RU2708606C1 - Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа - Google Patents

Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа Download PDF

Info

Publication number
RU2708606C1
RU2708606C1 RU2019124206A RU2019124206A RU2708606C1 RU 2708606 C1 RU2708606 C1 RU 2708606C1 RU 2019124206 A RU2019124206 A RU 2019124206A RU 2019124206 A RU2019124206 A RU 2019124206A RU 2708606 C1 RU2708606 C1 RU 2708606C1
Authority
RU
Russia
Prior art keywords
absorbent
absorber
pipe
housing
helium
Prior art date
Application number
RU2019124206A
Other languages
English (en)
Inventor
Владимир Григорьевич Бутов
Анатолий Адамович Демиденко
Виктор Александрович Солоненко
Владимир Иванович Романдин
Андрей Андреевич Якушев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (НИ ТГУ)
Priority to RU2019124206A priority Critical patent/RU2708606C1/ru
Application granted granted Critical
Publication of RU2708606C1 publication Critical patent/RU2708606C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0089Physical processing only by absorption in liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Изобретение относится к абсорбционно-десорбционной технике сепарации многокомпонентных газовых смесей, а именно, к устройствам сепарации гелия из природного газа. Устройство состоит из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием газа и патрубком вывода насыщенного абсорбента, снабженного подогревателем и соединенного с корпусом десорбера, имеющим патрубок рециркуляции абсорбента в корпус абсорбера, снабженный теплообменником и холодильником, и верхний патрубок выхода обедненного гелием газа, соединенный с каплеуловителем, снабженным емкостью для приема уловленного абсорбента. Патрубок подвода исходного газа выполнен в виде конфузорного аксиального сопла, снабженного редуктором давления. Внутри корпуса абсорбера расположена аксиальная конфузорная циркуляционная труба, имеющая возможность вертикального перемещения и открытая с обоих торцов. Над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходе, имеющий форбункер сбора уловленного абсорбента, соединенный с трубчатым стояком возврата насыщенного абсорбента в цилиндроконический корпус десорбера, дополненным регулируемой дроссельной заслонкой и введенным в нижнюю часть корпуса десорбера. Патрубок возврата насыщенного абсорбента в корпус десорбера из абсорбера соединен с нижней частью корпуса абсорбера через регулируемую дроссельную заслонку и подогреватель, а также дополнительно снабжен на входе в десорбер вихревой камерой. Выход вихревой камеры соединен с конфузорным аксиальным соплом и расположенной аксиально циркуляционной трубой диффузорного типа, имеющей возможность вертикального перемещения и открытой с обоих торцов. Над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходном патрубке и с трубчатым стояком, введенным в нижнюю часть десорбера. Верхний патрубок рециркуляции дополнительно снабжен рециркуляционным насосом и соединен с компенсационной емкостью абсорбента через управляемый гидронасос. Корпусы абсорбера, десорбера и форбункера снабжены верхними и нижними уровнемерами, датчиками температуры. Установка содержит управляющий микропроцессор, соединенный линиями связи с дроссельными заслонками, датчиками уровней абсорбера и десорбера, датчиками температуры и управляющий через линии связи работой дроссельных устройств, рециркуляционного насоса, гидронасоса компенсационной емкости, холодильника и теплообменника. Технический результат: повышение эффективности массообменных процессов, интенсификация сепарации. 1 ил .

