RU2708125C1 - Method of processing zinc-containing metallurgical slurries - Google Patents

Method of processing zinc-containing metallurgical slurries Download PDF

Info

Publication number
RU2708125C1
RU2708125C1 RU2019117309A RU2019117309A RU2708125C1 RU 2708125 C1 RU2708125 C1 RU 2708125C1 RU 2019117309 A RU2019117309 A RU 2019117309A RU 2019117309 A RU2019117309 A RU 2019117309A RU 2708125 C1 RU2708125 C1 RU 2708125C1
Authority
RU
Russia
Prior art keywords
zinc
dried
sludge
furnace
reducing agent
Prior art date
Application number
RU2019117309A
Other languages
Russian (ru)
Inventor
Марк Борисович Школлер
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ"
Priority to RU2019117309A priority Critical patent/RU2708125C1/en
Application granted granted Critical
Publication of RU2708125C1 publication Critical patent/RU2708125C1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

FIELD: technological processes.
SUBSTANCE: invention relates to processing of zinc-containing wastes, namely sludge and dust of wet and dry gas cleaning of blast-furnace, open-hearth, converter, electric-steel melting and other industries, and can be used in ferrous and non-ferrous metallurgy. Zinc containing wastes from metallurgical production are dried and dried slurry is mixed with carbon reducing agent. Obtained mixture is subjected to high-temperature treatment at temperature up to 1,100° with reduction of iron oxides to metallic iron and evaporation of zinc. Slurry is dried in mixer-batcher by adsorption dehydration with fine-grained brown coal semi-coke, taken in ratio 1:(1.5–2). Moistened brown-coal coke is separated by pneumo-separation and directed into intermediate hopper, and dried slime mixed with carbonaceous reducing agent in ratio 1:(0.5–1), subjected to thermochemical agglomeration in furnace with rotating hearth. Ferrocox produced after firing is cooled and sorted into classes.
EFFECT: method enables to recycle wastes from metallurgical production and produce a product – ferrocox with removed zinc and metallized iron suitable for use in blast-furnace production.
1 cl, 1 dwg

Description

Изобретение относится к переработке цинксодержащих отходов, а именно шламов и пылей мокрых и сухих газоочисток доменного, мартеновского, конверторного, электросталеплавильного и других производств, и может быть использовано в черной и цветной металлургии.The invention relates to the processing of zinc-containing wastes, namely, sludges and dusts of wet and dry gas cleaners of blast furnace, open-hearth, converter, electric steel and other industries, and can be used in ferrous and non-ferrous metallurgy.

Применение эффективных технологий по переработке образующихся на предприятиях металлургии промышленных отходов является одной из важнейших задач.The use of effective technologies for processing industrial waste generated at metallurgy enterprises is one of the most important tasks.

В конверторном производстве стали в зависимости от состава сырья, конструкции печей и условий плавки на тонну стали образуется 12-25 кг тонкодисперсной пыли, которая при мокрой очистке отходящих газов превращается в шлам, содержащий до 46-50% Fe2O3, что позволяет их рассматривать как ценное металлургическое сырье. Утилизация такого продукта затруднена из-за большой влажности, мелкодисперсного состава и наличия окислов цинка.In converter steelmaking, depending on the composition of the raw materials, the design of the furnaces, and the melting conditions per ton of steel, 12-25 kg of fine dust is formed, which, when the waste gases are wet cleaned, turns into sludge containing up to 46-50% Fe 2 O 3 , which allows them considered as a valuable metallurgical raw material. Disposal of such a product is difficult due to the high humidity, fine composition and the presence of zinc oxides.

Содержание цинка в шламах металлургического производства составляет 1-14%, Его повышенное содержание в исходном сырье приводит к снижению стойкости футеровки, к образованию настылей в доменной печи и разрушению агломерата, из-за чего резко ухудшаются газодинамические условия доменного процесса и уменьшается производительность доменных печей. При утилизации таких пылей присадкой их в агломерационную шихту происходит накопление цинка в получаемом агломерате. Поэтому при подготовке к утилизации шламов кислородно-конвертерного цеха, пыли дуговых сталеплавильных печей электросталеплавильного цеха, шламов доменных газоочисток с повышенным содержанием цинка необходимо наряду с обезвоживанием и окускованием предусмотреть его обесцинкование.The zinc content in the sludge of metallurgical production is 1-14%, its increased content in the feedstock leads to a decrease in the lining resistance, to the formation of deposits in the blast furnace and the destruction of the agglomerate, which dramatically worsens the gas-dynamic conditions of the blast furnace and reduces the productivity of blast furnaces. When disposing of such dusts by their addition to the sinter mixture, zinc accumulates in the resulting sinter. Therefore, in preparation for utilization of the sludge from the oxygen converter shop, dust from electric arc furnace steelmaking furnaces, blast furnace gas treatment sludges with a high content of zinc, it is necessary to provide for its dezincification along with dehydration and sintering.

