RU2710481C1 - Прозрачный электрод с асимметричным пропусканием света и способ его изготовления - Google Patents

Прозрачный электрод с асимметричным пропусканием света и способ его изготовления Download PDF

Info

Publication number
RU2710481C1
RU2710481C1 RU2018145644A RU2018145644A RU2710481C1 RU 2710481 C1 RU2710481 C1 RU 2710481C1 RU 2018145644 A RU2018145644 A RU 2018145644A RU 2018145644 A RU2018145644 A RU 2018145644A RU 2710481 C1 RU2710481 C1 RU 2710481C1
Authority
RU
Russia
Prior art keywords
microspheres
holes
transparent
layer
transparent electrode
Prior art date
Application number
RU2018145644A
Other languages
English (en)
Inventor
Константин Руфович Симовский
Александр Сергеевич Шалин
Андрей Викторович Вениаминов
Иван Сергеевич Мухин
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО)
Priority to RU2018145644A priority Critical patent/RU2710481C1/ru
Application granted granted Critical
Publication of RU2710481C1 publication Critical patent/RU2710481C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof

Abstract

Изобретение относится к области оптоэлектронной техники и может быть использовано для создания сенсорных экранов, солнечных батарей, конструкция которых включает элементы, одновременно прозрачные для света и проводящие электрический ток. Прозрачный электрод с асимметричным пропусканием света, содержит прозрачную подложку, выполненную из гибкого материала, на которую нанесен проводящий слой из Al с упорядоченно расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами, что обеспечивает более широкую область применения устройства. В алюминиевой пленке выполнены отверстия радиуса 300-700 нм, расположенные в виде гексагональной решетки, которая обеспечивает плотную упаковку фокусирующих микросфер, покрывающих отверстия. Наложенные на отверстия прозрачные сферы реализуют эффект фотонного наноджета и коллимируют падающее на них оптическое излучение в проходящие через отверстия пучки диаметром меньше длины волны падающего излучения и значительно меньше радиуса сферы. Система отверстий в проводящем слое, соответствующая плотной упаковке микросфер, создается методом микросферной фотолитографии. Плотноупакованные монослои микросфер наносятся методом центрифугирования. Технический результат заключается в расширении области применения пригодного для производства в промышленных масштабах, в том числе с применением рулонных технологий, и решается задача расширения функциональных возможностей прозрачного электрода. 1 з.п. ф-лы, 5 ил.