Description

Изобретение относится к абсорбционно-десорбционной технике сепарации многокомпонентных газовых смесей, а именно, к устройствам сепарации гелия из природного газа.
В основе функционирования предлагаемого устройства лежит такое свойство гелия, как существенное отличие растворимости в жидких углеводородах по сравнению с другими газами, состоящими из неполярных молекул и атомов и являющимися основными компонентами природного газа.
Известно устройство для криогенной сепарации газовых компонентов природного газа [1], состоящее из сырьевых теплообменников, аммиачного холодильника, сепараторов, ректификационных колон и теплообменников. К недостаткам данного устройства следует отнести высокую энергоемкость процесса, сложность основных механических узлов и оборудования.
Известен также способ и устройство [2], позволяющие сепарировать гелий из природного газа за счет абсорбционного эффекта и мембранной технологии, основанный на эффекте сорбционного поглощения и десорбционного выделения природного газа и содержащегося в нем гелия в жидких углеводородах и представляющее из себя сорбционно-десорбционное устройства и мембранный блок. К недостаткам данного устройства следует отнести низкую эффективность абсорбционно-десорбционных процессов и массообменных процессов, а также ненадежность работы мембранного блока из-за забивки мембран примесями, содержащимися в природном газе, что требует технически сложной регенерации или частой замены мембран.
Наиболее близким по технической сущности к предлагаемому техническому решению является устройство [3],состоящее из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием газа и патрубком вывода насыщенного абсорбента, снабженного теплообменником и соединенным с корпусом десорбера, имеющим патрубок рециркуляции абсорбента в корпус абсорбера, снабженного теплообменником и холодильником и верхний патрубок выхода обедненного гелием газа, соединенный с каплеуловителем, снабженным емкостью для приема уловленного абсорбента. Внутри корпусов абсорбера и десорбера могут быть расположены известные в технике контактные устройства интенсифицирующие массообменные процессы (насадочные, тарельчатые, пленочные, с механическим диспергированием абсорбента, с использованием сопел Вентури и т.д.). Общим недостатком указанных устройств является недостаточная эффективность реализуемых в них массообменных процессов, отсутствие высокоэффективного устройства капельного улавливания и возврата жидкого абсорбента.
Технической задачей предлагаемого изобретения является создание абсорбционно-десорбционной установки циркуляционного типа для сепарации гелия из природного газа с применением абсорбентов (типа н-гексана или прямогонного бензина) и высокоэффективных массобменных процессов, реализуемых с применением устройств с использованием недорасширенных звуковых, а также закрученных газовых струй, контактирующих с жидким абсорбентом, осуществление интенсификации сепарационных процессов газожидкостных потоков на выходе из абсорбера и десорбера и организация возврата отсепарированного абсорбента в установку.
Поставленная задача решается тем, что, абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа состоящее из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием газа и патрубком вывода насыщенного абсорбента, снабженного подогревателем и соединенным с корпусом десорбера, имеющим патрубок рециркуляции абсорбента в корпус абсорбера, снабженного теплообменником и холодильником, и верхний патрубок выхода обедненного гелием газа, соединенный с каплеуловителем, снабженным емкостью для приема уловленного абсорбента, отличающееся тем, что патрубок подвода исходного газа выполнен в виде конфузорного сопла расположенного аксиально, в вершине конической части цилиндроконического корпуса абсорбера, и снабженного редуктором давления, а внутри корпуса абсорбера, имеющего верхний и нижний уровнемеры жидкости и датчик температуры, расположена, также аксильным образом, диффузорная циркуляционная труба, имеющая возможность вертикального перемещения и открытая с обоих торцов, причем над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходе и имеющий форбункер сбора уловленного абсорбента, снабженный нижним и верхним уровнемерами жидкости, соединенным с трубчатым стояком возврата насыщенного абсорбента в цилиндроконический корпус десорбера, дополненным регулируемой дроссельной заслонкой, и веденым в нижнюю часть корпуса десорбера, снабженного верхним и нижним уровнемерами жидкости и датчиком температуры, причем патрубок возврата насыщенного абсорбента в корпус десорбера из абсорбера, соединен с нижней частью корпуса абсорбера через регулируемую дроссельную заслонку и подогреватель, а также дополнительно снабжен на входе в десорбер вихревой камерой, выход которой соединен с конфузорным аксиальным соплом, введенным в вершину цилиндроконического корпуса десорбера и расположенной, также аксиально, циркуляционной трубой конфузорного типа, имеющей возможность вертикального перемещения и открытой с обоих торцов, причем над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью, и циклонный каплеуловитель с редуктором давления на выходном патрубке и с трубчатым стояком, введенным в нижнюю часть десорбера, верхний патрубок рециркуляции допополнительно снабжен рециркуляционным насосом и соединен с компенсационной емкостью абсорбента через управляемый гидронасос, при этом в состав установки введен управляющий микропроцессор, соединенный линиями связи с дроссельными заслонками, датчиками уровней абсорбера и десорбера, датчиками температуры и управляющий, также через линии связи, работой дроссельных устройств, рециркуляционного насоса, гидронасоса компенсационной емкости, холодильника и теплообменника.