Обезвоживание по традиционной технологии сложно и громоздко, связано с взрывоопасной термической сушкой, а окускование брикетированием или гранулированием осложнено дефицитом приемлемых связующих веществ и не решает проблемы присутствия оксидов цинка без последующего высокотемпературного восстановительного обжига.Dehydration according to traditional technology is difficult and cumbersome, associated with explosive thermal drying, and the agglomeration by briquetting or granulation is complicated by the deficit of acceptable binders and does not solve the problem of the presence of zinc oxides without subsequent high-temperature reduction firing.

Известна многоступенчатая технология утилизации железо цинкосодержащих шламов, предусматривающая термическую сушку цинкосодержащих шламов или их смеси с пылями в барабанной сушилке, смешивание высушенной смеси с углеродистым восстановителем, гранулирование смеси в тарельчатом грануляторе, высокотемпературную обработку в обжиговой печи при температуре 910-1100° с применением природного газа и угля, при котором оксиды железа восстанавливаются до металлического железа, а соединения цинка испаряются. Цинксодержащую пылегазовую смесь отводят из реакционной зоны обжиговой печи в количестве 70-80% от общего объема цинксодержащей пылегазовой смеси, пропускают через котел-утилизатор тепла, отгоняют цинк и улавливают возгоны цинка с получением товарного цинкового продукта (RU №2269580 МПК С22В 1/216, С22В 7/00, С22В 19/30, опубл. 10.02.2006).A multi-stage technology for utilization of iron-zinc sludge is known, which provides for the thermal drying of zinc-containing sludges or their mixtures with dusts in a drum dryer, mixing the dried mixture with a carbon reducing agent, granulating the mixture in a plate granulator, high-temperature treatment in a kiln at a temperature of 910-1100 ° using natural gas and coal, in which iron oxides are reduced to metallic iron, and zinc compounds evaporate. Zinc-containing dust-gas mixture is removed from the reaction zone of the kiln in an amount of 70-80% of the total volume of the zinc-containing dust-gas mixture, passed through a heat recovery boiler, zinc is distilled off and zinc sublimates are recovered to produce a commercial zinc product (RU No. 2269580 MPK С22В 1/216, С22В 7/00, С22В 19/30, published on 02/10/2006).

Недостатками этого способа являются применение энергозатратной и взрывоопасной технологии сушки шлама и многоступенчатость процесса окускования, являющегося отдельной стадией высокотемпературного обжига.The disadvantages of this method are the use of energy-intensive and explosive technology for drying sludge and a multi-stage process of sintering, which is a separate stage of high-temperature firing.

Техническая проблема, решаемая предлагаемым изобретением, заключается в утилизации железо цинкосодержащих отходов металлургического производства и разработке эффективной технологии с получением продукта без примеси цинка - (феррококса), пригодного для использования в доменных и сталеплавильных агрегатах.The technical problem solved by the invention consists in the utilization of iron-zinc-containing wastes of metallurgical production and the development of an effective technology to produce a product without zinc impurity - (ferrocoke), suitable for use in blast-furnace and steel-making units.

