RU2708814C1 - Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора - Google Patents

Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора Download PDF

Info

Publication number
RU2708814C1
RU2708814C1 RU2019107929A RU2019107929A RU2708814C1 RU 2708814 C1 RU2708814 C1 RU 2708814C1 RU 2019107929 A RU2019107929 A RU 2019107929A RU 2019107929 A RU2019107929 A RU 2019107929A RU 2708814 C1 RU2708814 C1 RU 2708814C1
Authority
RU
Russia
Prior art keywords
fiber
temperature
receiver
radiation
transmission channel
Prior art date
Application number
RU2019107929A
Other languages
English (en)
Inventor
Анастасия Алексеевна Лашова
Лия Васильевна Жукова
Дмитрий Дарисович Салимгареев
Александр Сергеевич Корсаков
Дмитрий Алексеевич Краснов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2019107929A priority Critical patent/RU2708814C1/ru
Application granted granted Critical
Publication of RU2708814C1 publication Critical patent/RU2708814C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/08Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20°С. Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора включает источник ИК излучения, канал передачи и приемник. При этом канал передачи выполнен в виде волоконной сборки диаметром 990 мкм и длиной 5 м, состоящей из 91 световода каждый диаметром 90 мкм на основе монокристаллов системы Ag1-xTlxBr1-0.54xI0.54x, где 0,03≤х≤0,31, на входном торце которой установлена цилиндрическая линза с фокусным расстоянием 30 мм, оптически связанная с источником ИК излучения, а на выходном торце размещена собирающая линза с тем же фокусным расстоянием, оптически связанная с приемником ИК излучения. Кроме того, в качестве источника ИК излучения используют подшипники или обмотки ветрогенератора, в качестве приемника используют тепловизор, а линзы изготовлены из тех же монокристаллов, что и волоконная сборка. Технический результат - повышение точности и надежности системы контроля температуры. 1 ил.

