RU2712926C1 - Тонкопленочный магнитометр слабых магнитных полей - Google Patents

Тонкопленочный магнитометр слабых магнитных полей Download PDF

Info

Publication number
RU2712926C1
RU2712926C1 RU2019112266A RU2019112266A RU2712926C1 RU 2712926 C1 RU2712926 C1 RU 2712926C1 RU 2019112266 A RU2019112266 A RU 2019112266A RU 2019112266 A RU2019112266 A RU 2019112266A RU 2712926 C1 RU2712926 C1 RU 2712926C1
Authority
RU
Russia
Prior art keywords
thin
magnetic
film
field
amplitude
Prior art date
Application number
RU2019112266A
Other languages
English (en)
Inventor
Александр Николаевич Бабицкий
Борис Афанасьевич Беляев
Никита Михайлович Боев
Андрей Викторович Изотов
Антон Владимирович Бурмитских
Софья Андреевна Клешнина
Original Assignee
Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" filed Critical Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук"
Priority to RU2019112266A priority Critical patent/RU2712926C1/ru
Application granted granted Critical
Publication of RU2712926C1 publication Critical patent/RU2712926C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • G01R33/05Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle in thin-film element

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Изобретение относится к измерительной технике и может использоваться в магнитометрии. Сущность изобретения заключается в том, что в тонкопленочном магнитометре слабых магнитных полей под углом α к оси трудного намагничивания тонкой магнитной пленки с помощью дополнительной магнитной системы и низкочастотного генератора прямоугольных импульсов тока формируется модулирующее поле, причем амплитуда модулирующего поля больше величины поля анизотропии тонкой магнитной пленки, выходной сигнал амплитудного детектора подается на первый вход синхронного детектора, на второй вход которого поступает опорный сигнал от низкочастотного генератора, при этом выход синхронного детектора подключен к компенсирующей магнитной системе и одновременно является выходным сигналом устройства. Технический результат – повышение чувствительности и снижение величины дрейфа нулевого значения выходного сигнала магнитометра. 3 ил.