Существующая проблема решается тем, что в известном способе переработки цинксодержащих отходов металлургического производства, включающем их осушивание, смешивание осушенного шлама с углеродистым восстановителем, высокотемпературную обработку полученной смеси при температуре до 1100°, восстановление оксидов железа до металлического железа и испарение цинка, отличающийся тем, что осушивание шлама осуществляют в смесителе-дозаторе путем адсорбционного обезвоживания мелкозернистым буроугольным полукоксом взятом в соотношении 1:(1,5-2), затем отделяют увлажненный буроугольный кокс путем пневмосепарации и направляют его в промежуточный бункер, а осушенный шлам, смешанный с углеродистым восстановителем в соотношении 1:(0,5-1), подвергают термохимическому окускованию в печи с вращающимся подом, полученный после обжига феррококс охлаждают и сортируют на классы.The existing problem is solved in that in the known method for processing zinc-containing wastes of metallurgical production, including drying, mixing the dried sludge with a carbon reducing agent, high-temperature processing of the mixture at a temperature of up to 1100 ° C, reduction of iron oxides to metallic iron and evaporation of zinc, characterized in that sludge is dried in a metering mixer by adsorption dehydration with fine-grained brown coal semicoke taken in the ratio 1: (1.5-2), Then moistened brown coal coke is separated by pneumatic separation and sent to an intermediate hopper, and the dried sludge mixed with a carbon reducing agent in a ratio of 1: (0.5-1) is subjected to thermochemical agglomeration in a rotary hearth furnace, the ferrocoke obtained after firing is cooled and sorted into classes.

Технический результат, получаемый в результате использования изобретения, заключается в утилизации отходов металлургического производства и получении продукта - феррококса с удаленным цинком и металлизованным железом, пригодным к использованию в доменном производстве.The technical result obtained by using the invention is to utilize metallurgical production wastes and obtain a ferrocoke product with removed zinc and metallized iron, suitable for use in blast furnace production.

В качестве адсорбента был использован такой энергоноситель как твердый остаток пиролиза бурого угля - мелкозернистый буроугольный полукокса (БПК), который в настоящее время производится по технологии «Термококс-КС», на опытно-промышленной установке разреза Березовский-1 в г. Шарыпово Красноярского края. БПК обладает высокоразвитой и хорошо доступной пористой структурой и соответственно высокой адсорбционной способностью и высокими энергетическими свойствами.As an adsorbent, such an energy carrier was used as the solid residue of brown coal pyrolysis - fine-grained brown coal semicoke (BOD), which is currently produced using the Thermocox-KS technology, at the pilot industrial installation of the Berezovsky-1 open-cast mine in Sharypovo, Krasnoyarsk Territory. BOD has a highly developed and well-accessible porous structure and, accordingly, high adsorption capacity and high energy properties.

Объем микропор пористой структуры БПК более чем в 10 превышает объем микропор в структуре каменноугольного кокса. В связи с этим адсорбционная способность БПК, близка по этому показателю к традиционным активным углям.The micropore volume of the porous structure of BOD is more than 10 greater than the micropore volume in the structure of coal coke. In this regard, the adsorption capacity of BOD is close in this indicator to traditional activated carbons.

Определение гранулометрического состава БПК на приборе лазерной гранулометрии MALVERN-2000 показало, что он практически идентичен гранулометрии пробы шлама.The determination of the granulometric composition of the BOD using a MALVERN-2000 laser granulometry device showed that it is almost identical to the granulometry of the sludge sample.

Результаты обезвоживания оценивались по показателю сыпучести материала (ГОСТ 25139-93). В основе определения соотношения БПК: шлам, необходимого для получения сыпучей смеси, лежат данные по влажности шлама и адсорбционной способности БПК.The results of dehydration were evaluated by the flowability of the material (GOST 25139-93). The basis for determining the ratio of BOD: sludge, necessary to obtain a granular mixture, are data on the moisture content of the sludge and the adsorption capacity of the BOD.

Предварительные расчеты показали, что при данной влажности шлама и адсорбционной способности БПК их соотношение в смеси для достижения сыпучего состояния должно быть как 1:(1,5-2).Preliminary calculations showed that for a given moisture content of the sludge and the adsorption capacity of BOD, their ratio in the mixture to achieve a free-flowing state should be 1: (1.5-2).

В то же время следует отметить, что плотность частиц БПК даже при условии заполнения всего пористого пространства адсорбированной влагой (1,42 г/см3) будет более чем 2,5 раза ниже плотности частиц конверторного шлама (3,8 г/см3). Это делает возможным их пневмосепарационное разделение, после которого БПК направляется на технолого-энергетическое использование, шлам - на термохимическое окускование для получения кускового железоуглеродистого компонента доменной шихты.At the same time, it should be noted that the density of BOD particles, even if the entire porous space is filled with adsorbed moisture (1.42 g / cm 3 ), will be more than 2.5 times lower than the density of the particles of the converter slurry (3.8 g / cm 3 ) . This makes them possible pneumatic separation, after which the BOD is sent for technological and energy use, the sludge is used for thermochemical agglomeration to obtain a lumpy iron-carbon component of the blast furnace charge.

