2-4,5 мкм, а толщина стеклофазной прослойки между сферолитами составляет 5-7 мкм. Технический результат: получение литого стеклокристаллического материала, обладающего способностью к поглощению кинетической энергии удара и высокой износостойкостью без использования дефицитных, и/или дорогостоящих, и/или токсичных компонентов. 1 ил., 2 табл.

Description

Изобретение относится к химической технологии получения литых стеклокристаллических материалов на силикатной основе и может быть использовано в сфере промышленного, гражданского и дорожного строительства, транспортной защиты автомобильного и железнодорожного транспорта, а также для создания функциональных и декоративных элементов благоустройства городской среды и общественных мест отдыха (взрывобезопасные контейнеры и т.д.).
Известно каменное литье (а.с. СССР №923978, опубл. 1982 г.), состава, мас. %: SiO2 50,0-63,0; TiO2 1,0-5,0; Al2O3 1,0-4,0; FeO 0,1-0,3; Fe2O3 0,1-0,3; MgO 10,0-16,0; CaO 16,0-24,0; Na2O 0,5-2,0; K2O 0,5-2,0; Cr2O3 0,5-2,5; MnO 0,1-0,5, CoO или NiO 0,5-2,5.
Недостатком известного материала является потребность использования токсичного компонента - оксида кобальта. Кроме того, в состав вводится оксид никеля, который является дефицитным и дорогостоящим материалом.
Известен стеклокристаллический материал, а именно шлакоситалл (а.с. №1351898), включающий, мае, %:SiO2 41,10-44,90; Al2O3 10,80-18,90; СаО 19,80-24,00; MgO 1,05-3,10; TiO2 0,45-0,86; S-2 0,05-0,15; FeO 1,90-2,94; Fe2O3 7,40-9,00; Na2O 1,60-4,00; K2O 2,50-3,00; P2O5 0,6-1; Cr2O3 0,1-0,8.
Недостатком известного материала является то, что он имеет низкую температуру начала кристаллизации 860°С, что повышает риск остеклования материала при охлаждении расплава и не позволяет достигнуть нужного уровня кристалличности и сферолитной структуры.
Известен стеклокристаллический материал на основе шлаковых отходов тепловых электростанций (патент RU №2477712, опубл. 2011 г.), состава, мас. %: SiO2 53,0-55,0; Al2O3 11,0-13,0; Fe2O3 6,5-8,0; СаО 9,0-11,0; MgO 1,0-2,5; TiO2 4,5-6,0; S- 0,05-0,15; Na2O 4,0-5,5; K2O 3,0-5,0; P2O5 0,1-0,15; MnO 0,05-0,15.
Недостатком известного материала является отсутствие способности поглощать кинетическую энергию удара и повышенное содержание оксида фосфора, что не позволяет получать сферолитной структуры материала. Кроме того, твердость по шкале Мооса составляет 6,5, что является относительно низким показателем и сужает сферу применения материала.
Наиболее близким составом того же назначения к заявленному изобретению по совокупности признаков и достигаемому техническому результату является стеклокристаллический материал, описанный в патенте № US 20100242715 А1, содержащий в структуре шпинельные фазы на основе ионных комплексов, содержащих Al3+, Fe3+, Cr3+, V3+, Mn3+ при соотношении основных компонентов, мас. %: SiO2 41,0-47,0; Al2O3 15,0-21,0; MgO 6,0-12,0; TiO2 9,0-15,0; MnO или ZnO 15,0-21,0. Данный состав принят за прототип.
Признаки прототипа, совпадающие с признаками заявляемого изобретения, - оксиды кремния, магния, алюминия, титана, марганца; имеет в структуре шпинельные фазы.
Недостатком известного состава, принятого за прототип, является высокое содержание оксида титана, который является дорогостоящим компонентом. Кроме того, его содержание в таком количестве приводит к повышению температуры плавления, что повышает энергоемкость процесса и тем самым увеличивает стоимость материала.
Задача, на решение которой направлено заявленное изобретение, -получение литого стеклокристаллического материала, обладающего способностью к поглощению кинетической энергии удара и высокой износостойкостью без использования дефицитных и/или дорогостоящих и/или токсичных компонентов.
Поставленная задача была решена за счет того, что известный литой стеклокристаллический материал, содержащий оксиды кремния, магния, алюминия, титана, марганца, и имеющий в структуре шпинельные фазы, согласно изобретению дополнительно содержит оксиды кальция, железа (II), железа (III), натрия, калия, хрома, ванадия, серу S2 в соединении Fe2S при следующем соотношении ингредиентов, мас. %:
SiO2 43,0-46,0
MgO 12,0-16,0
Al2O3 10,0-17,0
СаО 9,0-15,0
FeO 3,0-7,0
Fe2O3 1,0-1,2
TiO2 0,4-0,8
Na2O 0,3-1,0
K2O 0,33-1,10
MnO 0,20-0,30
Cr2O3 2,4-3,0
V2O5 0,1-0,2
S2- 0,02-0,06 (в соединении Fe2S)
при этом его структура содержит шпинельные фазы в составе кристаллических сферолитных составляющих размером 4-7,5 мкм, состоящие из двух фаз: ядра сферолита - шпинелид размером 2-3 мкм и оболочки сферолита - пироксенида размером 2-4,5 мкм, а толщина стеклофазной прослойки между сферолитами составляет 5-7 мкм.
Отличительные признаки заявляемого состава от состава по прототипу-введение ингредиентов мас. %: оксида кальция СаО 9,0-15,0; оксидов железа FeO 3,0-7,0; Fe2O3 1,0-1,2; оксида натрия Na2O 0,3-1,0; оксида калия K2O 0,33-1,10; оксида хрома Cr2O3 2,4-3,0; оксида ванадия V2O5 0,1-0,2; серы S2 0,02-0,06 (в соединении Fe2S); иное количественное соотношение используемых ингредиентов мас. %: SiO2 43,0-46,0; MgO 12,0-16,0; Al2O3 10,0-17,0; TiO2 0,4-0,8; MnO 0,20-0,30; структура материала содержит шпинельные фазы в составе кристаллических сферолитных составляющих размером 4-7,5 мкм, состоящие из двух фаз: ядра сферолита - шпинелид размером 2-3 мкм и оболочки сферолита - пироксенида размером 2-4,5 мкм, а толщина стеклофазной прослойки между сферолитами составляет 5-7 мкм.