Description

Изобретение относится к измерительной технике, а более конкретно - предназначено для измерения параметров слабых магнитных полей и может использоваться в магнитометрии.
Известен датчик слабых высокочастотных магнитных полей [Патент РФ №2536083, МПК G01R 33/05, G01R 33/24, опубл. 20.12.2014], содержащий диэлектрическую подложку, на верхней стороне которой нанесены полосковые проводники двух микрополосковых резонаторов, а на нижней стороне осаждена магнитная пленка, покрытая металлическим слоем, выполняющим роль экрана. Проводники резонаторов расположены под оптимальным углом друг к другу, обеспечивающим максимальный коэффициент преобразования датчика. Мощность СВЧ-генератора подается на оба резонатора одновременно, а выходной сигнал датчика формируется двумя сигналами, снимаемыми одновременно с этих двух резонаторов, при этом сигналы резонаторов суммируются, а шумы генератора компенсируются. Постоянное магнитное поле смещения формируется магнитной системой, состоящей из постоянных магнитов.
Также известен малогабаритный высокочастотный магнитометр [Патент РФ №163174, G01R 33/05, опубл. 10.07.2016], содержащий многослойную печатную плату, на которой размещена диэлектрическая подложка с нанесенными на поверхности подложки полосковыми проводниками двух микрополосковых резонаторов. На нижней стороне подложки, обращенной к заземленному экрану печатной платы, осаждена тонкая магнитная пленка. Накачка резонаторов осуществляется СВЧ-генератором, размещенном в экранирующем корпусе. Выходной сигнал магнитометра формируется двумя амплитудными детекторами и дифференциальным усилителем с компенсационной схемой измерения. Постоянное поле смещения в магнитной пленке создается системой из постоянных магнитов.
Недостатком известных конструкций является дрейф нулевого значения на выходе магнитометра, что не позволяет проводить измерение параметров магнитного поля на частотах ниже 10-2 Гц. Другим недостатком известных устройств является низкая чувствительность, что вызвано существенной неоднородностью формирования постоянного магнитного поля смещения в области размещения тонкопленочного образца.
Наиболее близким аналогом (прототипом) по совокупности существенных признаков является датчик слабых магнитных полей [Патент РФ №2682076, G01R 33/24, опубл. 14.03.2019 (прототип)], содержащий СВЧ-генератор, чувствительный элемент на основе микрополоскового резонатора с тонкой магнитной пленкой, магнитную систему, амплитудный детектор, операционный усилитель, компенсационную систему, модуляционный генератор и схему синхронного детектирования. Направления высокочастотного магнитного поля и постоянного поля смещения совпадают с осью трудного намагничивания пленки, а направления измеряемого, компенсационного и модулирующего поля перпендикулярны оси трудного намагничивания пленки.
Однако известные конструкции и конструкция-прототип не обеспечивают достаточно высокой чувствительности и низкого дрейфа нулевого значения сигнала на выходе магнитометра.
Техническим результатом заявленного технического решения является повышение чувствительности и снижение величины дрейфа нулевого значения выходного сигнала магнитометра.
Заявляемый технический результат достигается тем, что в тонкопленочном магнитометре слабых магнитных полей, содержащем тонкую магнитную пленку, размещенную в микрополосковом резонаторе, подключенном к СВЧ-генератору, амплитуда колебаний в котором измеряется амплитудным детектором, при этом направление высокочастотного магнитного поля совпадает с направлением оси трудного намагничивания тонкой магнитной пленки, а направление оси максимальной чувствительности перпендикулярно положению магнитного момента, компенсационную магнитную систему, формирующую компенсирующее магнитное поле в направлении оси легкого намагничивания, новым является то, что под углом α к оси трудного намагничивания тонкой магнитной пленки с помощью дополнительной магнитной системы и низкочастотного генератора прямоугольных импульсов тока формируется модулирующее поле, причем амплитуда модулирующего поля больше величины поля анизотропии тонкой магнитной пленки, выходной сигнал амплитудного детектора подается на первый вход синхронного детектора, на второй вход которого поступает опорный сигнал от низкочастотного генератора, при этом выход синхронного детектора подключен к компенсирующей магнитной системе и одновременно является выходным сигналом устройства.
Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается наличием магнитной системы и низкочастотного генератора прямоугольных импульсов тока, формирующих в плоскости тонкой магнитной пленки модулирующее поле, направленное под углом α к оси трудного намагничивания пленки.
Существенным отличием является наличие системы формирования модулирующего поля, направленного под углом α к оси трудного намагничивания пленки, и схемы синхронного детектирования сигнала, что позволяет повысить долговременную стабильность параметров заявляемого устройства.
Другим существенным отличием является формирование магнитного поля смещения (подмагничивающего поля) с помощью магнитной системы, например, с помощью колец Гельмгольца или катушек Фанселау, что позволяет значительно повысить однородность поля смещения в области тонкой магнитной пленки и, как результат, повысить чувствительность заявляемого устройства.
Таким образом, перечисленные выше отличительные признаки от прототипа позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».
Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».
Данное изобретение поясняется чертежами: на фиг. 1 приведена структурная схема тонкопленочного магнитометра слабых магнитных полей; на фиг. 2 показана ориентация полей в магнитометре относительно осей анизотропии тонкой магнитной пленки - a, зависимость нормированной величины коэффициента преобразования магнитометра от величины поля Нмод для оптимального значения угла α между направлением оси трудного намагничивания пленки и направлением поля Нмод; на фиг. 3 приведен пример реализации конструкции тонкопленочного магнитометра слабых магнитных полей.
Тонкопленочный магнитометр слабых магнитных полей (фиг. 1) содержит: тонкую магнитную пленку (1), например, из пермаллоя, помещенную в микрополосковый СВЧ-резонатор (2), резонансная частота которого находится в диапазоне частот 400-800 МГц. К СВЧ-резонатору (2) подключен СВЧ-генератор (3) и амплитудный детектор (4). Выход амплитудного детектора подключен на первый вход синхронного детектора (5). В области размещения тонкой магнитной пленки (1) создается однородное модулирующее магнитное поле модуляционными катушками (6), например, кольцами Гельмгольца. Вход модулирующих катушек (6) подключен к выходу низкочастотного генератора (7) прямоугольных импульсов тока. Выход низкочастотного генератора (7) также подключен ко второму входу синхронного детектора (5). Частота низкочастотного генератора (7) выбирается исходя из требований обеспечения необходимой полосы частот: ƒНмод>>ƒНизм. Выход синхронного детектора (5) соединен со входом компенсационных катушек (8), например, колец Гельмгольца, формирующих однородное компенсирующее магнитное поле в области размещения пленки. Выходной сигнал синхронного детектора (5) также является выходным сигналом устройства.
Устройство (фиг. 1) работает следующим образом. Сигнал СВЧ-генератора (3) возбуждает колебания в микрополосковом СВЧ-резонаторе (2), внутри которого размещена тонкая магнитная пленка (1). Причем пленка размещена таким образом, что высокочастотное магнитное поле НВЧ СВЧ-резонатора (2) направлено вдоль оси трудного намагничивания пленки. Амплитудный детектор (4), подключенный к СВЧ-резонатору (2), используется для измерений амплитуды СВЧ-колебаний. Сигнал от низкочастотного генератора (7) прямоугольных импульсов тока поступает на катушки (6) Гельмгольца, формирующие модуляционное поле, направленное в плоскости пленки под углом α к оси трудного намагничивания. При использовании, например, тонких магнитных пленок состава Ni80Fe20 угол α выбирается по максимуму коэффициента преобразования чувствительного элемента в диапазоне от 0.1° до 30° (зависит от качества пленок) [Беляев Б.А., Боев Н.М., Изотов А.В., Соловьев П.Н., Тюрнев В.В. Исследование датчика слабых магнитных полей на резонансной микрополосковой структуре с тонкой ферромагнитной пленкой // Известия высших учебных заведений: Физика. 2018. Т. 61, №8. С. 3-10]. Ориентация магнитных полей в области размещения тонкой магнитной пленки показана на фиг. 2, (а). Низкочастотный генератор (7) формирует в модуляционных катушках (6) прямоугольные импульсы тока, при этом амплитуда поля модуляции Нмод выбирается в диапазоне (1.1-1.3)⋅Hk, где Hk - величина поля анизотропии тонкой магнитной пленки. Таким образом, в течение первой половины периода прямоугольного импульса тока низкочастотного генератора (7) рабочая точка находится в положении А, в течение второй половины периода - в положении Б (фиг. 2, б). Измеряемое (пробное) магнитное поле подается вдоль направления оси легкого намагничивания пленки (фиг. 2, а). Воздействие внешнего измеряемого магнитного поля приводит к отклонению равновесного положения магнитного момента и, как следствие, к изменению мнимой части комплексной магнитной проницаемости тонкой магнитной пленки, что фиксируется по изменению добротности СВЧ-резонатора и амплитуды СВЧ-колебаний амплитудным детектором (4) [Бабицкий А.Н., Беляев Б.А., Боев Н.М., Скоморохов Г.В., Изотов А.В., Галеев Р.Г. Магнитометр слабых квазистационарных и высокочастотных полей на резонансных микрополосковых преобразователях с тонкими магнитными пленками // Приборы и техника эксперимента. 2016. №3. С. 96-104]. Выходной сигнал амплитудного детектора (4) поступает на первый вход синхронного детектора (5), на второй вход которого подается опорный сигнал низкочастотного генератора (7) модулирующего поля. Выходным сигналом тонкопленочного магнитометра слабых магнитных полей является выходной сигнал синхронного детектора (5). В целях повышения долговременной стабильности параметров магнитометра применяется компенсационный метод измерений, для этого выходной сигнал синхронного детектора (5) подается на компенсационные катушки (8), которые формируют компенсирующее поле в области чувствительного элемента.
Пример реализации конструкции тонкопленочного магнитометра слабых магнитных полей показан на фиг. 3. Тонкая магнитная пленка (1) размещается в микрополосковом СВЧ-резонаторе (2), расположенном на верхней стороне первой печатной платы (9). На нижней стороне первой печатной платы (9) расположены элементы СВЧ-генератора (3) и амплитудного детектора (4). На второй печатной плате (10) расположены низкочастотный генератор (7), синхронный детектор (5) и электрорадиоизделия системы питания устройства. Модулирующее поле формируется катушками (6) Гельмгольца, а компенсационное поле создается катушками (8) Фанселау.
Экспериментальные исследования заявляемого тонкопленочного магнитометра слабых магнитных полей показали, что, по сравнению с прототипом, заявляемое устройство обеспечивает более высокую чувствительность и меньший дрейф нулевого значения сигнала на выходе устройства.