Description

Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20 оС, что, согласно законам Планка и Вина, соответствует спектральному диапазону от 5,1 мкм до 11,5 мкм [M. Planck. The theory of Heat Radiation. – 2nd. – P. Blakiston's Son & Co. – 1914. – P. 252].
Известна диагностика температурного состояния ветрогенератора термопарами и термометрами сопротивления контактным методом
[A. D. Spacek, O. H. Ando Junior, J. M. Neto, V. L. Coelho, M. O. Oliveira,
V. Gruber, L. Schaeffer. Management of mechanical vibration and temperature in small wind turbines using ZigBee wireless network. – 2013. – Vol. 11, № 1. – P.512-517; K. E. Haman, S. P. Malinowski, B. D. Strus. Two new types of ultrafast aircraft thermometer. – 2001. – Vol. 18, Iss. 2. – P. 117-134].
Их недостатком является низкая точность измерения температуры
до ± 1,0 оС, а также помехи, возникающие в результате близкого расположения электрогенератора. Корме того, невозможно ими измерить температуру подвижного объекта.
Таким образом, измерение температуры в труднодоступных, удаленных или подвижных объектов требует применения особых приборов с длинными каналами доставки сигнала, сложной системы их обработки, большого количества дополнительных устройств генерации, преобразования и приема. Кроме того, при воздействии электромагнитных помех, дополнительным требованием к измерительным приборам является помехозащищенность.
Известна инфракрасная (ИК) волоконная сборка из семи галогенидсеребряных световодов системы AgCl – AgBr, предназначенная для бесконтактной визуализации распределения теплового поля от удаленного объекта в диапазоне температур от -150 до +900 оС. Показана принципиальная применимость в низкотемпературной ИК пирометрии на примере передачи теплового изображения нагретой проволоки и лопатки турбины через ИК световод [А. С. Корсаков. Структура фотонно-кристаллических световодов на базе модифицированных галогенидсеребряных кристаллов и исследование их функциональных свойств: автореф. док. дисс. на соиск. степени д-ра.
техн. наук., г. Санкт-Петербург. – 2018. – с. 29 (http://www.npkgoi.ru/?module=articles&c=Perso-nal&b=7&a=5)].
Известна также работа «Экспериментальное исследование теплопереноса инфракрасными галогенидсеребряными световодами» [Шмыгалев, А. С. Экспериментальное исследование теплопереноса инфракрасными галогенидсеребряными световодами: автореф. канд. дисс. на соиск. степени канд. техн., г. Новосибирск. – 2018. – с. 24 (https://www.nstu.ru/science/dissertation_sov/dissertations/view?id=17021)].
В этих работах показан только принцип возможной передачи по галогенидсеребряным ИК световодам теплового изображения, но не предложена конструкция ИК волоконно-оптической системы контроля температуры, который может применяться в ветроненераторах.
Известен волоконно-оптический датчик (ВОД) температуры на основе кварцевых световодов, применяемый в ветрогенераторах [A feasibility study of transformer winding temperature and strain detection based on distributed optical fibre sensors / L. Yunpeng [et.al] // Optics and lasers in engineering. – 2018. – № 111. – P. 167-171], включающий:
– источник излучения – лазеры, длина волны (λ) 1,310 и 1,550 мкм, что соответствует температурам 1039 оС и 1596 оС, соответственно;
– канал передачи излучения – кварцевый световод длиной 90 м, выполненный в виде катушки, прозрачный в указанном спектральном диапазоне;
– приемник – фотодиоды, λ = 1310 мкм и 1550 мкм.
Такой ВОД косвенно определяет температуру с неудовлетворительной точностью определения ±1,0 оС и выше.
Также следует отметить, что главным недостатком данной конструкции, которая реализует метод оптического контроля, является невозможность прямого измерения температуры в диапазоне работы ветрогенератора от +300 до -20 оС, так как оптический диапазон кварцевых волокон ограничен длиной волны 2,0 мкм, что соответствует температуре 1176 оС [W. Wien. Temperature and entropy of starching. – Annals of Physics. – 1894. – Vol. 52. – P. 132-165.], а ветрогенераторные установки работают в диапазоне от -20 оС до +300 оС. Поэтому применяемый в данной конструкции метод контроля температуры требует использования специальных программ и сложных дополнительных систем обработки оптических сигналов. Недостатком данного ВОД является также низкая точность измерения температуры до ±1,0 °С и выше.
Существуют проблемы контроля температуры ветрогенератора, связанные с низкой точностью и косвенным измерением температуры, вызванные воздействием электромагнитных помех генератора и сложным аппаратным комплексом для обработки сигналов. Низкая точность измерения нарушает режим работы ветрогенератора, а также повышает риск его аварийности, а косвенное измерение приводит к снижению точности и надежности системы контроля температуры.
Указанные проблемы решаются за счет того, что в инфракрасной волоконно-оптической системе контроля температуры ветрогенератора, включающей источник ИК излучения, канал передачи и приемник, отличающейся тем, что канал передачи выполнен в виде волоконной сборки диаметром 990 мкм и длиной 5 м, состоящей из 91 световода, каждый диаметром 90 мкм, изготовленного на основе монокристаллов системы Ag1-xTlxBr1-0.54xI0.54x, где 0,03≤х≤0,31, на входном торце которой установлена цилиндрическая линза с фокусным расстоянием 30 мм, оптически связанная с источником ИК излучения, а на выходном торце размещена собирающая линза с тем же фокусным расстоянием, оптически связанная с приемником ИК излучения, при этом в качестве источника ИК излучения используют подшипники или обмотки ветрогенератора, в качестве приемника используют тепловизор, а линзы изготовлены из тех же монокристаллов, что и волоконная сборка.
На фигуре показана новая инфракрасная волоконно-оптическая система контроля температуры ветрогенератора, где 1 – источник инфракрасного излучения, 2 – цилиндрическая линза, 3 – волоконная сборка (канал передачи ИК излучения), 4 – собирающая линза, 5 – приемник ИК излучения (тепловизор).
ИК излучение, источником которого является комплектующий узел ветрогенератора (подшипники или обмотки ветрогенератора) (1), работающий в температурном диапазоне от -20 оС до +300 оС (при длинах волн от 11,5 до 5,1 мкм, соответственно) и оптически связанный с каналом передачи (3), собирается цилиндрической линзой (2), которая фокусирует ИК излучение на входной торец волоконной сборки при фокусном расстоянии
30 мм. Данное фокусное расстояние линзы обеспечивает прием ИК излучения от объекта в канал передачи для эффективного контроля температуры бесконтактным способом. Через входной торец ИК излучение поступает в волоконную сборку диаметром 990 мкм и длиной 5 м (3), состоящую из 91 световода, каждый диаметром 90 мкм, изготовленного на основе фото- и радиационно-стойких монокристаллов состава
Ag1-xTlxBr1-0.54xI0.54x, где 0,03≤х≤0,31, и передается к выходному торцу волоконной сборки. Волокна обладают минимально возможным диаметром равным 90 мкм, таким образом при количестве волокон, равном 91 штуке, в сборке обеспечивается высокое пространственное разрешение.
ИК излучение, выходящее из торца волоконной сборки, фокусируется с помощью собирающей линзы (4) на объектив приемника излучения (5), в качестве которого применяется тепловизор, регистрирующий указанную температуру комплектующих узлов ветрогенератора. Линзы изготовлены из тех же монокристаллов, что и световоды.
Технический результат изобретения достигается благодаря прямому бесконтактному измерению температуры ветрогенератора с высокой точностью определения ±0,1 оС и ниже, в прототипе ±1,0 оС и выше. Прямой контроль температуры, вместо косвенного, стал возможным благодаря замене кварцевых волокон, прозрачных в узком спектральном диапазоне
от 0,2 до 2,5 мкм, применяемых в прототипе, на поликристаллические инфракрасные световоды, пропускающие в среднем ИК диапазоне
от 2,0 до 25,0 мкм, что соответствует температурному диапазону
от +900оС до -150 оС. Канал передачи ИК излучения изготовлен
из световодов, получаемых методом экструзии на основе нового класса фото- и радиационно-стойких монокристаллов системы AgBr-(TlBr0.46I0.54).
Из этих же кристаллов изготовлены линзы [Жукова Л. В., Корсаков А. С., Львов А. Е., Салимгареев Д. Д. Волоконные световоды для среднего инфракрасного диапазона: учебник. – Екатеринбург: Издательство УМЦ УПИ, 2016. – 247 с.]. Конструкция новой инфракрасной волоконно-оптической системы контроля температуры ветрогенератора не требует дополнительно сложных систем обработки сигналов и дорогостоящего оборудования, как в прототипе. Следует также отметить, что канал передачи и линзы изготовлены из диэлектриков, которые не реагируют на воздействие электромагнитного излучения.