Авторы впервые экспериментально установили, что сочетание компонентов в заявляемом соотношении обеспечивает формирование в структуре материала при кристаллизации и затвердевании его расплава, составляющих в виде двухслойных сферолитов шпинелид-пироксенового состава размером в диапазоне 4-7,5 мкм, состоящих из двух фаз; ядра сферолита - шпинелид размером 2-3 мкм и оболочки сферолита -пироксенида размером 2-4,5 мкм, при этом толщина стеклофазной прослойки между сферолитами составляет 5-7 мкм. Кристалличность материала при этом составляет 94-93%. Благодаря этому стало возможным получение литого стеклокристаллического материала, обладающего способностью к поглощению кинетической энергии удара и высокой износостойкостью без использования дорогостоящих и/или токсичных компонентов.
На чертеже представлено изображение структуры литого стеклокристаллического материала, полученное методом оптической микроскопии при проходящем свете с использованием поляризационной линзы. На изображении идентифицируются сферолитные составляющие в разрезе, подтверждается их размер, форма и особенность строения, обозначенная выше.
Для приготовления заявляемого материала указанные компоненты смешивают в необходимых соотношениях. Затем плавят сырье в электродуговой печи при температуре более 1400°С, заливают расплав в формы. Проводят термическую обработку в течение не менее 15 часов со скоростью охлаждения не более 350°С/час.
Химический состав заявленного материала, мас. %:
SiO2 43,0-46,0;
MgO 12,0-16,0;
Al2O3 10,0-17,0;
СаО 9,0-15,0;
FeO 3,0-7,0;
Fe2O3 1,0-1,2;
TiO2 0,4-0,8;
Na2O 0,3-1,0;
K2O 0,33-1,10;
MnO 0,20-0,30,
Cr2O3 2,4-3,0;
V2O5 0,1-0,2;
S2- 0,02-0,06 (в соединении Fe2S)
Структура материала содержит шпинельные фазы в составе кристаллических сферолитных составляющих размером 4-7,5 мкм, состоящие из двух фаз: ядра сферолита - шпинелид размером 2-3 мкм и оболочки сферолита - пироксенида размером 2-4,5 мкм. Толщина стеклофазной прослойки между сферолитами составляет 5-7 мкм.
По описанному способу было изготовлено 3 состава литого стеклокристалличекого материала с различным соотношением ингредиентов. Приготовленные составы прошли лабораторные испытания.
В таблице 1 представлены 3 различных состава литого стеклокристаллического материала, их морфометрические параметры структуры и свойства.
Отдельно свойства структурных составляющих, установленные методом наноиндентирования, представлены в таблице 2. Твердость ядра сферолита по данным наноиндентирования составляет 10-11 ГПа, что соответствует характеристикам прототипа.
Figure 00000001
Figure 00000002
Figure 00000003
Сферолитные составляющие шпинелид-пироксенового состава в структуре литых стеклокристаллических материалов образуются в процессе охлаждения и кристаллизация расплава при определенных физико-химических условиях, а именно, при достаточном количестве оксида хрома и ванадия, в сочетании с низким содержанием оксида титана и в присутствии поверхностно-активного компонента расплава - серы (S2-).
Сферолитная структура обеспечивает повышение износостойкости и придает способность поглощать кинетическую энергию удара за счет обеспечения определенных механизмов износа и деформации при динамических нагрузках.
При износе абразивные частицы глубоко погружаются своими режущими гранями в стекло-фазу, это замедляет их дальнейшее перемещение относительно поверхности материала и тем самым сокращает изнашивающую нагрузку. При дальнейшем перемещении частицы взаимодействуют с оболочкой сферолита, которые частично демпфируют их действие, частично разрушаясь. Таким образом, кинетическая энергия абразивной частицы при соприкосновении с ядром сферолита минимальна и они не оказывают ударного воздействия на наиболее твердый компонент структуры материала, что приводит к тому, что абразивная частица или прекращает наносить повреждение до следующего этапа перемещения относительно поверхности материала, или разрушается (в том случае когда твердость абразивной частицы ниже твердости шпинелида в ядре сферолита).
При взаимодействии с ускоренным пробойником в процессе удара благодаря сферолитной структуре реализуется диссипативный механизм разрушения, в результате чего деформация локализуется в ограниченном объеме, в котором кинетическая энергия воздействия приводит к нагреву материала и структурным изменениям, вызванным локальным ростом сжимающих нагрузок. После чего происходит фрагментация материала в замкнутом объеме, в остальном объеме материала при этом происходит образование и рост магистральных трещин.
Сферолитная структура обеспечивает повышение износостойкости до уровня 0,01-0,02 кг/м3 и придает способность поглощать кинетическую энергию удара в диапазоне 53-55 Дж/см3.