Смешивание осушенного шлама с углеродистым восстановителем (коксующиеся угли марок ГЖ и Ж) в массовом соотношении 1:(0,5-1) позволяет получить прочный кусковый материал. Выбор такого соотношения компонентов смеси базируется на представлениях о том, что в данном случае осушенный шлам является отощающей добавкой к коксующимся углям с высоким выходом летучих веществ и для получения прочного кускового материала необходимо иметь определенный уровень спекаемости смеси.Mixing the dried sludge with a carbon reducing agent (coking coals of grades GZh and Zh) in a mass ratio of 1: (0.5-1) allows you to get a solid lump material. The choice of such a ratio of the components of the mixture is based on the idea that, in this case, the dried sludge is a depleting additive to coking coals with a high yield of volatile substances, and to obtain a solid bulk material, it is necessary to have a certain level of sintering of the mixture.

Предлагаемое изобретение иллюстрируется чертежом, где изображена принципиальная технологическая схема переработки цинксодержащих металлургических шламов.The present invention is illustrated in the drawing, which shows a schematic flow diagram of the processing of zinc-containing metallurgical sludge.

На схеме изображены шламонакопитель 1, сгуститель 2, шламовый насос 3 для перекачки шлама, бункер 4 для хранения БПК, смеситель-адсорбер 5, циклон 6 для удаления более легких частиц пыли, пневмоклассификатор 7 для отделения увлажненного БПК от шлама, рукавный фильтр 8, бункер 9 для отделенного увлажненного БПК, воздуходувка 10 для пневмосепаратора, бункер 11 для углеродистого восстановителя, смеситель 12 для смешивания осушенного шлама и углеродистого восстановителя, печь с вращающимся подом 13 для коксования и получения кускового материала, газовая утилизационная бескомпрессорная турбина (ГУБТ) 14, установка сухого тушения кокса 15, устройство для сортировки феррококса 16, котел-утилизатор 17, конденсатор цинка 18.The diagram shows a sludge collector 1, a thickener 2, a slurry pump 3 for pumping sludge, a hopper 4 for storing BOD, a mixer-adsorber 5, a cyclone 6 for removing lighter dust particles, a pneumatic classifier 7 for separating the moistened BOD from sludge, a bag filter 8, a hopper 9 for separated humidified BOD, blower 10 for pneumatic separator, hopper 11 for carbon reducing agent, mixer 12 for mixing dried sludge and carbon reducing agent, a rotary hearth furnace 13 for coking and producing bulk material, gas Single recovery turbines (TPRT) 14, setting the coke dry quenching 15, the apparatus for sorting ferrokoksa 16, a waste heat boiler 17, a condenser 18 zinc.

Способ переработки осуществляется следующим образом.The processing method is as follows.