Description

Предполагаемое изобретение относится к области оптоэлектронной техники и может быть использовано для создания сенсорных экранов, солнечных батарей, конструкция которых включает элементы, одновременно прозрачные для света и проводящие электрический ток - прозрачные электроды.
Известно несколько вариантов прозрачных электродов, основными из которых являются сплошные слои ITO (Indium tin oxide - оксид индия-олова) (Genesio G., Maynadie J., Carboni, M., et al. "Recent status on MOF thin films on transparent conductive oxides substrates (ITO or FTO)" New Journal of Chemistry. 2018. V. 42 P. 2351-2363) и подобных материалов, графена и углеродных нанотрубок (
Figure 00000001
E.J.,
Figure 00000002
L.J.,
Figure 00000003
L.M.,
Figure 00000004
E.M.,
Figure 00000005
A. Transparent Electrodes: A Review of the Use of Carbon-Based Nanomaterials // Journal of Nanomaterials. 2016. V. 2016. Article ID 4928365, 12 pages; Kim C.-L., Jung C.-W., Oh Y.-J., Kim D.-E. A highly flexible transparent conductive electrode based on nanomaterials // NPG Asia Materials. 2017. V. 9. P e438), a также металлические наносетки (Huang S. et al, "A Highly Stretchable and Fatigue Free Transparent Electrode Based on an In Plane Buckled Au Nanotrough Network", Advanced Electronic Materials, 2017. V. 3(3)). Некоторые из таких электродов могут быть сделаны гибкими, к недостатком можно отнести тот факт, что ни один из перечисленных подходов не обеспечивает асимметрии пропускания света.
Известна конструкция прозрачного электрода с большим значением асимметрии пропускания света, основанная на фотонно-кристаллической структуре (Klimov V.V., Treshin I.V., Shalin A.S., Melentiev P.N., Kuzin A.A., Afanasiev A.E., Balykin V.I. "Optical Tamm state and giant asymmetry of light transmission through an array of nanoholes" Physical Review A V.92, 063842 (2015)), представляющая собой брэгговское многослойное диэлектрическое зеркало (чередующиеся слои MgF2 и TiO2 разной толщины), нанесенное на оксид алюминия и покрытое с другой стороны перфорированным слоем золота с периодом расположения отверстий 2 мкм, недостатком которой является очень слабое пропускание излучения при наличии асимметрии (доли процента от падающего света), а также сильная зависимость параметров от длины волны света.
Наиболее близким к предполагаемому изобретению и принятым в качестве прототипа является прозрачный электрод с асимметричным пропусканием света (Kovrov А.Е., Baranov D.A., Shalin A.S., Mukhin I.S., Simovski C.R. "Optically asymmetric structures for transparent electrodes", Proceedings of the International Conference Days on Diffraction 2016, pp. 234-236). Этот электрод представляет собой нанесенную на кварцевую подложку перфорированную золотую или серебряную пленку, упорядочение расположенные отверстия, которые покрыты сферическими микролинзами из полистирола, кварца или оксида титана диаметром от 2 до 40 длин волн. Такая конструкция характеризуется низким удельным сопротивлением, сопоставимым с сопротивлением чистого металла (<5 Ом/кв), высокой прозрачностью в оптическом диапазоне и значительной асимметрией пропускания: отношение коэффициента пропускания в прямом и обратном направлениях может превышать 4.7 при коэффициенте пропускания 91%. Однако такому электроду с асимметричным пропусканием света присущи следующие недостатки:
- он не является гибким, что сужает область его применения и исключает возможность его изготовления с использованием производительных рулонных (roll-to-roll) технологий;
- перфорирование проводящей пленки выполнено методом электронной литографии, который не позволяет получать образцы большого размера;
- использованные для изготовления проводящего слоя золото или серебро дороги.
Среди способов изготовления прозрачного электрода на основе перфорированного проводящего металлического слоя можно выделить фотолитографию через маску-шаблон [Ito, Т. and Okazaki, S., 2000. Pushing the limits of lithography. Nature, 406(6799), p. 1027], прямую литографию с использованием сфокусированного лазерного излучения [Cheng, Y., Huang, T.Y. and Chieng, C.C., 2002. Thick-film lithography using laser write. Microsystem Technologies, 9(1-2), pp. 17-22], а также литографию с применением сфокусированных пучков заряженных частиц, например, электронов или ионов [Watt, Е, Bettiol, А.А., Van Kan, J.A., Тео, E.J. and Breese, M.B.H., 2005. Ion beam lithography and nanofabrication: a review. International Journal of Nanoscience, 4(03), рр. 269-286]. Недостатками данных подходов являются необходимость использования заранее созданных фотошаблонов и низкая производительность методов.
Наиболее близким к предполагаемому способу создания прозрачного проводящего электрода и принятым в качестве прототипа является метод фотолитографии через массив полистироловых или стеклянных микросфер, упорядоченно расположенных на фоточувствительном слое резиста [Jiang, P., Prasad, Т., McFarland, M.J. and Colvin, V.L., 2006. Two-dimensional nonclose-packed colloidal crystals formed by spincoating. Applied Physics Letters, 89(1), р. 011908]. В данном способе на поверхность фоторезиста с помощью метода центрифугирования наносится упорядоченный слой микросфер из взвеси. Далее проводится экспонирование светом в УФ диапазоне с использованием несфокусированного излучения. Каждая микросфера выступает в качестве миниатюрной линзы, концентрирующей падающее излучение в область непосредственно в место контакта сферы и резиста. Во время проведения этапа проявления резиста микросферы смываются, и в слое фоторезиста формируется упорядоченный массив отверстий субмикронного диаметра, который далее используется в качестве шаблона для формирования массива отверстий в металлическом слое. Недостатком данного способа является неконтролируемое удаление массива микросфер во время технологических процессов проявления резиста.
Решается задача расширения области применения пригодного для производства в промышленных масштабах, в том числе, с применением рулонных технологий, и решается задача расширения функциональных возможностей за счет введения асимметрии пропускания света и гибкости электрода, а также удешевления способа его производства.
Сущность заключается в том, что прозрачный электрод с асимметричным пропусканием света, содержит прозрачную подложку выполненную из гибкого материала, на которую нанесен проводящий слой с упорядочение расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами. Проводящий слой выполнен из алюминия Al.
Подложка прозрачного электрода с асимметричным пропусканием света, содержащая нанесенный на нее проводящий слой с упорядоченно расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами, выполнена из гибкого материала, например, полимерного.
1. Проводящий слой прозрачного электрода с асимметричным пропусканием света, содержащий нанесенный на прозрачную подложку проводящий слой с упорядоченно расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами, выполнен из алюминия или иного металла, более дешевого, чем золото и серебро.
2. Перфорирование прозрачного электрода с асимметричным пропусканием света, содержащего нанесенный на прозрачную подложку проводящий слой с упорядоченно расположенными отверстиями, покрытыми прозрачными сферическими микрочастицами, выполняется методом фотолитографии через микросферы с экспонированием фоторезиста плоским пучком актиничного излучения через предварительно нанесенный на него слой микросфер, размер которых совпадает с размером микросфер, входящих впоследствии в конструкцию электрода.