Claims (3)

  1. Литой стеклокристаллический материал, содержащий оксиды кремния, магния, алюминия, титана, марганца и имеющий в структуре шпинельные фазы, отличающийся тем, что он дополнительно содержит оксиды кальция, железа (II), железа (III), натрия, калия, хрома, ванадия, серу S2 в соединении Fe2S при следующем соотношении ингредиентов, мас. %:
  2. SiO2 43,0-46,0 MgO 12,0-16,0 Al2O3 10,0-17,0 CaO 9,0-15,0 FeO 3,0-7,0 Fe2O3 1,0-1,2 TiO2 0,4-0,8 Na2O 0,3-1,0 K2O 0,33-1,10 MnO 0,20-0,30 Cr2O3 2,4-3,0 V2O5 0,1-0,2 S2- 0,02-0,06 (в соединении Fe2S),
  3. при этом его структура содержит шпинельные фазы в составе кристаллических сферолитных составляющих размером 4-7,5 мкм, состоящие из двух фаз: ядра сферолита - шпинелид размером 2-3 мкм и оболочки сферолита - пироксенид размером 2-4,5 мкм, а толщина стеклофазной прослойки между сферолитами составляет 5-7 мкм.
RU2019122209A 2019-07-11 2019-07-11 Литой стеклокристаллический материал RU2713170C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019122209A RU2713170C1 (ru) 2019-07-11 2019-07-11 Литой стеклокристаллический материал

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019122209A RU2713170C1 (ru) 2019-07-11 2019-07-11 Литой стеклокристаллический материал

Publications (1)

Publication Number Publication Date
RU2713170C1 true RU2713170C1 (ru) 2020-02-04

Family

ID=69624768

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019122209A RU2713170C1 (ru) 2019-07-11 2019-07-11 Литой стеклокристаллический материал

Country Status (1)

