RU2707976C1 - Способ определения координат точки падения макета боеприпаса - Google Patents

Способ определения координат точки падения макета боеприпаса Download PDF

Info

Publication number
RU2707976C1
RU2707976C1 RU2019115311A RU2019115311A RU2707976C1 RU 2707976 C1 RU2707976 C1 RU 2707976C1 RU 2019115311 A RU2019115311 A RU 2019115311A RU 2019115311 A RU2019115311 A RU 2019115311A RU 2707976 C1 RU2707976 C1 RU 2707976C1
Authority
RU
Russia
Prior art keywords
ammunition
point
measuring device
target
center
Prior art date
Application number
RU2019115311A
Other languages
English (en)
Inventor
Андрей Григорьевич Рыбалко
Александр Владиславович Ананьев
Роман Петрович Клевцов
Original Assignee
Андрей Григорьевич Рыбалко
Александр Владиславович Ананьев
Роман Петрович Клевцов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей Григорьевич Рыбалко, Александр Владиславович Ананьев, Роман Петрович Клевцов filed Critical Андрей Григорьевич Рыбалко
Priority to RU2019115311A priority Critical patent/RU2707976C1/ru
Application granted granted Critical
Publication of RU2707976C1 publication Critical patent/RU2707976C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Изобретение относится к способам проведения испытаний огневых комплексов, в частности для оценки точности попадания в цель макета боеприпаса. Для определения координат точки падения макета боеприпаса (1) на бомбардировочную мишень сбрасывают макет боеприпаса (1), на площадке (2) в центре бомбардировочной мишени устанавливают лазерное измерительное устройство (3), в центр точки падения макета (1) устанавливают отражатель (4), поворачивают лазерное измерительное устройство (3) вокруг своей вертикальной оси, ориентируют его на центр отражателя (4) и излучают зондирующий лазерный сигнал. С помощью лазерного измерительного устройства (3) принимают отраженный лазерный сигнал и измеряют временной интервал между излучением зондирующего и приемом отраженного лазерного сигнала. В лазерном измерительном устройстве (3) автоматически происходит пересчет измеренного временного интервала в линейную величину, а измеренное значение дальности отображается на индикаторе. Обеспечивается повышение точности определения координат точки падения макета боеприпаса, в том числе при отсутствии в момент удара макета боеприпаса о грунт излучения и сейсмических колебаний. 1 ил.