3. Нанесение массива микросфер на поверхность проводящего слоя с упорядоченно расположенными отверстиями производится методом центрифугирования из взвеси. Предлагаемая в качестве прозрачного электрода структура представляет собой металлическую пленку субмикронной толщины, нанесенную на гибкую прозрачную подложку из полимера, например, такого как поли диметил сил океан. В металлической пленке выполнены отверстия радиуса 300-700 нм; наиболее эффективно их расположение в виде гексагональной решетки, которая обеспечивает плотную упаковку фокусирующих микросфер, покрывающих отверстия. Наложенные на отверстия прозрачные сферы реализуют эффект фотонного наноджета и коллимируют падающее на них оптическое излучение в проходящие через отверстия пучки диаметром меньше длины волны падающего излучения и значительно меньше радиуса сферы.
Система отверстий в проводящем слое, соответствующая плотной упаковке микросфер, создается методом микросферной фотолитографии в ходе выполнения последовательных операций:
1) нанесения позитивного фоторезиста на подготовленный проводящий слой без отверстий, напыленный на исходную подложку,
2) нанесения на фоторезист из водной суспензии микросфер с малым разбросом по диаметру, образующих благодаря силам поверхностного натяжения слой с упаковкой, близкой к плотной гексагональной, характерные размеры которой задаются диаметром микросфер,
3) экспонирования фоторезиста плоским пучком актиничного излучения через микросферы, которые при этом фокусируют излучение в местах последующей локализации отверстий,
4) удаления микросфер,
5) проявления фоторезиста,
6) травления металлического слоя до достижения оптимального диаметра отверстий,
7) удаления фоторезиста.
В дальнейшем на перфорированный слой наносятся микросферы, аналогичные по диаметру сферам, использованным при экспонировании фоторезиста; их пространственное расположение воспроизводят расположение микросфер в ходе формирования перфорированного слоя, и сфокусированные ими световые пучки проходят через вытравленные в нем отверстия.
Как известно из литературы, выбором оптимального размера отверстий в металлической пленке, который регулируется режимами проявления и травления при перфорировании проводящего слоя, можно обеспечить нерезонансность (широкополосность) свойств предлагаемого покрытия. Значительная асимметрия пропускания обеспечивается тем, что при падении света со стороны сфер последние направляют попадающий на них свет в отверстия, суммарная площадь которых значительно меньше площади, покрываемой частицами (при плотной упаковке поперечное сечение сфер перекрывает 91% площади поверхности) и участвующей в сборе попадающего на нее света. При падении света с обратной стороны электрода пропускание определяется в основном суммарной площадью отверстий в перфорированном слое, малой по сравнению с общей площадью поверхности. Асимметрия пропускания света рассматриваемого прозрачного электрода расширяет функциональность и область применения данного электрода, в частности, при интеграции с элементами двойного назначения, работающими и как солнечный элемент при освещении внешним источником фотонов, так и работающими в режиме излучения света при приложении к электродам внешнего электрического напряжения. Использование основной подложки из материала, обладающего гибкостью, расширяет функционального прозрачного электрода, что обеспечивает его применимость в системах, испытывающих внешние механические напряжения и нагрузки.
Сущность изобретения поясняется фиг. 1-5, где
- на фиг. 1 приведено схематическое изображение оптически асимметричного электрода (вид сбоку): слой микросфер 1, металлическая пленка 2, подложка 3.
- на фиг. 2 приведено схематическое изображение оптически асимметричного электрода (вид сверху): слой микросфер 1, расположенных на цилиндрических отверстиях в металлической пленке 2, образующих гексагональную решетку.
- на фиг. 3 приведены графики зависимостей коэффициента пропускания света прозрачным электродом в прямом направлении (со стороны слоя микросфер) и асимметрии пропускания (отношения коэффициентов пропускания в прямом и обратном направлениях). Материал сфер - полистирол, их диаметр 1.3 мкм, толщина перфорированного проводящего слоя 100 нм.
- на фиг. 4 приведены графики зависимостей коэффициентов прямого (Tf) и обратного (Tb) пропускания света и электрического сопротивления (Rs) от радиуса отверстия. Материал сфер - полистирол, их диаметр 1.3 мкм, толщина перфорированного проводящего слоя 100 нм.
- на фиг. 5 приведена электронная микрофотография участка поверхности электрода со слоем микросфер 1 изготовленного методом микросферной фотолитографии.
Асимметрия пропускания в данной системе возрастает с увеличением радиуса сфер при фиксированном радиусе отверстий за счет подавления обратного пропускания при сохранении прямого и, соответственно, может задаваться на этапе изготовления выбором режима перфорирования. Эффект фокусировки излучения микросферами сохраняется при увеличении диаметра микросфер до более чем 10 мкм и, в первом приближении, чем больше диаметр микросфер, тем выше эффект асимметрии при сохранении высокого пропускания.
При увеличении радиуса отверстий при фиксированном радиусе сфер пропускание в прямом направлении быстро нарастает, после чего выходит на плато. Обратное пропускание нарастает медленно, и асимметрия пропускания (отношение пропускания в прямом и обратном направлениях) характеризуется максимумом при радиусе отверстий порядка 100 нм (фиг. 3). Эффект асимметрии не имеет выраженной спектральной зависимости во всем видимом диапазоне.
Поскольку проводящая подложка представляет собой металлическую пленку, отверстия в которой занимают малую часть ее площади, проводимость предлагаемого прозрачного электрода (менее 1 Ом/квадрат, фиг. 3) практически не отличается от проводимости металлической пленки и существенно превышает проводимость существующих аналогов. Проведенные измерения показывают, что требуемые оптические и электрические параметры электрода достигаются и при изготовлении проводящего слоя из, например, алюминия, который на порядки дешевле золота и в несколько раз дешевле серебра. Прозрачный электрод изготавливался с помощью установки термического напыления BockEdwards Auto 500, обеспечивающей напыление слоя Al (металлическая пленка 2 на фиг. 1). Нанесение фоторезиста и массива микросфер (слой микросфер 1 на фиг. 1 и фиг. 2) из взвеси выполнялось с помощью установки центрифугирования CarlSuss. Оптическое экспонирование на длине волны 405 нм реализовывалось с помощью установки оптической литографии CarlSuss MJB4. Измерение электрических характеристик электрода выполнялось с помощью модуля источника-измерителя Keithly. Оптические свойства прозрачного электрода измерялись при помощи конфокального лазерного микроскопа LSM710 (Carl Zeiss). Микроскопические изображения массива микросфер 3 на фиг. 5 формировались с помощью сканирующего электронного микроскопа Carl Zeiss.
Предполагаемое изобретение имеет следующие преимущества в сравнении с прототипом: гибкость, расширенные функциональные возможности и область применения за счет асимметрии пропускания, дешевизна и возможность изготовления изделий большого размера, в том числе с использованием рулонных технологий.

