RU2708894C1 - Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда - Google Patents

Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда Download PDF

Info

Publication number
RU2708894C1
RU2708894C1 RU2018146750A RU2018146750A RU2708894C1 RU 2708894 C1 RU2708894 C1 RU 2708894C1 RU 2018146750 A RU2018146750 A RU 2018146750A RU 2018146750 A RU2018146750 A RU 2018146750A RU 2708894 C1 RU2708894 C1 RU 2708894C1
Authority
RU
Russia
Prior art keywords
drug
carrier system
manganese dioxide
penicillin
nanopowders
Prior art date
Application number
RU2018146750A
Other languages
English (en)
Inventor
Сергей Юрьевич Соковнин
Ольга Александровна Злыгостева
Владислав Генрихович Ильвес
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (ФГАОУ ВО "УрФУ имени первого Президента России Б.Н. Ельцина")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН), Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (ФГАОУ ВО "УрФУ имени первого Президента России Б.Н. Ельцина") filed Critical Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)
Priority to RU2018146750A priority Critical patent/RU2708894C1/ru
Application granted granted Critical
Publication of RU2708894C1 publication Critical patent/RU2708894C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/005Constitution or structural means for improving the physical properties of a device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Abstract

Изобретение относится к фармацевтике и может быть использовано для производства системы-носителя для направленной доставки лекарств при диагностике или терапии. Предложена система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда на основе нанопорошка, обладающая магнитными свойствами, отличающаяся тем, что состоит из аморфного нанопорошка диоксида кремния, допированного диоксидом марганца, причем допирование диоксидом марганца проводят в процессе получения нанопорошка методом испарения импульсным электронным пучком в газе низкого давления, и обладает пористостью до 0,88 см3/г и площадью удельной поверхности до 176 м2/г. Технический результат – предложенная система-носитель обладает высокой пористостью и площадью удельной поверхности, определяющей высокую загрузочную способность, магнитными свойствами, позволяющими контролировать процесс доставки лекарственного вещества, и биосовместимостью. 3 ил., 3 табл., 2 пр.