Description

Известен способ определения координат точки падения боеприпаса, в описании изобретения к патенту №2516205, МПК F41J 5/00, от 27.03.2012, опубл. 20.05.2014, основанный на установке по периметру испытательного полигона сейсмических регистраторов, приеме и анализе параметров сейсмических колебаний, определении координат точки удара боеприпаса о грунт - эпицентра сейсмических колебаний по их параметрам, отличающийся тем, что дополнительно устанавливают по периметру испытательного полигона оптико-электронные пеленгаторы, принимают рассеянное атмосферным каналом распространения оптическое излучение источника - факела взрыва боеприпаса, измеряют значения углов пеленгов на источник оптического излучения - факел взрыва боеприпаса и определяют координаты точки падения боеприпаса по координатам точки пересечения линий пеленгов.
Недостатком использования данного способа для определения координат точки падения макета боеприпаса является недостаточная точность определения координат точки падения макета боеприпаса, обусловленная отсутствием в момент удара макета боеприпаса о грунт излучения и сейсмических колебаний.
Наиболее близким к предлагаемому способу является способ определения координат точки падения боеприпаса на основе инструментального обмера [Министерство Обороны Российской Федерации. Приказ от 25 октября 2001 года N 431 «Об утверждении Федеральных авиационных правил по организации полигонной службы в государственной авиации. Зарегистрировано в Министерстве юстиции Российской Федерации 21 марта 2002 года, регистрационный номер 3318], заключающийся в том, что в точку падения боеприпаса устанавливают дальномерную рейку, из центра мишени измеряют азимут на установленную рейку, измеряют угловые размеры рейки, пересчитывают угловой размер в дальность до установленной рейки [см, Подшивалов, В.П., М.С. Нестеренок. Инженерная геодезия: учебник / Минск: Выш. шк., 2011 г., с. 116 и 139].
Недостатком использования данного способа для определения координат точки падения боеприпаса является недостаточная точность определения координат точки падения боеприпаса средствами оптического измерения и ошибками оператора при визуальном наблюдении.
Техническим результатом изобретения является повышение точности определения координат точки падения макета боеприпаса.
Технический результат в способе определения координат точки падения макета боеприпаса достигается за счет того, что на бомбардировочную мишень сбрасывают макет боеприпаса, затем на площадку в центр бомбардировочной мишени устанавливают лазерное измерительное устройство, а в центр точки падения макета боеприпаса устанавливают отражатель, поворачивают лазерное измерительное устройство вокруг своей вертикальной оси и ориентируют его на центр отражателя и излучают зондирующий лазерный сигнал, который отражается на лазерное измерительное устройство, с помощью которого принимают отраженный лазерный сигнал и измеряют временной интервал между излучением зондирующего и приемом отраженного лазерного сигнала, при этом в лазерном измерительном устройстве автоматически происходит пересчет измеренного временного интервала в линейную величину, а измеренное значение дальности отображается на встроенном в устройство индикаторе.
Сущность изобретения заключается в измерении временного интервала между излучением зондирующего сигнала из центра мишени и регистрации отраженного сигнала от отражателя, размещенного в точке падения макета боеприпаса, с последующим пересчетом в линейную величину.
Сопоставительный анализ заявляемого решения с прототипом позволяет сделать вывод, о том, что заявляемое изобретение отвечает условиям патентоспособности: является новым, имеет изобретательский уровень и промышленно применимо.
Способ определения координат точки падения макета боеприпаса поясняется следующим чертежом:
на фиг. 1 изображен способ определения координат точки падения макета;
Заявляемый способ осуществляется следующим образом.
Макет боеприпаса 1 сбрасывают на бомбардировочную мишень. В центр бомбардировочной мишени на площадку 2 устанавливают лазерное измерительное устройство 3. В качестве такого устройства может быть использован лазерный дальномер, лазерная рулетка, тахеометр. Если для определения дальности до точки падения макета боеприпаса применяется лазерный дальномер или лазерная рулетка, то для вычисления азимута точки падения макета боеприпаса, необходимо использовать теодолит или геодезическую буссоль. Тахеометр позволяет определять обе координаты точки падения макета боеприпаса (и азимут и дальность) одновременно.
В центр точки падения макета боеприпаса 1 устанавливают отражатель 4. В качестве отражателя 4 может быть использована триппель-призма или отражатель с маркой. Путем поворота лазерного измерительного устройства 3 вокруг своей вертикальной оси ориентируют его по направлению на центр отражателя 4. Из лазерного измерительного устройства 3 излучают зондирующий лазерный сигнал на отражатель 4. Излученный сигнал отражается от отражателя 4 на лазерное измерительное устройство 3. С помощью лазерного измерительного устройства 3 принимают отраженный лазерный сигнал и измеряют временной интервал между излучением зондирующего и приемом отраженного лазерного сигнала. В лазерном измерительном устройстве 3 автоматически происходит пересчет измеренного временного интервала в линейную величину дальности по формуле:
Figure 00000001
где υ - средняя скорость электромагнитной волны в воздушной среде, м/с; τ - измеренное время между излучением и приемом лазерного сигнала, с; N - число импульсов, автоматически определяемое в устройстве за время прохождения световым лучом двойного расстояния 2Д; f - частота следования импульсов, Гц. Измеренное значение дальности отображается на встроенном в устройство 3 индикаторе. Пример 1.
Макет боеприпаса 1 сбрасывают на бомбардировочную мишень. В центр бомбардировочной мишени на площадку 2 устанавливают лазерный дальномер 3. В центр точки падения макета боеприпаса 1 устанавливают триппель-призму 4. Лазерный дальномер 3, вращением вокруг своей вертикальной оси, ориентируют по направлению на центр триппель-призмы 4. Включают устройство в работу, при этом из лазерного дальномера 3 излучается зондирующий лазерный сигнал в центр триппель-призмы 4, отражается от нее в обратную сторону. С помощью лазерного дальномера 3 принимают отраженный лазерный сигнал. В лазерном дальномере 3 происходит автоматическое измерение временного интервала между излучением зондирующего и приемом отраженного лазерного сигнала, с последующим пересчетом по формуле (1) измеренного временного интервала в линейную величину дальности. На встроенном в лазерный дальномер 3 индикаторе отображается измеренное значение дальности до точки падения макета боеприпаса 15,437 м. Значение азимута точки падения макета боеприпаса 226° определяют с помощью теодолита. Пример 2.
Макет боеприпаса 1 сбрасывают на бомбардировочную мишень. В центр бомбардировочной мишени на площадку 2 устанавливают тахеометр 3. В центр точки падения макета боеприпаса 4 устанавливают отражатель с маркой 4. Тахеометр 3, вращением вокруг своей вертикальной оси, ориентируют по направлению на центр отражателя с маркой 4. Включают устройство в работу, при этом из тахеометра 3 излучается зондирующий лазерный сигнал в центр отражателя с маркой 4, отражается от нее в обратную сторону. С помощью тахеометра 3 принимают отраженный лазерный сигнал. В тахеометре 3 происходит автоматическое измерение временного интервала между излучением зондирующего и приемом отраженного лазерного сигнала, с последующим пересчетом по формуле (1) измеренного временного интервала в линейную величину дальности. На встроенном в тахеометр 3 индикаторе отображается измеренное значение азимута и дальности до точки падения макета боеприпаса азимут - 146°, дальность - 6,762 м.
Использование заявляемого изобретения позволит повысить точность определения координат точки падения макета боеприпаса.