На фиг. 1 изображено абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа, состоящее из цилиндро-конического корпуса 1 абсорбера с патрубком 2 подвода исходного природного газа через редуктор давления 3 соединенного с нижним аксиальным конфузорным соплом 4. Внутри цилиндроконического корпуса абсорбера 1 расположена аксиально конфузорная циркуляционная труба 5, открытая с обоих торцов и имеющая возможность вертикального перемещения. Над верхним торцом циркуляционной трубы 5 расположен дефлектор 6 с криволинейной осесимметричной поверхностью. В корпусе абсорбера выполнены верхний патрубок 7 для заполнения жидким абсорбентом и нижний патрубок 8 для опорожнения корпуса 1 от абсорбента. Также на корпусе 1 расположены датчик 9 давления, датчик 10 температуры абсорбента, верхний уровнемер 37 жидкого абсорбента и нижний уровнемер 38 жидкого абсорбента. Патрубок 11 выхода обогащенного гелием газа из корпуса 1 абсорбера соединен с циклонным каплеуловителем 12, на выходе которого расположен редуктор давления 13.
Циклонный каплеуловитель 12 имеет форбункер 14 снабженный верхним уровнемером 37 жидкого абсорбента и нижним уровнемером 38 жидкого абсорбента. Форбункер 14 соединен через управляемую дрооссельную заслонку 15 со стояком 16 вывода уловленного в циклонном каплеуловителе 12 жидкого абсорбента в нижнюю часть цилиндро-конического корпуса 17 десорбера. В корпусе 17 десорбера выполнены верхний патрубок 7 для заполнения жидким абсорбентом и нижний 8 для опорожнения корпуса 17 от абсорбента. Также на корпусе 17 расположены датчик 9 давления, датчик 10 температуры абсорбента, верхний уровнемер 37 жидкого абсорбента и нижний уровнемер 38 жидкого абсорбента. В вершину конической части десорбера 17 введен патрубок вихревой камеры 18, соединенный с аксиальным конфузорным соплом 19. Внутри корпуса 17 десорбера расположена аксиально диффузорная циркуляционная труба 20, открытая с обоих торцов и имеющая возможность вертикального перемещения. Над верхним торцом циркуляционной трубы 20 находится дефлектор 21 с криволинейной осесимметричной поверхностью. Выходной патрубок 22 корпуса 17 десорбера соединен с циклонным каплеуловителем 23 имеющим стояк 26 возврата уловленного абсорбента, а выхлопной патрубок циклонного каплеуловителя соединен с редуктором 24 давления и патрубком 25 вывода обедненного газа. Нижняя коническая часть корпуса 1 абсорбера соединена патрубком 27 подачи насыщенного газом абсорбента корпус десорбера через подогреватель 28, регулируемую дроссельную заслонку29 и патрубок 30 с вихревой камерой 18. Верхняя часть корпуса 17 десорбера через теплообменник 31 и холодильник 32 соединена патрубком 33 с рециркуляционным насосом 34, выходной патрубок 35 которого введен в верхнюю часть корпуса 1 абсорбера, причем патрубок 35 связан с компенсационной емкостью для абсорбента 35 через гидронасос 36. Для контроля и управления процессом абсорбции и десорбции служит микропроцессор 40 на вход которого поступают через линии связи данные о контролируемых параметрах датчиков 10.38.39, а выходные линии 42 служат для управления приводов элементов 15. 28, 29, 31, 34, 37.
Функционирует установка следующим образом. Корпуса 1 абсорбера и 17 десорбера заполняются абсорбентом через патрубки 7. В качестве абсорбента применяется н-гексан, в котором растворимость гелия меньше в 20 раз чем С2Н4. Для газов - метана, пропана, бутана и т.п.величина растворимости растет с уменьшением температуры, для гелия и азота она существенно падает с уменьшением температуры раствора в жидких углеводородах. Так при уменьшении температуры раствора гелия в бензине термической перегонки с 20°С до -20°С (давление 1 атм) величина растворимости (моль/моль р-ра) падает в 3 раза. После заполнения корпусов 1 абсорбера и 17 десорбера, не превышающим верхний уровень, определяемый датчиками уровня 38, 39 патрубки 7 герметизируются (на фиг. 1 устройство герметизации не показано) и включается подача природного газа через патрубок 2, редуктор 3 давления и конфузорное сопло 4, параметры которого обеспечивают звуковое истечение струи природного газа в режиме недорасширения. Данный режим позволяет сформировать высокоградиентные газодинамические структуры струи на выходе из сопла (скачки уплотнения и разрежения), генерирующие интенсивные турбулентные пульсации скоростей и давления газа, что существенно интесифицирует массообменные процессы между газом и жидким абсорбентом, за счет интенсивного диспергирования абсорбента и высоких относительных скоростей взаимодействия частиц диспергированного абсорбента и высокоградиентных структур недорасширенной газовой струи, истекающей из сопла 4. Редуктор давления 3 РД1 поддерживает давление на выходе из сопла 4 в пределах 10-10.1 Мпа. Циркуляционная труба 5 выполнена конфузорной и предназначена для реализации процесса транспортирования абсорбента в верхнюю, свободную от абсорбента часть корпуса 1 и дополнительного абсорбирования газа, что позволяет сохранить скорость газа по высоте трубы 5, расход которого