Description

Изобретение относится к фармацевтике и представляет собой систему-носитель на основе нанопорошка (НП) оксида неметалла с загруженным лекарственным или биологически-активным веществом для его направленной доставки и способ ее получения. Способ включает получение системы-носителя на основе нанопорошков диоксида кремния, допированных диоксидом марганца, методом испарения импульсным электронным пучком (ИЭП) в газе низкого давления, с дальнейшим суспендированием НП в водном растворе лекарства, сопутствующим обработкой полученной лекарственной суспензии НП ультразвуком или перемешиванием, с последующим отделением загруженных НП центрифугированием и промывкой в дистиллированной воде. Также предложены примеры с лекарственными препаратами, демонстрирующие возможность внедрения лекарства предложенным способом в полученную систему-носитель.
Лекарства в традиционной форме проявляют высокую токсичность в здоровых тканях из-за их неспецифического распределения или преждевременной деградации, низкой растворимости в жидкостях организма, низкой проницаемости и низкой биодоступности. Эти ограничения приводят к необходимости снижения вводимых доз в результате повышенного риска побочных эффектов, что серьезно влияет на их эффективность во время лечения.
Системы-носители направленной доставки лекарств применяются для повышения эффективности взаимодействия лекарственного вещества с целевой областью в организме человека при меньшей дозировке, снижая риск возникновения серьезных побочных эффектов в том числе за счет ограничения концентраций лекарственного препарата в нецелевой области.
Для разработки системы-носителя используют различные органические и неорганические материалы, такие как магнитные наночастицы, наночастицы оксидов металлов и неметаллов, лизосомы, белковые и липидные, а также прочие химически синтезированные структуры и высокомолекулярные соединения.
Известен носитель для лекарственных средств и биологически активных веществ, представляющий собой материал, чувствительный к воздействию внешнего магнитного или электрического полей и состоящий из магнитного или сегнетоэлектрического материала (в том числе наночастицы), покрытого пленкой биосовместимого термочувствительного вещества [патент РФ 2373957 / Носитель для лекарственных средств и биологически активных веществ для лечения и диагностики и применение его для создания лекарственных средств и способа регулируемой управляемой доставки лекарственного средства или биологически активного вещества с регулируемой десорбцией его / Тишин A.M., Рочев Ю. А., Горелов А.В.], полученный химическим методом. Для полученного носителя не указана загрузочная способность системы (в том числе на основе наночастиц), как одного из определяющих параметров подобных систем-носителей. Более того для создания носителя поверхность материала дополнительно покрывается пленкой, что повышает трудоемкость процесса, в отличие от предлагаемой системы-носителя, не требующей поверхностной модификации.
Известна система пероральной доставки действующего вещества белковой природы в виде наночастиц со средним размером не более 500 нм [патент РФ 2566069 / Система доставки вещества белковой природы в виде наночастиц и способ ее получения / Ногай С.Ю., Хазанова Е.С., Егоров Д.В.]. Данный способ доставки путем перорального приема имеет ряд ограничений, таких как невозможность доставки противоопухолевых препаратов с высокой токсичностью.
В качестве прототипа был выбран носитель на основе наночастицы, имеющей ядро из диоксида циркония, покрытое оболочкой из оксидов железа, форму, близкую к сферической, и размер в пределах 15-100 нм [патент РФ 2525430 / Носитель для лекарственных средств и биологически активных веществ для лечения и диагностики и способ его получения / Галагудза М.М., Осташев В.Б., Королев Д.В., Афонин М.В., Усков И.С.]. Наночастицы из диоксида циркония, на основе которых разработан данный носитель, имеют размер частиц от 15 нм и площадь удельной поверхности около 100 м2/г, что соизмеримо со свойствами предлагаемой системы. Однако, предлагаемый в настоящей заявке носитель имеет большую пористость и площадь удельной поверхности до 176 м2/г, что является одним из определяющих факторов высокой загрузочной способности. Введение данного носителя осуществляется внутривенно, как и предлагаемую систему-носитель.