Claims (1)

  1. Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора, включающая источник ИК излучения, канал передачи и приемник, отличающаяся тем, что канал передачи выполнен в виде волоконной сборки диаметром 990 мкм и длиной 5 м, состоящей из 91 световода каждый диаметром 90 мкм на основе монокристаллов системы Ag1-xTlxBr1-0.54xI0.54x, где 0,03≤х≤0,31, на входном торце которой установлена цилиндрическая линза с фокусным расстоянием 30 мм, оптически связанная с источником ИК излучения, а на выходном торце размещена собирающая линза с тем же фокусным расстоянием, оптически связанная с приемником ИК излучения, при этом в качестве источника ИК излучения используют подшипники или обмотки ветрогенератора, в качестве приемника используют тепловизор, а линзы изготовлены из тех же монокристаллов, что и волоконная сборка.
RU2019107929A 2019-03-20 2019-03-20 Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора RU2708814C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019107929A RU2708814C1 (ru) 2019-03-20 2019-03-20 Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019107929A RU2708814C1 (ru) 2019-03-20 2019-03-20 Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора

Publications (1)

Publication Number Publication Date
RU2708814C1 true RU2708814C1 (ru) 2019-12-11

Family

ID=69006803

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019107929A RU2708814C1 (ru) 2019-03-20 2019-03-20 Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора

Country Status (1)

Country Link
RU (1) RU2708814C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799575C1 (ru) * 2022-04-25 2023-07-06 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Диагностический стенд для ветряной турбины

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU141552U1 (ru) * 2013-08-06 2014-06-10 Открытое акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (ОАО "ОКБМ Африкантов") Устройство для измерения температурного поля газового или жидкостного потока
US9453500B2 (en) * 2013-03-15 2016-09-27 Digital Wind Systems, Inc. Method and apparatus for remote feature measurement in distorted images
US20160334284A1 (en) * 2013-12-19 2016-11-17 Margarita KAPLUN MUCHARRAFILLE System and method for calibrating and characterising instruments for temperature measurement by telemetry
US10054488B2 (en) * 2012-05-23 2018-08-21 International Electronic Machines Corp. Infrared-based vehicle component imaging and analysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054488B2 (en) * 2012-05-23 2018-08-21 International Electronic Machines Corp. Infrared-based vehicle component imaging and analysis
US9453500B2 (en) * 2013-03-15 2016-09-27 Digital Wind Systems, Inc. Method and apparatus for remote feature measurement in distorted images
RU141552U1 (ru) * 2013-08-06 2014-06-10 Открытое акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (ОАО "ОКБМ Африкантов") Устройство для измерения температурного поля газового или жидкостного потока
US20160334284A1 (en) * 2013-12-19 2016-11-17 Margarita KAPLUN MUCHARRAFILLE System and method for calibrating and characterising instruments for temperature measurement by telemetry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799575C1 (ru) * 2022-04-25 2023-07-06 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Диагностический стенд для ветряной турбины

Similar Documents

Publication Publication Date Title
CN103398800B (zh) 一种用于大型结构体准分布式光纤光栅温度应变测量系统
Mamidi et al. Fiber Bragg grating-based high temperature sensor and its low cost interrogation system with enhanced resolution
EP2824463A1 (en) Optical fiber for sensor and power device monitoring system
Vo et al. Chalcogenide fiber-based distributed temperature sensor with sub-centimeter spatial resolution and enhanced accuracy
Korenko et al. Novel fiber-optic relative humidity sensor with thermal compensation
Guo et al. High-temperature sensor instrumentation with a thin-film-based sapphire fiber
RU2708814C1 (ru) Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора
Guo et al. Echelle diffractive grating based wavelength interrogator for potential aerospace applications
Silveira et al. Experimental evaluation of low-cost interrogation techniques for FBG sensors
Yuzhakova et al. Application of infrared polycrystalline fibers in thermal imaging temperature control systems
Xiao et al. Miniaturized optical fiber sensor interrogation system employing echelle diffractive gratings demultiplexer for potential aerospace applications
Polyakov et al. High voltage monitoring with a fiber-optic recirculation measuring system
Riza et al. All-silicon carbide hybrid wireless-wired optics temperature sensor network basic design engineering for power plant gas turbines
Mordon et al. Zirconium fluoride glass fiber radiometer for low temperature measurements
Sirithawornsant et al. Fiber Bragg grating FBG sensing temperature characteristic and application in water and air
CN108398144A (zh) 宇航用光纤光栅传感系统及方法
Willsch et al. Low temperature fiber optic pyrometer for fast time resolved temperature measurements
RU2799575C1 (ru) Диагностический стенд для ветряной турбины
Kharaim et al. On the Possibility of Application Infrared Crystalline Fibers for Transfer of Temperature Signals from Bearings inside Nuclear Power Plants’ Containment
CN103090991A (zh) 一种应用于电力设备测温的光纤光栅解调仪
CN205483170U (zh) 一种基于电力设备红外图像的变压器油位监测系统
Antonio-Lopez et al. Multiplexed high temperature sensor based on multicore fiber
Klocek et al. The development and applications of chalcogenide infrared optical fibers
Padhy et al. Cost-Effective Fiber Bragg Grating Temperature Sensor Using Power Measurement
Yoo et al. Infrared fiber-optic sensor for non-contact temperature measurements