Country Link
RU (1) RU2713170C1 (ru)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU371181A1 (ru) * 1971-07-05 1973-02-22 Константиковский ордена Трудового Красного Знамени завод Автостекло СТЕКЛО(lAfEHTH04u^;БИБЛИО' P-iiA
SU1065375A1 (ru) * 1982-06-22 1984-01-07 Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Стекла Каменное литье
RU2100315C1 (ru) * 1996-02-12 1997-12-27 Коми научный центр Уральского отделения РАН Способ получения корундовой керамики
UA4170U (ru) * 2004-02-19 2005-01-17 Віктор Іванович Борулько Translated By PlajСТЕКЛО ДЛЯ СТЕКЛОКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА
UA51901U (en) * 2010-01-11 2010-08-10 Альберт Адольфович Семенов "hranulit" acid-proof material
US20100242715A1 (en) * 2006-06-13 2010-09-30 D&D Salomon Investment Ltd. Glass-ceramic materials having a predominant spinel-group crystal phase
RU2545380C2 (ru) * 2013-05-13 2015-03-27 Авакян Карен Хоренович Термостойкий синтетический ювелирный материал
WO2016078473A1 (zh) * 2014-11-19 2016-05-26 成都光明光电股份有限公司 高硬度透明微晶玻璃及其制备方法
JP6305515B2 (ja) * 2013-04-10 2018-04-04 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. フレキシブルガラス/金属箔複合物品およびそれらの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU371181A1 (ru) * 1971-07-05 1973-02-22 Константиковский ордена Трудового Красного Знамени завод Автостекло СТЕКЛО(lAfEHTH04u^;БИБЛИО' P-iiA
SU1065375A1 (ru) * 1982-06-22 1984-01-07 Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Стекла Каменное литье
RU2100315C1 (ru) * 1996-02-12 1997-12-27 Коми научный центр Уральского отделения РАН Способ получения корундовой керамики
UA4170U (ru) * 2004-02-19 2005-01-17 Віктор Іванович Борулько Translated By PlajСТЕКЛО ДЛЯ СТЕКЛОКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА
US20100242715A1 (en) * 2006-06-13 2010-09-30 D&D Salomon Investment Ltd. Glass-ceramic materials having a predominant spinel-group crystal phase
UA51901U (en) * 2010-01-11 2010-08-10 Альберт Адольфович Семенов "hranulit" acid-proof material
JP6305515B2 (ja) * 2013-04-10 2018-04-04 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. フレキシブルガラス/金属箔複合物品およびそれらの製造方法
RU2545380C2 (ru) * 2013-05-13 2015-03-27 Авакян Карен Хоренович Термостойкий синтетический ювелирный материал
WO2016078473A1 (zh) * 2014-11-19 2016-05-26 成都光明光电股份有限公司 高硬度透明微晶玻璃及其制备方法

Similar Documents

Publication Publication Date Title
Romero et al. Use of vitrified urban incinerator waste as raw material for production of sintered glass-ceramics
US4142879A (en) Method for producing low expansion ceramics
Bernardo et al. Glass–ceramics from vitrified sewage sludge pyrolysis residues and recycled glasses
JP5420683B2 (ja) 新型ガラス繊維組成物
CN104439133A (zh) 一种新型保护渣及其应用
Garcia-Valles et al. Heavy metal-rich wastes sequester in mineral phases through a glass–ceramic process
JP2009538817A (ja) 石灰ガラスバッチ組成物
CN106513607A (zh) 一种304不锈钢用连铸结晶器保护渣及其制备方法
CN102211869A (zh) 一种一次精压成型晶质玻璃及其制备方法
JP2011525471A (ja) 高強度マシナブルガラスセラミック
AU2006225236B2 (en) Sintered flux for submerged arc welding
Khater et al. Preparation of glass-ceramic materials from basaltic rocks and by-pass cement dust
Alraddadi et al. Thermal and mechanical properties of glass–ceramics based on slate and natural raw materials
RU2713170C1 (ru) Литой стеклокристаллический материал
Khater et al. High-performance glass-ceramics based on blast and arc furnace slag
CN106111928B (zh) 一种新型含Mn、Al钢保护渣及其应用
Zhao et al. Effect of niobium pentoxide (Nb 2 O 5) on the microstructure and properties of the diopside glass-ceramics produced from Bayan Obo mine tailing
EP1184352A1 (en) Cement clinker, cement composition, method for producing cement clinker and method for treatment of waste containing alkali component
Karamanov Vitrification and sinter-crystallization of iron-rich industrial wastes
JPH08141713A (ja) 鋼の連続鋳造用モールドパウダー
US4348485A (en) Spinel type fused refractory product
KR20150053896A (ko) 스틸 슬래그 처리 방법 및 유압식 광물 바인더
RU2370468C1 (ru) Термоизоляционная масса
Kosmal et al. Surface crystallization and phase evolution of BaO–SrO–TiO 2–SiO 2–Al 2 O 3-based glass ceramics
Erkmen et al. Characterisation and crystallisation kinetics of glass ceramics developed from Erdemir blast furnace slags containing Cr2O3 and TiO2 nucleants