Известен способ получения системы для доставки противоопухолевого препарата в клетки опухоли [патент РФ 2657835 / Способ получения системы для доставки противоопухолевого препарата в клетки опухоли / Ефремова М.В., Гаранина А.С., Абакумов М.А., Мажуга А.Г.], включающий смешение в присутствии воды модифицированных полимером наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, с органическим соединением, химически связывающимся с наночастицами и обеспечивающим селективное проникновение наночастиц внутрь клеток опухоли, и водным раствором противоопухолевого препарата. Данный способ имеет ряд этапов, совпадающих с предлагаемым способом, как смешивание суспензии наночастиц с водным раствором лекарства и последующим отделением полученных модифицированных наночастиц центрифугированием. Однако, в данном способе используется химический метод получения наночастиц, существенно отличающийся от предложенного трудоемкостью и материалоемкостью за счет прохождения промежуточных этапов таких, как нагрев до 120°С в атмосфере инертного газа при перемешивании смеси кислот с последующей тщательной промывкой. Более того, получаемая система требует поверхностной модификации, что дополнительно усложняет процесс подготовки системы для доставки.
В качестве прототипа был выбран способ получения наноразмерной системы доставки лекарственных средств на основе диоксида кремния [патент РФ 2372890 / Способ получения наноразмерной системы доставки лекарственных средств на основе диоксида кремния / Жиров А.А., Касаткин И.К., Назаров Г.В., Александровская Н.В., Галан С.Е.]. Данный способ включает в себя метод ультразвуковой обработки на этапе создания системы, что применяется и в предлагаемом способе. Однако в тексте патента рассмотрены способы повышения эффективности доставки и ведения системы в организме человека, но не указана загрузочная способность системы (в том числе на основе наночастиц), как одного из определяющих параметров подобных носителей, а также полученная система является специфичной для доставки лекарственных средств к клеткам головного мозга.
Таким образом, перед авторами стояла задача разработать систему-носитель на основе нанопорошков оксидов металлов для направленной доставки лекарственных веществ, обладающей высокой пористостью, определяющей загрузочную способность носителя и способ ее изготовления, который позволит расширить арсенал средств получения подобных систем с одновременным снижением материалоемкости и трудоемкости данного процесса.
Поставленная задача решена в предлагаемом способе получения системы-носителя на основе нанопорошка диоксида кремния, допированного диоксидом марганца, полученного методом ИЭП в газе низкого давления, с последующим суспендированием НП в водном растворе лекарства, сопутствующим обработкой полученной лекарственной суспензии НП ультразвуком или перемешиванием, с последующим отделением загруженных нанопорошков центрифугированием и промывкой в дистиллированной воде.
Нанопорошки кремния обладают высокой удельной площадью поверхности, возможностью варьирования размеров пор, хорошей термической, химической стабильностью и биосовместимостью. Допант диоксид марганца может выступать в качестве контрастирующего агента для МРТ, что позволит визуализировать процесс доставки лекарственного вещества.
Кроме того, система-носитель может быть разработана на основе нанопорошка диоксида кремния с прочими различными допантами, полученного методом испарения ИЭП, для расширения свойств и сфер применения системы.
В настоящее время из научно-технической и патентной литературы не известны системы доставки на основе нанопорошков, полученных физическим методом испарения импульсным электронным пучком, в состав которого входит допирующая добавка диоксида марганца.
Предлагаемая система-носитель может быть получена следующим образом. Берут субмикронные порошки диоксида кремния (AEROSIL 90) и диоксида марганца (ГОСТ 4470-79) в соотношении (0,95-0,999):(0,001-0,05) соответственно, тщательно перетирают указанные ингредиенты. Полученную смесь прессуют в таблетку диаметром 20-30 мм, высотой 5-12 мм при комнатной температуре. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков методом испарения мишени импульсным электронным пучком в газе низкого давления в соответствии с патентом [RU 2353573 / Способ получения нанопорошков и устройство для его реализации / Котов Ю.А., Соковнин С.Ю., Ильвес В.Г. Чанг К.Р]. Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 10-15 минут. Условия проведения процесса: ускоряющее напряжение в установке - 38 кВ, длительность импульса - 90-100 мкс, частота подачи импульсов - 50-100 Гц, ток пучка - 0,3-0,4А.