Claims (1)

  1. Способ определения координат точки падения макета боеприпаса, отличающийся тем, что на бомбардировочную мишень сбрасывают макет боеприпаса, затем на площадку в центр бомбардировочной мишени устанавливают лазерное измерительное устройство, а в центр точки падения макета боеприпаса устанавливают отражатель, поворачивают лазерное измерительное устройство вокруг своей вертикальной оси, ориентируют его на центр отражателя и излучают зондирующий лазерный сигнал, с помощью лазерного измерительного устройства принимают отраженный лазерный сигнал и измеряют временной интервал между излучением зондирующего и приемом отраженного лазерного сигнала, при этом в лазерном измерительном устройстве автоматически происходит пересчет измеренного временного интервала в линейную величину, а измеренное значение дальности отображается на индикаторе.
RU2019115311A 2019-05-20 2019-05-20 Способ определения координат точки падения макета боеприпаса RU2707976C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019115311A RU2707976C1 (ru) 2019-05-20 2019-05-20 Способ определения координат точки падения макета боеприпаса

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019115311A RU2707976C1 (ru) 2019-05-20 2019-05-20 Способ определения координат точки падения макета боеприпаса

Publications (1)

Publication Number Publication Date
RU2707976C1 true RU2707976C1 (ru) 2019-12-03

Family

ID=68836305

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019115311A RU2707976C1 (ru) 2019-05-20 2019-05-20 Способ определения координат точки падения макета боеприпаса

Country Status (1)