падает по высоте за счет процесса абсорбции и, тем самым, сохранить эффективность сепарации дефлектора 6 с криволинейной осесимметричной поверхностью. Угол раскрытия конфузорной циркуляционной трубы 5 определяется эмпирически. Жидкий абсорбент с частично абсорбированным газом попадает на свободную поверхность абсорбента и движется вниз, в зону взаимодействия жидкого абсорбента и недорасширенной газовой струи, истекающей из конфузорного сопла 4. Осуществляется внутренняя рециркуляция абсорбента внутри корпуса 1 абсорбера, в процессе которой реализуется дополнительная абсорбция газа. Интенсивность внутренней рециркуляции регулируется величиной кольцевого зазора между корпусом 1 и нижним срезом конфузорной трубы 5. Обогащенный гелием газ через патрубок 11 поступает в циклонный каплеуловитель 12 и выходит через редуктор давления 13 РД2, настроенный на поддержания давления газа 9.9 Мпа в установки. Уловленный жидкий абсорбент поступает в форбункер 14 и возвращается через регулируемую дроссельную заслонку 15 и стояк 16 в нижнюю часть корпуса 17 десорбера, за счет перепада давления внутри корпуса 1 абсорбера и внутри корпуса 17 десорбера. Работа дроссельной заслонки регулируется за счет датчиков 38 и 39 верхнего и нижнего уровня абсорбента, подающих информацию через линии связи 41 на вход микропроцессора 40, который формирует управляющий сигнал и подает его через линию связи 42 на управляемую дроссельную заслонку 15. По мере сепарации газа абсорбентом объем жидкого абсорбента в корпусе 1 увеличивается и достигает верхнего уровня, контролируемого датчиком 38 верхнего уровня, от которого через линию связи 41 поступает сигнал на вход микропроцессора 40, на выходе которого формируется управляющий сигнал, поступающий через линию связи 42 на регулируемую дроссельную заслонку 29. Перед дроссельной заслонкой 29 включен после патрубка 27 теплообменник 28, служащий для нагревания поступающего абсорбента в корпус 17, что, наряду с понижением давления, интенсифицирует процесс десорбции. Величина нагрева абсорбента в корпусе 17 десорбера контролируется датчиком 10 температуры размещенным на корпусе 17 десорбера и управляется микропроцессором 40, управляющий сигнал от которого через линию связи 42 поступает на теплообменник 28. Сброс давления абсорбента происходит на дросселе 29 с 10-10.1 Мпа до 5 Мпа, за счет работы редуктора давления 24 РД-3, что, наряду с повышением температуры абсорбента, приводит к десорбции абсорбента. Реализуется течение газожидкостной среды через патрубок 30 на вход вихревой камеры 18, что дополнительно позволяет интенсифицировать процесс десорбции. После вихревой камеры 18 газожидкостной поток через звуковое конфузорное сопло 19, работающее в режиме недорасширения, поступает в корпу 17 десорбера, где реализуется массобменный процесс аналогичный массобменному процессу в корпусе 1 абсорбера. Осуществляется внутренняя рециркуляция абсорбента в корпусе 17 десорбера через циркуляционную трубу 20. В отличие от циркуляционной трубы 5 в корпусе 1 абсорбера, циркуляционная труба 30 десорбера выполнена в виде диффузора, что обусловлено ростом по высоте циркуляционной трубы расхода газа, за счет десорбционного процесса. Струя обедненного газа на выходе из циркуляционной трубы 20 контактирует с криволинейной поверхностью дефлектора 21, где за счет центробежных сил реализуется первая ступень сепарации жидкого абсорбента от взвесенесущего газового потока. Далее через патрубок 22 корпуса 17 десорбера поступает на ход циклонного каплеуловителя 23, где в поле центробежных сил реализуется вторая ступень сепарации жидкого абсорбента от взвесенесущего газового потока. Далее, через редуктор давления 24 РД-4, газ выводится из установки через патрубок 25. Внешняя рециркуляция десорбированного абсорбента происходит через патрубок 32, введенного в корпус 17 десорбера ниже уровня жидкого абсорбента, контролируемого верхним датчиком 38 уровня жидкости, через теплообменник 31 и холодильник 33, за счет работы рециркуляционного насоса 34, подающего абсорбент внутрь корпуса 1 абсорбера через патрубок 35. Величина расхода и температуры охлажденного рециркулирующего абсорбента контролируется датчиком температура 10 на корпусе 17 десорбера и регулируется микропроцессором 40, подающим управляющий сигнал по линиям связи 42 на теплообменник 31 и холодильник 33 и на рециркуляционный насос 34. Патрубок 35 соединен с компенсационной емкостью 36 с гидронасосом 37 подающим, в случае необходимости, при необратимом выносе жидкого абсорбента из установки через циклонные каплеуловители 12, 23, дополнительное количество абсорбента. Количество дополнительного абсорбента контролируется датчиками нижнего уровня 39 корпусов 1 и 17 абсорбера и десорбера, соответственно, и управляющим сигналом, поступающим от микропроцессора 40 по линии связи 42 гидронасос 37.
ЛИТЕРАТУРА
1. Энциклопедия техники http://enciklopediya-tehniki.ru/tehnologiva-dobychi-gaza-i-nefti/izvlechenie-geliva-iz-prirodnogo-gaza.html
2. US Pat №4690695
3. Абсорбция и десорбция-Narod.ru o-juravie2013.narod.ru/index_ABSORB.him стр. 1-2,рис.1. Скобло А.И., Молоканов Ю.К., Владимиров А.И., Щелкунов В.А. С44 Процессы и аппараты нефтегазопереработки и нефтехимии: Учебник для вузов. - 3-изд., перераб. и доп. - М.: 00 "Недра Бизнесцентр", 2000. - 677 с: ил. ISBN 5-8365-0035-5, глава VI абсорбция десорбция, рис. VI