Claims (1)

  1. Тонкопленочный магнитометр слабых магнитных полей, содержащий тонкую магнитную пленку, размещенную в микрополосковом резонаторе, подключенном к СВЧ-генератору, амплитуда колебаний в котором измеряется амплитудным детектором, при этом направление высокочастотного магнитного поля совпадает с направлением оси трудного намагничивания тонкой магнитной пленки, а направление оси максимальной чувствительности перпендикулярно положению магнитного момента, компенсационную магнитную систему, формирующую компенсирующее магнитное поле в направлении оси легкого намагничивания, отличающийся тем, что под углом α к оси трудного намагничивания тонкой магнитной пленки с помощью дополнительной магнитной системы и низкочастотного генератора прямоугольных импульсов тока формируется модулирующее поле, причем амплитуда модулирующего поля больше величины поля анизотропии тонкой магнитной пленки, выходной сигнал амплитудного детектора подается на первый вход синхронного детектора, на второй вход которого поступает опорный сигнал от низкочастотного генератора, при этом выход синхронного детектора подключен к компенсирующей магнитной системе и одновременно является выходным сигналом устройства.
RU2019112266A 2019-04-22 2019-04-22 Тонкопленочный магнитометр слабых магнитных полей RU2712926C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019112266A RU2712926C1 (ru) 2019-04-22 2019-04-22 Тонкопленочный магнитометр слабых магнитных полей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019112266A RU2712926C1 (ru) 2019-04-22 2019-04-22 Тонкопленочный магнитометр слабых магнитных полей

