RU2709130C1 - Способ детоксикации 1,1-диметилгидразина и продуктов его трансформации в водных средах - Google Patents

Способ детоксикации 1,1-диметилгидразина и продуктов его трансформации в водных средах Download PDF

Info

Publication number
RU2709130C1
RU2709130C1 RU2019120766A RU2019120766A RU2709130C1 RU 2709130 C1 RU2709130 C1 RU 2709130C1 RU 2019120766 A RU2019120766 A RU 2019120766A RU 2019120766 A RU2019120766 A RU 2019120766A RU 2709130 C1 RU2709130 C1 RU 2709130C1
Authority
RU
Russia
Prior art keywords
dimethylhydrazine
detoxification
udmh
aqueous media
carbon
Prior art date
Application number
RU2019120766A
Other languages
English (en)
Inventor
Екатерина Сергеевна Михайлова
Юлия Николаевна Дудникова
Сергей Рифович Хайрулин
Сандугаш Кудайбергеновна Танирбергенова
Зулхаир Аймухаметович Мансуров
Зинфер Ришатович Исмагилов
Original Assignee
Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр угля и углехимии Сибирского отделения Российской академии наук" (ФИЦ УУХ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр угля и углехимии Сибирского отделения Российской академии наук" (ФИЦ УУХ СО РАН) filed Critical Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр угля и углехимии Сибирского отделения Российской академии наук" (ФИЦ УУХ СО РАН)
Priority to RU2019120766A priority Critical patent/RU2709130C1/ru
Application granted granted Critical
Publication of RU2709130C1 publication Critical patent/RU2709130C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение может быть использовано в водоочистке. Детоксикацию 1,1-диметилгидразина и продуктов его трансформации в водных средах осуществляют обработкой углеродными сорбентами на основе естественно окисленных углей вскрышных пластов угледобывающих предприятий Кузбасса. Указанный сорбент получают методом щелочной активации при температуре 750-800°С и соотношении уголь : щелочь 1:1. Предложенное изобретение обеспечивает сокращение времени обезвреживания и увеличение степени извлечения 1,1-диметилгидразина из водных сред. 1 табл.