Claims (1)

  1. Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа, состоящее из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием газа и патрубком вывода насыщенного абсорбента, снабженного подогревателем и соединенного с корпусом десорбера, имеющим патрубок рециркуляции абсорбента в корпус абсорбера, снабженный теплообменником и холодильником, и верхний патрубок выхода обедненного гелием газа, соединенный с каплеуловителем, снабженным емкостью для приема уловленного абсорбента, отличающееся тем, что патрубок подвода исходного газа выполнен в виде конфузорного сопла, расположенного аксиально в вершине конической части цилиндроконического корпуса абсорбера и снабженного редуктором давления, а внутри корпуса абсорбера, имеющего верхний и нижний уровнемеры жидкости и датчик температуры, расположена также аксиальным образом конфузорная циркуляционная труба, имеющая возможность вертикального перемещения и открытая с обоих торцов, причем над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходе, имеющий форбункер сбора уловленного абсорбента, снабженный нижним и верхним уровнемерами жидкости, соединенный с трубчатым стояком возврата насыщенного абсорбента в цилиндроконический корпус десорбера, дополненным регулируемой дроссельной заслонкой и введенным в нижнюю часть корпуса десорбера, снабженного верхним и нижним уровнемерами жидкости и датчиком температуры, причем патрубок возврата насыщенного абсорбента в корпус десорбера из абсорбера соединен с нижней частью корпуса абсорбера через регулируемую дроссельную заслонку и подогреватель, а также дополнительно снабжен на входе в десорбер вихревой камерой, выход которой соединен с конфузорным аксиальным соплом, введенным в вершину цилиндроконического корпуса десорбера, и расположенной также аксиально циркуляционной трубой диффузорного типа, имеющей возможность вертикального перемещения и открытой с обоих торцов, причем над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходном патрубке и с трубчатым стояком, введенным в нижнюю часть десорбера, верхний патрубок рециркуляции дополнительно снабжен рециркуляционным насосом и соединен с компенсационной емкостью абсорбента через управляемый гидронасос, при этом в состав установки введен управляющий микропроцессор, соединенный линиями связи с дроссельными заслонками, датчиками уровней абсорбера и десорбера, датчиками температуры и управляющий через линии связи работой дроссельных устройств, рециркуляционного насоса, гидронасоса компенсационной емкости, холодильника и теплообменника.
RU2019124206A 2019-07-25 2019-07-25 Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа RU2708606C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019124206A RU2708606C1 (ru) 2019-07-25 2019-07-25 Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019124206A RU2708606C1 (ru) 2019-07-25 2019-07-25 Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа

Publications (1)

Publication Number Publication Date
RU2708606C1 true RU2708606C1 (ru) 2019-12-09

Family

ID=68836666

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019124206A RU2708606C1 (ru) 2019-07-25 2019-07-25 Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа

Country Status (1)

Country Link
RU (1) RU2708606C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575519A (en) * 1946-07-09 1951-11-20 Union Oil Co Adsorption process
US3438728A (en) * 1967-05-15 1969-04-15 North American Rockwell Two-stage regeneration of absorbent for sulfur oxides
SU688200A1 (ru) * 1978-04-04 1979-09-30 Предприятие П/Я Р-6956 Абсорбционный аппарат
SU1364357A1 (ru) * 1986-04-03 1988-01-07 Волгоградское Специальное Конструкторское Бюро Научно-Производственного Объединения "Нефтехимавтоматика" Способ управлени процессом абсорбции -десорбции
RU2018353C1 (ru) * 1988-11-09 1994-08-30 Юнион Карбид Канада Лимитед Циклический способ удаления двуокиси серы из газового потока
RU77174U1 (ru) * 2007-10-31 2008-10-20 ООО "Эконефтехимтехника" Установка очистки газов
RU140855U1 (ru) * 2014-01-27 2014-05-20 Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" Пенный аппарат с генератором турбулентности для мокрой газоочистки
RU2606223C2 (ru) * 2011-07-22 2017-01-10 Эксонмобил Апстрим Рисерч Компани Извлечение гелия из потоков природного газа