Publications (1)

Publication Number Publication Date
RU2712926C1 true RU2712926C1 (ru) 2020-02-03

Family

ID=69625476

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019112266A RU2712926C1 (ru) 2019-04-22 2019-04-22 Тонкопленочный магнитометр слабых магнитных полей

Country Status (1)

Country Link
RU (1) RU2712926C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747912C1 (ru) * 2020-10-09 2021-05-17 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Широкополосный спектрометр ферромагнитного резонанса
RU2774859C1 (ru) * 2021-09-22 2022-06-23 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Автоматизированное устройство измерения магнитных характеристик ферромагнитных пленок

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112367A (en) * 1976-06-18 1978-09-05 Thomson-Csf Magnetomer using a thin magnetic film optical waveguide with a.c. modulation and automatic nulling
RU43654U1 (ru) * 2004-10-19 2005-01-27 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ЗАВОД имени Г.И. ПЕТРОВСКОГО Датчик магнитного поля
RU183446U1 (ru) * 2017-10-27 2018-09-24 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (СФУ) Малогабаритный тонкопленочный градиентометр
RU2682076C1 (ru) * 2018-04-28 2019-03-14 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Датчик слабых магнитных полей

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112367A (en) * 1976-06-18 1978-09-05 Thomson-Csf Magnetomer using a thin magnetic film optical waveguide with a.c. modulation and automatic nulling
RU43654U1 (ru) * 2004-10-19 2005-01-27 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ЗАВОД имени Г.И. ПЕТРОВСКОГО Датчик магнитного поля
RU183446U1 (ru) * 2017-10-27 2018-09-24 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (СФУ) Малогабаритный тонкопленочный градиентометр
RU2682076C1 (ru) * 2018-04-28 2019-03-14 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Датчик слабых магнитных полей

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747912C1 (ru) * 2020-10-09 2021-05-17 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Широкополосный спектрометр ферромагнитного резонанса
RU2774859C1 (ru) * 2021-09-22 2022-06-23 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Автоматизированное устройство измерения магнитных характеристик ферромагнитных пленок
RU2784818C1 (ru) * 2022-05-27 2022-11-29 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Локальный широкополосный спектрометр ферромагнитного резонанса
RU2797721C1 (ru) * 2022-12-08 2023-06-08 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Измерительная ячейка широкополосного спектрометра ферромагнитного резонанса
RU2811351C1 (ru) * 2023-10-18 2024-01-11 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" Цифровой индукционный феррометр для регистрации петель гистерезиса тонких ферромагнитных пленок

Similar Documents

Publication Publication Date Title
RU163174U1 (ru) Малогабаритный высокочастотный магнитометр
KR100834846B1 (ko) 자기전기 감수율 측정 시스템
JPH09117435A (ja) 核スピントモグラフィー装置の磁石の基本磁場の測定装置
RU2682076C1 (ru) Датчик слабых магнитных полей
WO1984000423A1 (en) A method and apparatus for determining the trace and depth of underground metallic conductors
Kernevez et al. Description of a high sensitivity CW scalar DNP-NMR magnetometer
RU2712926C1 (ru) Тонкопленочный магнитометр слабых магнитных полей
Liu et al. Construction of an Overhauser magnetic gradiometer and the applications in geomagnetic observation and ferromagnetic target localization
US4455527A (en) Magnetic resonance apparatus
RU2536083C1 (ru) Датчик слабых высокочастотных магнитных полей
Babitskii et al. A magnetometer of weak quasi-stationary and high-frequency fields on resonator microstrip transducers with thin magnetic fields
Babitskii et al. Low noise wideband thin-film magnetometer
JPH05288820A (ja) 方向性共鳴磁力計
Burrell et al. A dielectric constant method of following the non-stationary state in polymerization I. The theory of the method
US5451874A (en) Method and system for providing heterodyne pumping of magnetic resonance
US3931572A (en) Method and apparatus for measuring magnetic fields utilizing odd harmonics of an excitation signal
RU2706436C1 (ru) Чувствительный элемент тонкопленочного магнитометра
RU2687557C1 (ru) Тонкопленочный градиентометр
RU2714314C1 (ru) Способ измерения магнитных характеристик ферромагнитных пленок и устройство для его осуществления
RU2712922C1 (ru) Тонкопленочная магнитная антенна
RU2743321C1 (ru) Магнитометр на тонкой магнитной пленке
RU2761319C1 (ru) Широкополосный высокочувствительный датчик переменных магнитных полей
RU2715082C1 (ru) Свч-головка сканирующего спектрометра ферромагнитного резонанса
RU2758817C1 (ru) Датчик слабых магнитных полей на тонких магнитных пленках
KR102656037B1 (ko) 자기장 검출 장치

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20201008

Effective date: 20201008