Текстурные свойства и морфология полученных НП исследовались методом микроскопии на просвечивающем микроскопе JEM 2100, определение фазового состава НП проводили методом рентгенофазового анализа на дифрактометре XRD 7000, удельная площадь поверхности, объем и размер пор измерялись методом BET-BJH на установке Tristar 3000 V6.03 (Micrometrics, США), термограммы (ДСК-ТГ) были получены на синхронном термоанализаторе Demo-STA-409-PC, совмещенном с масс-спектрометром QMS-403C фирмы NETZSCH.
Согласно данным ВЕТ-анализа (таблица 1), площадь удельной поверхности Sbet увеличивается с увеличением концентрации допанта. Для сравнения в таблице приведены текстурные свойства НП, полученного химическим методом с использованием темплата (образцы №1.4 и 1.5).
Figure 00000001
Figure 00000002
Как видно из данных табл. 1 метод испарения ИЭП позволяет получить НП с высокой пористостью.
Из данных микроскопического анализа следует, что НП представляют собой аморфные агломераты НП с межчастичной пористостью (фиг. 1а, б). На рисунке не видно присутствия упорядоченных мезопор, форма полученных частиц SiO2-MnO2 далека от сферической.
Следует отметить, что в системах доставки лекарств особенно интересны НП с полыми структурами, поскольку они могут позволить эффективно размещать лекарства не только в мезопористых каналах, но и в полых областях [3].
Данные РФА (фиг. 2а) подтверждают, что НП SiO2-MnO2 с различной концентрацией допанта аморфные, фазы оксидов марганца не наблюдаются.
По термограммам зафиксирован прирост массы до 50% в диапазоне температур от 40 до 1400°С, что может быть связано с окислением восстановленного при испарении кремния (фиг. 2б).
Из кривых намагничивания (фиг. 3) следует, что все НП SiO2-MnO2, обладают ферромагнитными свойствами [4]. При увеличении концентрации допанта диоксида марганца наблюдали усиление ферромагнитного отклика, что могло быть вызвано возрастанием дефектности структуры.
Благодаря наличию магнитных свойств НП SiO2 - MnO2, одним из возможных способов доставки лекарственного вещества является использование экзогенного стимула - внешнего высокоградиентного магнитного поля.
Внедрение лекарства в НП осуществляется путем суспендирования НП в водном растворе лекарственного вещества. После суспендирования образцы обрабатываются в УЗ-ванночке в течение 40 минут или перемешиваются на мешалке в течение 24 часов. Далее суспендированный НП отделяется центрифугированием с частотой не менее 4000 об/мин не менее 10 мин. Затем, отцентрифугированный НП промывается дистиллированной водой, повторно центрифугируется и сушится.
Для иллюстрации свойств НП SiO2 - MnO2, полученного методом испарения импульсным электронным пучком в газе низкого давления используются фиг. 1-3.
На Фиг. 1 представлены ПЭМ-снимки НП SiO2-3%MnO2 при разном увеличении, где а - масштаб 0,2 мкм, б - масштаб 20 нм.
На Фиг. 2 - дифрактограммы НП SiO2-MnO2 (а), типичная кривая нагрева ДСК-ТГ НП (б).
На Фиг. 3-кривые намагничивания в магнитном поле ± 3Т НП SiO2, допированных 0,1% MnO2(а), 3% и 5% MnO2(б).
Применение нанопорошка в качестве системы направленной доставки лекарств иллюстрируется следующими примерами.
Пример 1
Для экспериментов по внедрению/выпуску лекарства было выбрано антибактериальное лекарственное средство «Амоксициллин» (в капсулах по 500 мг, производитель: Hemofarm koncern A.D, Сербия). В состав капсулы «Амоксициллина» входит активное вещество - амоксициллин - полусинтетический антибиотик широкого спектра действия группы пенициллинов, а также вспомогательные вещества - магний стеарат, целлюлоза микрокристаллическая РН 102.
Внедрение лекарства в НП осуществлялось путем суспендирования 20 мг НП SiO2-5%MnO2 в 10 мл водного раствора лекарственного средства «Амоксициллина» с концентрацией Сст (таблица 2), далее образцы Amo-SiO2-5%MnO2.
Часть образцов после суспендирования была обработана в УЗ-ванночке в течение 40 минут и оставлена на 24 часа, вторая часть образцов перемешивалась на мешалке в течение 24 часов. Далее суспендированный НП отделяли центрифугированием (4000 об /мин, 10 мин) и промывали дистиллированной водой.
Для оценки массы загруженного лекарства надосадочную часть исследовали спектрофотометрическим методом на длине волны λ=270 нм, соответствующей максимуму поглощения лекарства. С помощью сравнительного способа количественного анализа относительно контрольного раствора (далее - контроль Amo) используемого лекарства была оценена концентрация лекарственного вещества в надосадочной жидкости.
Выпуск лекарства осуществлялся путем суспендирования высушенных НП в дистиллированной воде спустя 3 суток после суспендирования НП в растворе лекарства, последующем центрифугировании и промывке.