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575519A (en) * 1946-07-09 1951-11-20 Union Oil Co Adsorption process
US3438728A (en) * 1967-05-15 1969-04-15 North American Rockwell Two-stage regeneration of absorbent for sulfur oxides
SU688200A1 (ru) * 1978-04-04 1979-09-30 Предприятие П/Я Р-6956 Абсорбционный аппарат
SU1364357A1 (ru) * 1986-04-03 1988-01-07 Волгоградское Специальное Конструкторское Бюро Научно-Производственного Объединения "Нефтехимавтоматика" Способ управлени процессом абсорбции -десорбции
RU2018353C1 (ru) * 1988-11-09 1994-08-30 Юнион Карбид Канада Лимитед Циклический способ удаления двуокиси серы из газового потока
RU77174U1 (ru) * 2007-10-31 2008-10-20 ООО "Эконефтехимтехника" Установка очистки газов
RU2606223C2 (ru) * 2011-07-22 2017-01-10 Эксонмобил Апстрим Рисерч Компани Извлечение гелия из потоков природного газа
RU140855U1 (ru) * 2014-01-27 2014-05-20 Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" Пенный аппарат с генератором турбулентности для мокрой газоочистки

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.И. СКОБЛО и др. "Процессы и аппараты нефтегазопереработки и нефтехимии", Учебник для вузов - 3-изд., перераб. и доп., М:-ООО "Недра Бизнесцентр", 2000, с.194-195, 211-219. *

Similar Documents

Publication Publication Date Title
AU2018289005B2 (en) Compact contacting systems and methods for scavenging sulfur-containing compounds
JP6571188B2 (ja) 加熱液体吸着剤からの二酸化炭素のサイクロン分離および回収
CN102596364A (zh) 从工艺气体中除去二氧化碳的方法和系统
CN111471499B (zh) 一种管状并流式气液接触吸收器
EP1101732B1 (en) Method and apparatus for continuously generating highly concentrated ozone gas
RU99114833A (ru) Способ и устройство для управления конденсацией потока газообразных углеводородов
US4023941A (en) Gas desorption from liquids
RU2708606C1 (ru) Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа
EP2520352B1 (en) Gas/liquid contacting vessel and the use thereof in a flue gas treatment system
RU2007133801A (ru) Устройство и способ для получения этиленоксида
CA2728035A1 (en) Multi-stage separator for propane recapture generator waste
WO2018112901A1 (zh) 一种适用于气体水合物浆液的气液分离装置
RU2310499C2 (ru) Способ абсорбции газов и устройство для его осуществления
EP3583998A1 (en) Gas-water separation systems and methods
RU2642630C2 (ru) Способ абсорбции газов и устройство для его осуществления
CN209406036U (zh) 有机废气净化喷淋塔
WO2023094670A1 (en) Regeneration of solvents used in carbon dioxide capture process
RU2003118273A (ru) Способ очистки от углеводородов парогазовой среды, образующей при хранении нефтепродукта и при заполнении им емкости (варианты) и установка для его осуществления
RU2452556C1 (ru) Установка улавливания углеводородных паров
CN213192883U (zh) 一种用于去除炼化火炬放空气中的水和粉尘的装置
US4505722A (en) Gas treating apparatus and process
CN113908663A (zh) 加压多级“吸收、冷凝、吸附”模块组合式有机废气回收方法
RU171024U1 (ru) Скруббер вентури
WO2005106368A1 (fr) Procede de purification et de fractionnement de melanges par rectification, et echangeur de masse
RU2261139C1 (ru) Вихревой скруббер