Description

Изобретение относится к очистке водных объектов, загрязненных токсичными органическими веществами, с использованием эффективных углеродных сорбентов на основе углей различных марок. Оно может применяться для очистки воды от горючих ракетного топлива, нефтепродуктов и их производных, азот-, фосфор-, серосодержащих веществ и других токсикантов в местах их пролива, промстоках, водоемах.
Обезвреживание объектов окружающей среды от загрязнения жидким реактивным топливом, известным как гептил (1,1-диметилгидразин, несимметричный диметилгидразин - НДМГ) и продуктов его трансформации: нитрозодиметиламина (НДМА), тетраметилтетразена (ТМТ)), является актуальной и нерешенной проблемой современной экологии. Гептил считается исключительно опасным экотоксикантом и относится к веществам первого класса опасности. Несимметричный диметилгидразин (НДМГ) и продукты его трансформации являются высокотоксичными и стабильными соединениями (Справочник по токсикологии и гигиеническим нормативам потенциально опасных веществ (разработка Института биофизики и его филиалов), М., изд. AT, 1999. 272 с). Предельно допустимая концентрация (ПДК) НДМГ для водоемов составляет 0,02 мг/л, а НДМА является более токсичным соединением, и его ПДК для водоемов равно 0,01 мг/л, в пищевых продуктах - 0,003 мг/кг.
Известно, что использование НДМГ в ракетно-космической технике обусловлено его «особыми эксплуатационными свойствами, и замены ему, как горючему, в будущем не предвидится. С точки зрения возникающих при этом экологических последствий, связанных с проливами гидразинных горючих в атмосферу Земли, то это является глобальной экологической проблемой» (Колесников, СВ. Окисление несимметричного диметилгидразина (гептила) и идентификация продуктов его превращения при проливах: - Монография. - Новосибирск: Изд. СибАК, 2014. - 110 с).
При падении баков с остатками НДМГ, а также при неудачных пусках различных ракет происходит загрязнение значительных площадей территорий и водных поверхностей компонентами ракетных топлив вдоль всей траектории полета ракет, и формирование зараженных участков, количество которых увеличивается с каждым новым пуском, которые в настоящее время производятся с космодромов Байконур (Казахстан), Плесецк, Свободный и Капустин Яр.
Учитывая такие свойства 1,1-диметилгидразина, как токсичность, высокая летучесть, неограниченная растворимость в воде и водных растворах кислот и др., существует значительная опасность попадания гептила в биосферу и, в частности, в организм человека, со всеми вытекающими негативными последствиями. Изучение экологических последствий падения отделяющихся частей ракет-носителей показывает, что поступление НДМГ в окружающую среду может достигать нескольких тонн в год (Экологический мониторинг ракетно-космической деятельности. Принципы и методы / под ред. Н.С. Касимова, О.А. Шпигуна. - М.: Рестарт, 2011. - 472 с).
Эффективные и безопасные технологии нейтрализации 1,1-диметилгидразина до настоящего времени остаются недостаточно разработанными. Одним из перспективных направлений решения данной проблемы может быть использование эффективных углеродных сорбентов, на основе углей различных марок с высокими текстурными характеристиками (удельная поверхность Sbet ~ 1800 м /г, объем пор V ~ 0,8 см'/г, средний диаметр пор D ~ 3 нм).
Известны различные способы детоксикации органических загрязнителей в почвенной и водной средах с использованием сорбционных средств, термического воздействия, химических (окислительных), микробиологических и других средств. Большинство этих способов находится на стадии ранних исследовательских разработок и создание надежной и сравнительно дешевой технологии является актуальной задачей.
Наиболее распространенным методом является детоксикация с помощью активного хлора, получаемого при разбавлении водой хлорной извести и молекулярного хлора. Детоксикацию НДМГ и продуктов его трансформации в другой группе методов осуществляют с использованием атомарного кислорода, получаемого при разложении озона, пероксидов натрия, кальция и водорода. В качестве окислителей может быть использована азотная кислота.
Применение хлорсодержащих окислителей в больших количествах и пероксидных соединений (Патенты РФ 2275260, В09С 1/08, 27.04.2006; 2282486, B01D 53/72, 27.08.2006; 2290977, A62D 3/00, 10.01.2007; 2379136, В09С 1/08, 20.01.2010; заявка РФ 2008112361, C02F 1/74, 10.10.2009; патент США 6315494, В09С 1/00, 13.11.2001) связано с загрязнением окружающей среды хлором и его соединениями, необходимостью обеспечения безопасности при работе с пероксидом водорода, озоном и т.д. Кроме того, главным недостатком вышеперечисленных методов является использование дорогостоящих и высоко реакционноспособных соединений, вызывающих необходимость утилизации их избытка и их коррозионная способность.
Биологические методы (Патенты РФ 2236453, C12N 1/20, 20.09.2004; 2428471. C12N 1/26, 10.09.2011; 2650864, C12N 1/20, 17.04.2018) очистки часто оказываются неэффективными в отношении микрозагрязнений, диоксинов, пестицидов. Они также требуют существенных затрат и строгого соблюдения ряда сложно выполняемых условий.
Следует отметить, что известно достаточное количество различных способов детоксикации органических загрязнителей в почвенной среде, тогда как в водной среде исследовательских разработок сравнительно мало. Так, например, в патенте РФ 2529999 (B01J 20/24, 10.10.2014) предложено использование в качестве сорбента для обеззараживания проливов ракетного топлива гидролизного лигнина степенью влажности 0-30% с размером частиц 1-2 мм. В патенте РФ 2201285 (B01J 20/24, 27.03.2003) для локализации и нейтрализации поверхностей от токсичных химических веществ используют сорбент, который включает торф и дополнительно содержит соли фосфорной и щавелевой кислот переходных металлов: Со, Ni, Mn, Mo, Fe и ферриты данных переходных металлов. В патенте РФ 2253520 (В09С 1/08, 10.06.2005) в качестве углеродсодержащего соединения используют шунгитовый материал, полученный из шунгитовых пород III разновидности с массовым содержанием углерода от 25 до 35% с дисперсностью от 0,5 до 5,0 мм, который насыпают слоем толщиной 10-25 см на поверхность площадки, где предполагаются технологические проливы. Также известен состав обезвреживания грунта от проливов токсичных органических веществ (Патент РФ 2397791, A62D 3/00, 27.08.2010) на основе пероксидов щелочных или щелочноземельных металлов с углеродсодержащим сорбентом-катализатором, представляющим собой искусственные либо ископаемые углеродсодержащие материалы с удельной поверхностью не менее 5 м /г, при этом массовая доля углеродсодержащего сорбента-катализатора составляет 1-99%. Однако данный метод не обеспечивает очистку грунта до уровня санитарно-гигиенических нормативов (не более 0,1 мг/кг).
Общим недостатком перечисленных выше способов является сравнительно низкая скорость обезвреживания токсичных загрязнений. Следует отметить и то, что предложенные способы применимы только для детоксикации органических загрязнителей в почвенной среде. Кроме того они являются довольно трудоемкими и требуют больших экономических затрат.
Одним из сорбционных способов детоксикации горючего ракетного топлива 1,1-диметилгидразина (НДМГ) является способ, описанный в отчете МГУ №17/1-00 от 01.06.2000 г о научно-исследовательской работе в рамках ОКР "Создание системы экологической безопасности районов падения отделяющих частей ракет и ракет-