Конверторный шлам (КШ) из шламонакопителя 1 поступает в сгуститель 2 и затем передается в смеситель-адсорбер 5, для контакта с мелкозернистым буроугольным полукоксом (БПК), выполняющим функцию адсорбента влаги, поступающим из бункера 4. Затем смесь БПК+КШ передается на разделение в пневмоклассификационную установку 7, откуда более легкий БПК через пылеотделительную систему (циклон 6, рукавный фильтр 8) поступает в бункер 9, откуда забирается на энерготехнологические нужды, а очищенный от пыли воздух сбрасывается в атмосферу. Более тяжелый шлам из пневмоклассификатора 7 переходит через дозирующее устройство в смеситель 12, туда же поступает из бункера 11 через дозирующее устройство углеродный восстановитель (коксующийся уголь). Составленная в заданном соотношении смесь подвергается термоокислительному коксованию в печи с вращающимся подом 13 в течение 5-7 часов. Полученный при конечной температуре 1100°С феррококс охлаждается в агрегате сухого тушения 15 с котлом-утилизатором 17 и сортируется на классы 0-10 мм, 25-10 мм и +25 мм. Тепло для коксования формируется за счет сжигания над слоем шихты в печи с вращающимся подом 13 выделяющихся газообразных продуктов. Одновременно на конечной стадии коксования (температуры 1050-1100°С) завершаются процессы восстановления окислов железа до Feмет и окислов цинка до Znмет, степень восстановления до Feмет составляет 85-94% масс, содержание ZnO - 0,008-0,017%. Продукты сгорания газа из печи с вращающимся подом, пройдя конденсатор цинка 18, где осуществляется сбор цинка, направляются на газовую утилизационную бескомпрессорную турбину (ГУБТ) 14 и затем сбрасываются в атмосферу.Converter sludge (KS) from sludge collector 1 enters the thickener 2 and then is transferred to the mixer-adsorber 5, for contact with fine-grained brown coal semi-coke (BOD), which acts as a moisture adsorbent coming from the hopper 4. Then the BOD + KS mixture is transferred to the separation in pneumatic classification unit 7, from where the lighter BOD through the dust separation system (cyclone 6, bag filter 8) enters the hopper 9, from where it is taken up for energy-technological needs, and the air cleaned from dust is discharged into the atmosphere. Heavier sludge from the pneumatic classifier 7 passes through the metering device to the mixer 12, the carbon reducing agent (coking coal) also comes from the hopper 11 through the metering device. Composed in a predetermined ratio, the mixture is subjected to thermo-oxidative coking in a furnace with a rotating hearth 13 for 5-7 hours. The ferrocoke obtained at a final temperature of 1100 ° C is cooled in a dry extinguishing unit 15 with a waste heat boiler 17 and sorted into classes 0-10 mm, 25-10 mm and +25 mm. Heat for coking is generated by burning over a layer of the charge in the furnace with a rotating hearth 13 released gaseous products. At the same time, at the final stage of coking (temperature 1050-1100 ° С), the processes of reduction of iron oxides to Fe met and zinc oxides to Zn met are completed , the degree of reduction to Fe met is 85-94% of the mass, the content of ZnO is 0.008-0.017%. The products of gas combustion from a rotary hearth furnace, passing a zinc condenser 18, where zinc is collected, are sent to a gas utilization uncompressed turbine (GHBT) 14 and then discharged into the atmosphere.

Таким образом, разработан новый комплексный технологический энергосберегающий процесс кондиционирования железоThus, a new integrated technological energy-saving iron conditioning process was developed.

цинкосодержащих металлургических шламов нетермическим адсорбционным обезвоживанием и термохимическим окускованием с одновременным восстановлением при этом окислов железа и цинка, с получением продукта - феррококса, пригодного для использования в доменных и сталеплавильных агрегатах.zinc-containing metallurgical sludge by non-thermal adsorption dehydration and thermochemical agglomeration with the simultaneous reduction of iron and zinc oxides, with the receipt of the product - ferrocoke, suitable for use in blast furnace and steelmaking units.

Claims (1)

Способ переработки цинксодержащих металлургических шламов, включающий их осушивание, смешивание осушенного шлама с углеродистым восстановителем, высокотемпературную обработку полученной смеси при температуре до 1100°, восстановление оксидов железа до металлического железа и испарение цинка, отличающийся тем, что осушивание шлама осуществляют в смесителе-дозаторе путем адсорбционного обезвоживания мелкозернистым буроугольным полукоксом, взятым в соотношении 1:1,5-2, после чего отделяют увлажненный буроугольный кокс путем пневмосепарации и направляют его в промежуточный бункер, а осушенный шлам, смешанный с углеродистым восстановителем в соотношении 1:0,5-1, подвергают термохимическому окускованию в печи с вращающимся подом, при этом полученный после обжига феррококс охлаждают и сортируют по классам.A method of processing zinc-containing metallurgical sludges, including drying them, mixing the dried sludge with a carbon reducing agent, high-temperature processing of the resulting mixture at temperatures up to 1100 ° C, reducing iron oxides to metallic iron and evaporating zinc, characterized in that the sludge is dried in an mixer-dispenser by means of adsorption dehydration with fine-grained brown coal semicoke taken in a ratio of 1: 1.5-2, after which moistened brown coal coke is separated by pneumosepara and send it to the intermediate hopper, and the dried sludge mixed with a carbon reducing agent in a ratio of 1: 0.5-1 is subjected to thermochemical agglomeration in a rotary hearth furnace, while the ferrocoke obtained after firing is cooled and sorted into classes.
RU2019117309A 2019-06-04 2019-06-04 Method of processing zinc-containing metallurgical slurries RU2708125C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019117309A RU2708125C1 (en) 2019-06-04 2019-06-04 Method of processing zinc-containing metallurgical slurries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019117309A RU2708125C1 (en) 2019-06-04 2019-06-04 Method of processing zinc-containing metallurgical slurries