Claims (2)

1. Способ изготовления прозрачного проводящего электрода с асимметричным пропусканием света, заключающийся в нанесении на поверхность подложки оптического резиста и затем - слоя микросфер методом центрифугирования из заранее приготовленной взвеси микросфер, проведении фотолитографии при засветке всей поверхности подложки со слоем микросфер излучением ультрафиолетового диапазона, проявлении резиста и удалении слоя микросфер жидкостным методом для формирования упорядоченного массива отверстий в резисте, отличающийся тем, что перед нанесением резиста на поверхность подложки напыляют тонкий слой металла методом термического осаждения в вакууме, после проявления резиста проводят жидкостное травление слоя металла для его перфорирования и повторное нанесение массива микросфер методом центрифугирования, причем диаметр микросфер совпадает с расстояниями между центрами отверстий.
2. Способ создания прозрачного электрода с асимметричным пропусканием света по п. 1, отличающийся тем, что процесс фотолитографии проводят на подложке из гибкого материала.
RU2018145644A 2018-12-20 2018-12-20 Прозрачный электрод с асимметричным пропусканием света и способ его изготовления RU2710481C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018145644A RU2710481C1 (ru) 2018-12-20 2018-12-20 Прозрачный электрод с асимметричным пропусканием света и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018145644A RU2710481C1 (ru) 2018-12-20 2018-12-20 Прозрачный электрод с асимметричным пропусканием света и способ его изготовления

Publications (1)