Для оценки высвобождаемого объема лекарства высушенный НП повторно суспендировали в 1 мл дистиллированной воды. После центрифугирования надосадочную часть исследовали на спектрофотометре по методике, аналогичной методике оценки массы загруженного лекарства. По полученным концентрациям выпущенного лекарства Cx и объему исходных суспензий была рассчитана масса внедренного лекарства mв и загрузочная способность НП LC.
Figure 00000003
Самая низкая Cx=0,0058 мг/мл и LC=0,0029 мг лек./мг НП получена при СФ анализе образца №2.2 (табл. 2), что может быть связано с необходимостью дополнительного воздействия внешних стимулов при высвобождении лекарства
Образец №4 имел более высокую LC=0,09 мг лек./мг НП, что объясняется более подходящим методом внедрения путем перемешивания для данного лекарства.
Пример 2
Для экспериментов по внедрению/выпуску лекарства было выбрано противоопухолевое лекарственное средство «Доксорубицин» (лиофилизат для приготовления раствора для внутрисосудистого и внутрипузырного введения, производитель: Фармфхеми Б.В., Нидерланды). В состав лиофилизата «Доксорубицина» входит активное вещество - доксорубицина гидрохлорид, а также вспомогательные вещества - лактозы моногидрат.
«Доксорубицин» может взаимодействовать с поверхностью чистого диоксида кремния посредством ряда водородных связей и электростатических взаимодействий, что устраняет необходимость функционализации поверхности НП для облегчения загрузки.
Внедрение лекарства в НП осуществлялось путем суспендирования 20 мг НП SiO2-5% MnO2 в 10 мл водного раствора лекарственного средства «Доксорубицина» с концентрацией Сст (таблица 3), далее образцы Dox-SiO2-5%MnO2.
Часть образцов после суспендирования была обработана в УЗ-ванночке в течение 40 минут и оставлена на 24 часа, вторая часть образцов перемешивалась на мешалке в течение 24 часов. Далее суспендированный НП отделяли центрифугированием (4000 об /мин, 10 мин) и промывали дистиллированной водой.
Для оценки массы загруженного лекарства надосадочную часть исследовали спектрофотометрическим методом на длине волны λ=490 нм, соответствующей максимуму поглощения лекарств. С помощью сравнительного способа количественного анализа относительно контрольного раствора (далее - контроль Dox) используемого лекарства была оценена концентрация лекарственного вещества в надосадочной жидкости.
Выпуск лекарства осуществлялся путем суспендирования высушенных НП в дистиллированной воде спустя 3 суток после суспендирования НП в растворе лекарства, последующем центрифугировании и промывке.
Для оценки высвобождаемого объема лекарства высушенный НП повторно суспендировали в 1 мл дистиллированной воды. После центрифугирования надосадочную часть исследовали на спектрофотометре по методике, аналогичной методике оценки массы загруженного лекарства. По полученным концентрациям выпущенного лекарства Cx и объему исходных суспензий была рассчитана масса внедренного лекарства mв и загрузочная способность НП LC.
Figure 00000004
НП из образца №3.2, 3.4 после внедрения лекарства и промывки имели разную структуру: НП, обработанные УЗ, слиплись и образовали плотные разделенные агломераты, в то время как НП после перемешивания сохранили пористый, ватообразный вид.
Сравнивая LC=0,075 мг лек./мг НП образца №3.2 с LC=0,014 мг лек./мг НП образца МСМ-41 [2], видно, что исследуемый НП обладает более высокой загрузочной способностью. Полученные результаты позволяют сделать вывод о влиянии пористости на загрузочную способность. Несмотря на высокую SBET НП МСМ-41, существенно превышающую Sbet исследуемого образца (табл. 1), низкая пористость определяет низкую загрузочную способность.
Использованная литература:
[1] Guillet-Nicolas, R. Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies / R. Guillet-Nicolas, M. Laprise-Pelletier, M.M. Nair et al. // Nanoscale. - 2013. - V. 5. - I. 23. - P. 11499-11511.
[2] Hu, Y. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery / Y. Hu, L. Ke, H. Chen H., et al. // Int. J. Nanomedicine. -2017. - V. 12. - P. 8411-8426.
[3] Li Y., Li N., Pan W., Yu Z., Yang L. and Tang B. Hollow Mesaporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery // ACS Appl. Mater. Interfaces, 2017, 9. C. 2123-2129.
[4] Злыгостева О.A., Соковнин С.Ю., Ильвес В.Г. Оценка свойств мезопористого диоксида кремния, допированного диоксидом марганца, полученного импульсным электронным испарением, для применения в биомедицине // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов: межвуз. сб. науч. тр. / под общей редакцией В.М. Самсонова, Н.Ю. Сдобнякова. Тверь: Твер. гос. ун-т, 2017, том 9. С. 199-204.