Publications (1)

Publication Number Publication Date
RU2708125C1 true RU2708125C1 (en) 2019-12-04

Family

ID=68836568

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019117309A RU2708125C1 (en) 2019-06-04 2019-06-04 Method of processing zinc-containing metallurgical slurries

Country Status (1)

Country Link
RU (1) RU2708125C1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020989A1 (en) * 2001-09-01 2003-03-13 Midrex Technologies, Inc. High temperature metal recovery process
UA4720U (en) * 2004-01-08 2005-02-15 Володимир Семенович Бойко A method for reprocessing zinc-containing WASTE of metallurgy
RU2269580C2 (en) * 2002-09-10 2006-02-10 Александр Меджитович Касимов Method of reprocessing of zinc-containing waste products of metallurgical production
RU2283360C1 (en) * 2005-08-01 2006-09-10 Владимир Александрович Гребенской Method of processing zinc-containing materials
RU2548840C1 (en) * 2014-01-09 2015-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Method of processing of fine zinc containing metallurgical scrap

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020989A1 (en) * 2001-09-01 2003-03-13 Midrex Technologies, Inc. High temperature metal recovery process
RU2269580C2 (en) * 2002-09-10 2006-02-10 Александр Меджитович Касимов Method of reprocessing of zinc-containing waste products of metallurgical production
UA4720U (en) * 2004-01-08 2005-02-15 Володимир Семенович Бойко A method for reprocessing zinc-containing WASTE of metallurgy
RU2283360C1 (en) * 2005-08-01 2006-09-10 Владимир Александрович Гребенской Method of processing zinc-containing materials
RU2548840C1 (en) * 2014-01-09 2015-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Method of processing of fine zinc containing metallurgical scrap

Similar Documents

Publication Publication Date Title
CN108796217B (en) Device and method for recycling zinc-containing and iron-containing dust mud
KR101493965B1 (en) Process for recovering iron and zinc from iron and zinc-bearing waste
RU2306348C1 (en) Method of processing zinc-containing waste of ferrous metallurgy
KR19990087253A (en) Processing method and apparatus of steel dust
CA2444158A1 (en) Method for producing feed material for molten metal production and method for producing molten metal
US4209322A (en) Method for processing dust-like matter from metallurgical waste gases
RU2404271C1 (en) Processing method of unconditioned iron- and zinc-containing metallurgical wastes
EP3197828B1 (en) Phosphorous pentoxide producing methods and systems with increased agglomerate compression strength
RU2708125C1 (en) Method of processing zinc-containing metallurgical slurries
JP3304872B2 (en) Method and apparatus for rapid reduction of iron oxide in rotary hearth heating furnace
RU2484153C2 (en) Method of arc-furnace dust recovery
US4091545A (en) Method for removing water and grease deposit from rolling mill sludge
JP2015196896A (en) Method of regenerating oil-containing waste to useful material
Yur'ev et al. Process Development for Integrated Use of Metallurgical Production Wastes
JP2005501967A (en) High temperature metal recovery process
RU2240361C2 (en) Method of removing zinc and reducing iron oxide waste (metallization)
AU719637B2 (en) Reuse of metallurgical fines
KR910001010B1 (en) Method for recovering zinc from substances containing a zinc conpound
RU2269580C2 (en) Method of reprocessing of zinc-containing waste products of metallurgical production
Kuznetsov et al. Processing of converter sludges on the basis of thermal-oxidative coking with coals
GB1572566A (en) Process for producing reduced iron pellets from iron-containing dust
RU2430972C1 (en) Procedure for fabrication of metallised product
Khattoi et al. Sponge Iron Production From Ore-Coal Composite Pellets in Tunnel Kiln
Yur’yev et al. Development of the Technology for the Extraction of Zinc and Iron from Metallurgical Waste
Long et al. Comprehensive Utilization of Iron-Bearing Converter Wastes