Publication Number Publication Date
RU2710481C1 true RU2710481C1 (ru) 2019-12-26

Family

ID=69023034

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018145644A RU2710481C1 (ru) 2018-12-20 2018-12-20 Прозрачный электрод с асимметричным пропусканием света и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2710481C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150185375A1 (en) * 2013-12-30 2015-07-02 Avery Dennison Corporation High Reflectivity Open Bead Method and Material
RU2660048C1 (ru) * 2017-02-28 2018-07-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Гибкий многослойный тонкопленочный световозвращающий материал, способ получения световозвращающего материала и устройство для его получения
RU2666962C2 (ru) * 2013-07-17 2018-09-13 Сэн-Гобэн Гласс Франс Слоистый материал для светоизлучающего прибора и способ его изготовления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666962C2 (ru) * 2013-07-17 2018-09-13 Сэн-Гобэн Гласс Франс Слоистый материал для светоизлучающего прибора и способ его изготовления
US20150185375A1 (en) * 2013-12-30 2015-07-02 Avery Dennison Corporation High Reflectivity Open Bead Method and Material
RU2660048C1 (ru) * 2017-02-28 2018-07-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Гибкий многослойный тонкопленочный световозвращающий материал, способ получения световозвращающего материала и устройство для его получения

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Kovrov А.Е. et al., "Optically asymmetric structures for transparent electrodes", Proceedings of the International Conference Days on Diffraction 2016, pp. 234-236. *
Kovrov А.Е. et al., "Optically asymmetric structures for transparent electrodes", Proceedings of the International Conference Days on Diffraction 2016, pp. 234-236. Sukang Bae, Hyeongkeun Kim et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nature nanotechnology, Vol. 5, pp. 574 - 578, 20.06.2010. *
Sukang Bae, Hyeongkeun Kim et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nature nanotechnology, Vol. 5, pp. 574 - 578, 20.06.2010. *

Similar Documents

Publication Publication Date Title
TWI518756B (zh) 圖案化的導電薄膜及其製造方法與應用
Huang et al. Design for approaching cicada-wing reflectance in low-and high-index biomimetic nanostructures
JP2020522009A (ja) 分散設計型の誘電性メタ表面による広帯域アクロマティック平坦光学コンポーネント
CN105980935A (zh) 形成导电网格图案的方法及由其制造的网格电极和层叠体
KR20120007819A (ko) 메타 물질 및 그의 제조방법
JP2009199990A (ja) 光透過型金属電極およびその製造方法
Proust et al. Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum
Ye et al. Plasma-induced, self-masking, one-step approach to an ultrabroadband antireflective and superhydrophilic subwavelength nanostructured fused silica surface
US20110203656A1 (en) Nanoscale High-Aspect-Ratio Metallic Structure and Method of Manufacturing Same
WO2020212925A1 (en) A method for the design and manufacture of an optical device including an aperiodic matrix of nanostructures for near-field optical modulation and optical devices based on an aperiodic matrix of nanostructures obtainable by means of said method
KR101682501B1 (ko) 은 나노와이어 패턴층 및 그래핀층을 포함하는 투명전극 및 그 제조방법
Bläsi et al. Large area patterning using interference and nanoimprint lithography
JP2012104733A (ja) 光電変換素子および光電変換素子の製造方法
Yang et al. Period reduction lithography in normal UV range with surface plasmon polaritons interference and hyperbolic metamaterial multilayer structure
Svavarsson et al. Large arrays of ultra-high aspect ratio periodic silicon nanowires obtained via top–down route
RU2710481C1 (ru) Прозрачный электрод с асимметричным пропусканием света и способ его изготовления
Chen et al. Flat metallic surface gratings with sub-10 nm gaps controlled by atomic-layer deposition
Guskov et al. Sensitivity enhancement of two-dimensional WSe2-based photodetectors by ordered Ag plasmonic nanostructures
Amalathas et al. Upright nanopyramid structured cover glass with light harvesting and self-cleaning effects for solar cell applications
Stach et al. Post-lithography pattern modification and its application to a tunable wire grid polarizer
CN110143566A (zh) 一种三维微纳折纸结构的制备方法
US20050164501A1 (en) Process for making photonic crystal circuits using an electron beam and ultraviolet lithography combination
Park et al. Investigation of 3-dimensional structural morphology for enhancing light trapping with control of surface haze
Shiraishi et al. S/N ratio improvement of a nanocuboid array photodetector based on a Au/n-Si Schottky junction for broadband near-infrared light
KR101839903B1 (ko) 메타물질을 갖는 마스크 형성 방법