носителей и экологического мониторинга космодрома "Байконур"". В данном отчете описано применение торфяного сорбента-катализатора (ТСК). Согласно разработанной технологии для детоксикации предложено смешивание торфа, пропитанного раствором ортофосфорной кислоты, с отходами шихты, которая накапливается в производстве сварочных электродов. Однако использование данного сорбента-катализатора на основе торфа и шихты возможно только в процессе детоксикации почвы, поскольку на НДМГ и его производные в промывочных и других водных средах ТСК не оказывает действия. Более того, в связи с модернизацией и созданием безотходных технологий по производству электродов шихта перестает быть отходом и используется в технологическом процессе.
Наиболее близким к заявленному способу является сорбционный способ детоксикации горючего ракетного топлива 1,1-диметилгидразина (НДМГ) (Патент РФ 2262996, В09С 1/08, 27.10.2005). В данном патенте применяется сорбент-катализатор, основу которого составляет шелуха злаковых растений, на которую нанесены окислительные агенты в виде шлама металлургического производства в растворе ортофосфорной кислоты. Данный способ ограничен условиями применения по концентрации загрязнителя и продолжителен во времени (до 14 дней). Кроме того, сорбент-катализатор содержит в составе в качестве каталитических добавок токсичные ионы тяжелых металлов (Pb, Bi и др.) и недостаточно эффективен при очистке от некоторых продуктов превращения НДМГ.
Задачей изобретения является разработка способа очистки водных сред от 1,1-диметилгидразина (НДМГ) и продуктов его трансформации с использованием углеродного сорбента, при котором сокращается время обезвреживания и увеличивается степень извлечения НДМГ из водных сред.
Поставленная задача достигается тем, что предлагаемый способ детоксикации 1,1-диметилгидразина и продуктов его трансформации в водных средах включает обработку растворов, содержащих 1,1-диметилгидразин и продукты его трансформации, углеродным сорбентом на основе естественно окисленных углей вскрышных пластов угледобывающих предприятий Кузбасса, полученным методом щелочной активации. Метод щелочной активации (соотношение уголь/щелочь - 1:1) при температуре 750-800°С позволяет получать высокопористые углеродные сорбенты большей однородности, чем при использовании, например, парогазовой активации. Кроме того, использование данного метода щелочной активации позволяет увеличивать содержание карбонильных групп, которые способны связывать НДМГ.
В представленной работе использовали адсорбционные методы, которые характеризуются высокой эффективностью, способностью очищать воду, содержащую малые концентрации органических веществ, до величины ПДК и ниже, позволяют концентрировать и выделять ценные продукты из водных растворов. Кроме того, адсорбционные методы решают проблему образования вторичных загрязнений при очистке вод, за счет возможности регенерации сорбентов, т.е. извлечении вещества с поверхности адсорбента и его утилизации, в том числе и деструктивной, при которой извлеченные из воды загрязнения уничтожаются как не представляющие технической ценности.
Сущность изобретения по действию высокопористого углеродного сорбента на воду, содержащую 1,1-диметилгидразин (НДМГ), отражена в нижеприведенных примерах.
В экспериментах по детоксикации водных растворов в колбу емкостью 100 мл помещали навеску углеродного сорбента (0,5 г) и вводили раствор 1,1-диметилгидразина (50 мл) с заданной начальной концентрацией (0,0001 мг/мл, 0,0003 мг/мл и 0,0006 мг/мл) и перемешивали заданное время в интервале от 5 минут до 3 часов. Затем раствор центрифугировали в течение 15 минут. Далее из осветленного раствора отбирали аликвоту и проводили газохроматографический анализ содержания НДМГ в полученной пробе.
Метод основан на реакции 1,1-диметилгидразина с 4-нитробензальдегидом с образованием N,N-диметилгидразона 4-нитробензальдегида, жидкостной экстракции его из воды, концентрировании упариванием экстракта, капиллярном газохроматографическом разделении с использованием азотно-фосфорного детектирования, идентификации по удерживаемому объему и количественном определении методом внутреннего стандарта. Нижний предел измерения в анализируемом объеме пробы - 0,00003 мг/л. Определению не мешают амины, углеводороды, спирты, кислоты.
Адсорбционную активность образца углеродного сорбента по НДМГ вычисляли по формуле:
АНДМГ=(C0-Cp)100/(VAl*m),
где: С0 - концентрация НДМГ в исходном растворе мг/мл;
Ср - концентрация НДМГ после адсорбции мг/мл;
50 - объем раствора НДМГ, мл;
VAl - объем аликвоты, взятой из осветленного раствора, мл;
m - навеска углеродного сорбента, г.
За результат анализа принимают среднее арифметическое результатов 2 параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение равное 10 мг на 1 г углеродного сорбента.
В данных примерах приведены результаты исследования адсорбционной активности углеродных сорбентов на основе естественно окисленных углей вскрышных пластов.
В экспериментах использовали естественно окисленные угли вскрышных пластов различных угледобывающих предприятий Кузбасса, поскольку характеризуются повышенным содержанием кислородсодержащих групп: разрез Кайчакский (код образца Б), разрез Моховский (код образца Д), разрез Шестаки (код образца СС), разрез Апанасовский (код образца Т). Коды выбранных для исследования образцов присваивались в соответствии с теми марками углей, которые добываются на конкретном разрезе.
В таблице приведены результаты по детоксикации водных растворов, загрязненных НДМГ, с использованием высокопористых углеродных сорбентов на основе естественно окисленных углей вскрышных пластов угледобывающих предприятий Кузбасса, а также текстурные характеристики используемых углеродных сорбентов (удельная поверхность - SBET, м2/; суммарный объем пор - VΣ см3/г; объем мезо- и микропор - Vme и Vmi, см3/г, средний диаметр пор - D, нм).
Figure 00000001
Согласно полученным данным по исследованию сорбционной активности углеродных сорбентов по отношению к НДМГ, можно сказать, что все исследуемые углеродные сорбенты на основе естественно окисленных углей вскрышных пластов достаточно эффективны для очистки воды от 1,1-диметилгидразина, при этом степень извлечения варьируется в зависимости от марки исходного угля и концентрации исходного раствора от 50% до 99%, например, для углеродного сорбента на основе угля марки Б составляет 99,3% при концентрации раствора НДМГ 0,1 мг/мл.
По сравнению с известными способами предлагаемый способ обеспечивает более полную очистку сточных вод от азотсодержащих органических соединений (степень извлечения ~ 99%) и сокращает время их обезвреживания (до 3 часов).
Таким образом, показана возможность применения исследуемых углеродных сорбентов на основе естественно окисленных углей вскрышных пластов при очистке водных растворов от 1,1-диметилгидразина до уровня его предельно допустимой концентрации в воде водоемов. Предлагаемый способ обеспечивает высокую экологическую чистоту, предотвращает загрязнение объектов окружающей среды от высокотоксичных химических соединений.
Предлагаемое изобретение может найти применение на предприятиях промышленности и транспорта, а также при очистке сточных вод, образующихся при нейтрализации образцов вооружения и вспомогательного технологического оборудования от остатков 1,1-диметилгидразина и продуктов его неполного окисления.