Claims (1)

  1. Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда на основе нанопорошка, обладающая магнитными свойствами, отличающаяся тем, что состоит из аморфного нанопорошка диоксида кремния, допированного диоксидом марганца, причем допирование диоксидом марганца проводят в процессе получения нанопорошка методом испарения импульсным электронным пучком в газе низкого давления, и обладает пористостью до 0,88 см3/г и площадью поверхности до 176 м2/г.
RU2018146750A 2018-12-27 2018-12-27 Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда RU2708894C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018146750A RU2708894C1 (ru) 2018-12-27 2018-12-27 Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018146750A RU2708894C1 (ru) 2018-12-27 2018-12-27 Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда

Publications (1)

Publication Number Publication Date
RU2708894C1 true RU2708894C1 (ru) 2019-12-12

Family

ID=69006489

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018146750A RU2708894C1 (ru) 2018-12-27 2018-12-27 Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда

Country Status (1)

Country Link
RU (1) RU2708894C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2372890C2 (ru) * 2007-10-03 2009-11-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации - Федеральное государственное учреждение "27 Научный центр Министерства обороны Российской Федерации" Способ получения наноразмерной системы доставки лекарственных средств на основе диоксида кремния
RU2458705C1 (ru) * 2011-06-17 2012-08-20 Учреждение Российской академии наук Институт химической биологии и фундаментальной медицины Сибирского отделения РАН (ИХБФМ СО РАН) Способ получения наноразмерной системы доставки антибиотиков ряда блеомицина в клетки млекопитающих
WO2015070351A1 (en) * 2013-11-14 2015-05-21 The Royal Institute For The Advancement Of Learning / Mc Gill University Bionanofluid for use as a contrast, imaging, disinfecting and/or therapeutic agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2372890C2 (ru) * 2007-10-03 2009-11-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации - Федеральное государственное учреждение "27 Научный центр Министерства обороны Российской Федерации" Способ получения наноразмерной системы доставки лекарственных средств на основе диоксида кремния
RU2458705C1 (ru) * 2011-06-17 2012-08-20 Учреждение Российской академии наук Институт химической биологии и фундаментальной медицины Сибирского отделения РАН (ИХБФМ СО РАН) Способ получения наноразмерной системы доставки антибиотиков ряда блеомицина в клетки млекопитающих
WO2015070351A1 (en) * 2013-11-14 2015-05-21 The Royal Institute For The Advancement Of Learning / Mc Gill University Bionanofluid for use as a contrast, imaging, disinfecting and/or therapeutic agent

Similar Documents

Publication Publication Date Title
Shen et al. Polyelectrolyte capsules packaging BSA gels for pH-controlled drug loading and release and their antitumor activity
Wang et al. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles
US9956175B2 (en) Nanoparticles delivery systems, preparation and uses thereof
Wu et al. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery
WO2021103232A1 (zh) 一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法
Shao et al. NIR photoresponsive drug delivery and synergistic chemo-photothermal therapy by monodispersed-MoS 2-nanosheets wrapped periodic mesoporous organosilicas
MX2014007131A (es) Nanoparticulas que comprenden materiales metalicos y oxido de hafnio, preparacion y usos de los mismos.
CN102421418A (zh) 在药物递送中有用的中空金纳米球(HAuNSs)和装载HAuNSs的微球体
US10561745B2 (en) Stimuli-responsive magneto-plasmonic nanocarrier
Ayyanaar et al. Reactive oxygen species (ROS)-responsive microspheres for targeted drug delivery of camptothecin
Sheno et al. A novel approach for the synthesis of phospholipid bilayer-coated zeolitic imidazolate frameworks: preparation and characterization as a pH-responsive drug delivery system
Ge et al. Construction of the targeted and pH-sensitive paclitaxel drug delivery system RGD/PTX@ ZIF-90 and anti-tumor activity research
RU2708894C1 (ru) Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда
US11318214B2 (en) Iron oxide mesoporous microparticle drug carrier
Abdulbaqi Loading of clarithromycin and paclitaxel on prepared Cds/nio nanoparticles as promising nanocarriers
CN110664778B (zh) 复合微颗粒及其制备方法和作为载体在给药中应用
Gao et al. Hollow mesoporous structured MnFe2O4 nanospheres: A biocompatible drug delivery system with pH-responsive release for potential application in cancer treatment
KR101080499B1 (ko) 상자성 물질을 포함하는 중공형 나노입자로 이루어진 mri 조영제와 이를 이용한 약물 전달 시스템
RU2357724C1 (ru) Способ получения магниточувствительных липосом
US9980909B2 (en) Oxygen-enabled composition
Zheng et al. Thermosensitive magnetoliposome–Novel carrier for targeted delivery and triggered release of coix seed oil
KR101732641B1 (ko) 나노입자 복합체를 포함하는 비외상성 두개내 출혈 치료용 약학적 조성물
Phan et al. Coating chitosan thin shells: A facile technique to improve dispersion stability of magnetoliposomes
CN105709232B (zh) 一种核壳型缓释纳米球及其制备方法
KR102110424B1 (ko) 산화 그래핀-리포좀 복합체 및 이를 포함하는 약물전달체