Country Link
RU (1) RU2707976C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113124719A (zh) * 2021-04-24 2021-07-16 西安工业大学 一种激光测距扫描式精度靶及其测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333106A (en) * 1979-05-04 1982-06-01 Gunter Lowe Method of measuring firing misses and firing miss-measuring installation for the performance of the method
FR2751756A1 (fr) * 1996-07-24 1998-01-30 Rech Service X Procede et dispositif d'aide a la detection de projectile
RU2516205C2 (ru) * 2012-03-27 2014-05-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ определения координат точки падения боеприпаса
EP2793043A1 (en) * 2013-04-18 2014-10-22 Airbus Defence and Space GmbH Determination of weapon locations and projectile trajectories by using automatic and hybrid processing of acoustic and electromagnetic detections
RU2593523C2 (ru) * 2014-12-29 2016-08-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения координат падения боеприпасов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333106A (en) * 1979-05-04 1982-06-01 Gunter Lowe Method of measuring firing misses and firing miss-measuring installation for the performance of the method
FR2751756A1 (fr) * 1996-07-24 1998-01-30 Rech Service X Procede et dispositif d'aide a la detection de projectile
RU2516205C2 (ru) * 2012-03-27 2014-05-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ определения координат точки падения боеприпаса
EP2793043A1 (en) * 2013-04-18 2014-10-22 Airbus Defence and Space GmbH Determination of weapon locations and projectile trajectories by using automatic and hybrid processing of acoustic and electromagnetic detections
RU2593523C2 (ru) * 2014-12-29 2016-08-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения координат падения боеприпасов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113124719A (zh) * 2021-04-24 2021-07-16 西安工业大学 一种激光测距扫描式精度靶及其测试方法
CN113124719B (zh) * 2021-04-24 2023-12-01 西安工业大学 一种激光测距扫描式精度靶及其测试方法

Similar Documents

Publication Publication Date Title
Chanin et al. A Doppler lidar for measuring winds in the middle atmosphere
US9007570B1 (en) Airborne wind profiling algorithm for Doppler Wind LIDAR
ES2540737T3 (es) Procedimiento para la detección de la trayectoria de vuelo de proyectiles
CN104678369A (zh) 一种基于非固定金属球的双偏振天气雷达标校方法
RU2503969C1 (ru) Триангуляционно-гиперболический способ определения координат радиоизлучающих воздушных объектов в пространстве
CN102508222A (zh) 一种中高层大气风场反演方法
CN110006848A (zh) 一种获取气溶胶消光系数的方法和装置
CN111766571B (zh) 红外测距仪室外校准方法
RU2707976C1 (ru) Способ определения координат точки падения макета боеприпаса
CN110162735A (zh) 一种基于激光测距望远镜的弹道轨迹计算方法及系统
CN106814368A (zh) 基于激光测距原理的弹丸着靶坐标测量装置及测量方法
RU2516205C2 (ru) Способ определения координат точки падения боеприпаса
US20230058539A1 (en) Firearms instrumenting system integrating distinct measurements that influences the balistic trajectory and its corresponding data retrieval
CN108844498A (zh) 双激光器火炮身管内膛直线度检测设备
RU2691274C1 (ru) Способ определения точек падения боеприпасов
RU2708705C1 (ru) Способ определения координат точки падения макета боеприпаса лазерным измерительным устройством
CN110471078A (zh) 一种光量子测高望远镜及测高方法
CN110006849A (zh) 一种获取气溶胶消光系数的方法和装置
RU2541677C2 (ru) Установка для бестрассовой проверки лазерного дальномера
CN107782333B (zh) 卧式弹着点被动声定位装置的测前调试装置及调试方法
RU2488138C1 (ru) Имитатор морской поверхности для статистического исследования распределения морских бликов при работе лазерных доплеровских локаторов по низколетящим ракетам
RU2797241C1 (ru) Стенд для измерения пеленгационной характеристики аппаратуры обнаружения лазерного подсвета
Qin et al. Prediction of Point of impact of anti-ship missile—An approach combining target geometic features, circular error probable (CEP) and laser fuze
RU2594950C1 (ru) Способ определения погрешности геодезических приборов за неправильность формы цапф и боковое гнутие зрительной трубы
Mazalová et al. Testing of accuracy of reflectorless distance measurement of selected Leica and Topcon total stations