Claims (1)

  1. Способ детоксикации 1,1-диметилгидразина и продуктов его трансформации в водных средах, включающий внесение углеродного сорбента, отличающийся тем, что водную среду, содержащую 1,1-диметилгидразин и продукты его трансформации, обрабатывают углеродными сорбентами на основе естественно окисленных углей вскрышных пластов угледобывающих предприятий Кузбасса, полученными методом щелочной активации при температуре 750-800°С и соотношении уголь : щелочь 1:1.
RU2019120766A 2019-07-01 2019-07-01 Способ детоксикации 1,1-диметилгидразина и продуктов его трансформации в водных средах RU2709130C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019120766A RU2709130C1 (ru) 2019-07-01 2019-07-01 Способ детоксикации 1,1-диметилгидразина и продуктов его трансформации в водных средах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019120766A RU2709130C1 (ru) 2019-07-01 2019-07-01 Способ детоксикации 1,1-диметилгидразина и продуктов его трансформации в водных средах

Publications (1)

Publication Number Publication Date
RU2709130C1 true RU2709130C1 (ru) 2019-12-16

Family

ID=69006498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019120766A RU2709130C1 (ru) 2019-07-01 2019-07-01 Способ детоксикации 1,1-диметилгидразина и продуктов его трансформации в водных средах

Country Status (1)

Country Link
RU (1) RU2709130C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749105C1 (ru) * 2020-09-07 2021-06-04 Акционерное общество "Салаватский химический завод" Способ комплексной очистки промышленных сточных вод (варианты)
RU2765077C1 (ru) * 2021-04-02 2022-01-25 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) Торфо-шунгитный сорбент-катализатор для нейтрализации 1,1-диметилгидразина

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315494B1 (en) * 2000-10-24 2001-11-13 Daniel W. Oberle Soil remediation by permanganate oxidation
RU2262996C2 (ru) * 2003-10-01 2005-10-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение машиностроения" Способ детоксикации ракетного топлива в почвенных и водных средах
RU2282486C2 (ru) * 2004-10-07 2006-08-27 Федеральное унитарное государственное предприятие "Научно-производственное объединение машиностроения" Способ детоксикации несимметричного диметилгидразина и продуктов его трансформации в воздушной, водной и грунтовых средах
US20130175224A1 (en) * 2000-07-14 2013-07-11 Ferrate Treatment Technologies, Llc Methods of synthesizing an oxidant and applications thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130175224A1 (en) * 2000-07-14 2013-07-11 Ferrate Treatment Technologies, Llc Methods of synthesizing an oxidant and applications thereof
US6315494B1 (en) * 2000-10-24 2001-11-13 Daniel W. Oberle Soil remediation by permanganate oxidation
RU2262996C2 (ru) * 2003-10-01 2005-10-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение машиностроения" Способ детоксикации ракетного топлива в почвенных и водных средах
RU2282486C2 (ru) * 2004-10-07 2006-08-27 Федеральное унитарное государственное предприятие "Научно-производственное объединение машиностроения" Способ детоксикации несимметричного диметилгидразина и продуктов его трансформации в воздушной, водной и грунтовых средах

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749105C1 (ru) * 2020-09-07 2021-06-04 Акционерное общество "Салаватский химический завод" Способ комплексной очистки промышленных сточных вод (варианты)
RU2765077C1 (ru) * 2021-04-02 2022-01-25 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) Торфо-шунгитный сорбент-катализатор для нейтрализации 1,1-диметилгидразина

Similar Documents

Publication Publication Date Title
Sherwood et al. Modified Fenton oxidation of diesel fuel in arctic soils rich in organic matter and iron
Theis et al. Environmental assessment of ash disposal
Lu et al. Mercury removal from coal combustion by Fenton reactions–Part A: Bench-scale tests
CA2947818C (en) Remediation of contaminated soils
RU2709130C1 (ru) Способ детоксикации 1,1-диметилгидразина и продуктов его трансформации в водных средах
Manahan Hazardous waste chemistry, toxicology, and treatment
Vicente et al. Diuron abatement in contaminated soil using Fenton-like process
Pachana et al. Heavy metal transport and fate in the environmental compartments
Tedder et al. Emerging Technologies in Hazardous Waste Management 8: An Overview
Stroo et al. In Situ Bioremediation of Perchlorate
Chukwuemeka et al. A Review: effects of air, water and land dumpsite on human health and analytical methods for determination of pollutants
Njoku et al. A Review: Effects of air, water and land dumpsite on human health and analytical methods for determination of pollutants
Miranji et al. Hazardous organics in wood treatment sites and their etiological implications
Ashar et al. Remediation of metal pollutants in the environment
KR20050085776A (ko) 유해 물질 처리재 및 그것을 사용한 유해 물질 처리 방법
RoyChowdhury et al. Preliminary studies on potential remediation of acid mine drainage‐impacted soils by amendment with drinking‐water treatment residuals
Guemiza et al. Thermal desorption and incineration
KR101343484B1 (ko) 납 오염토양 추출용액 및 이를 이용한 정화방법
Dhiman et al. Recent advances in novel remediation processes towards heavy metals removal from wastewaters
Pavel et al. Long-term effects on the fractionation and mobility of heavy metals in a polluted soil treated with bauxite residues
Ziółkowska The role of humic substances in detoxification process of the environment/Rola substancji humusowych w procesach detoksykacji środowiska
Johnson et al. Breakdown of organic contaminants in soil by manganese oxides: a short review
Agrawal et al. Removal of refractory pollutants from wastewater treatment plants: phytoremediation for the treatment of various types of pollutants: a multi-dimensional approach
RU2201285C1 (ru) Сорбент для локализации и нейтрализации поверхностей от токсичных химических веществ и способ его получения
Vodyanitskii et al. Biogeochemical barriers for soil and groundwater bioremediation