RU2707387C1 - Способ дистанционного определения пространственного распределения теплофизических параметров земной поверхности - Google Patents
Способ дистанционного определения пространственного распределения теплофизических параметров земной поверхности Download PDFInfo
- Publication number
- RU2707387C1 RU2707387C1 RU2019105773A RU2019105773A RU2707387C1 RU 2707387 C1 RU2707387 C1 RU 2707387C1 RU 2019105773 A RU2019105773 A RU 2019105773A RU 2019105773 A RU2019105773 A RU 2019105773A RU 2707387 C1 RU2707387 C1 RU 2707387C1
- Authority
- RU
- Russia
- Prior art keywords
- earth
- values
- visible
- spatial distribution
- thermal
- Prior art date
Links
- 238000009826 distribution Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000005855 radiation Effects 0.000 claims abstract description 19
- 238000010521 absorption reaction Methods 0.000 claims abstract description 7
- 238000012544 monitoring process Methods 0.000 abstract description 6
- 230000001066 destructive effect Effects 0.000 abstract 2
- 230000021615 conjugation Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 238000007689 inspection Methods 0.000 abstract 1
- 238000007670 refining Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000011159 matrix material Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000001931 thermography Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0003—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/02—Prospecting
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Изобретение относится к технике активного неразрушающего теплового контроля и может быть использовано в аппаратуре дистанционного зондирования земли. Согласно заявленному способу осуществляют съемку земной поверхности в ИК диапазоне, измеряют значения радиационной температуры исследуемой поверхности, определяют пространственное распределение значений теплопроводности, температуропроводности, тепловой инерции и коэффициента теплоусвоения. Дополнительно осуществляют съемку земной поверхности в видимом диапазоне, усредняют полученные изображения видимого и ИК диапазонов, определяют коэффициент излучающей способности земной поверхности. Пересчитывают измеренные значения радиационных температур в термодинамические, выделяют фон на видимом и ИК изображениях, определяют структуру земной поверхности. С учетом полученных результатов уточняют граничные условия при расчете пространственного распределения значений теплопроводности, температуропроводности, тепловой инерции и коэффициента теплоусвоения земной поверхности. Технический результат - повышение точности оценки значений теплофизических параметров за счет определения структуры земной поверхности и уточнения в соответствии с этим граничных условий сопряжения слоистых сред, а также определения коэффициента излучающей способности земной поверхности с расположенными на ней техногенными объектами при проведении дистанционного мониторинга. 2 ил., 1 табл.
Description
Способ относится к методам активного теплового неразрушающего контроля, заключающийся в определении пространственного распределения теплофизических параметров путем совместной обработки изображений исследуемого участка земной поверхности в видимом и инфракрасном (ИК) диапазонах длин волн, полученных с помощью многоспектральной оптико-электронной системы.
Известен способ измерения пространственного распределения теплофизических параметров изотропных материалов, заключающийся в измерении пространственного распределения теплофизических параметров изотропного материала с применением теплового воздействия от ИК источника нагрева на поверхность изотропного материала и дистанционным измерением с помощью тепловизионного приемника радиационного температурного поля во всех точках пространственной сетки видимой поверхности исследуемого изотропного материала (патент RU 2544890, G01N 25/18, 20.03.15). Основным недостатком данного способа являются низкая точность результатов исследования и возможность его применения только в лабораторных условиях.
Известен способ определения пространственного распределения теплофизических параметров исследуемой земной поверхности с использованием эталонных материалов с известными значениями теплопроводности (патент RU 2659461 С2, 02.07.2018), ближайший по технической сущности и принятый за прототип. Данный способ основан на облете исследуемой территории беспилотным летательным аппаратом с установленным на нем тепловизионным приемником, измерении радиационной температуры поверхности земли и расчете теплопроводности и температуропроводности и построения их пространственного распределения.
Основные недостатки данного способа заключаются в том, что при измерении радиационных температур земной поверхности в ходе ведения дистанционного мониторинга не учитывается коэффициент излучательной способности земной поверхности, а также не учитывается неоднородность исследуемого участка земной поверхности из-за наличия на нем надповерхностных и подповерхностных объектов, обуславливающих его многослойность, что может вносить большие погрешности оценки значений теплофизических параметров земной поверхности.
Технический результат изобретения заключается в повышении точности оценки значений теплофизических параметров за счет определения структуры земной поверхности и уточнения в соответствии с этим граничных условий сопряжения слоистых сред, а также определения коэффициента излучающей способности земной поверхности с расположенными на ней техногенными объектами при проведении дистанционного мониторинга.
Данный технический результат достигается тем, что в способе дистанционного определения пространственного распределения теплофизических параметров земной поверхности, основанного на съемке земной поверхности в ИК диапазоне, измерении значений радиационной температуры исследуемой поверхности, и расчете и построении пространственного распределения значений теплопроводности, температуропроводности, тепловой инерции и коэффициента теплоусвоения, дополнительно осуществляют съемку земной поверхности в видимом диапазоне, усредняют полученные изображения видимого и ИК диапазонов, определяют коэффициент излучающей способности земной поверхности, пересчитывают измеренные значения радиационных температур в термодинамические, выделяют фон на видимом и ИК изображениях, определяют структуру земной поверхности, с учетом полученных результатов уточняют граничные условия при расчете пространственного распределения значений теплопроводности, температуропроводности, тепловой инерции и коэффициента теплоусвоения земной поверхности.
Сущность изобретения заключается в том, что дополнительно осуществляют съемку земной поверхности в видимом диапазоне, усредняют полученные изображения видимого и ИК диапазонов, определяют коэффициент излучающей способности земной поверхности, пересчитывают измеренные значения радиационных температур в термодинамические, выделяют фон на видимом и ИК изображениях, определяют структуру земной поверхности, с учетом полученных результатов уточняют граничные условия при расчете пространственного распределения значений теплопроводности, температуропроводности, тепловой инерции и коэффициента теплоусвоения земной поверхности.
На фиг. 1 представлен вариант схемы устройства, реализующего предлагаемый способ дистанционного определения теплофизических параметров и их пространственного распределения по поверхности исследуемого района земной поверхности, где:
1 - оптико-электронная система ИК диапазона;
2 - оптико-электронная система видимого диапазона;
3.1 - блок фильтрации изображений ИК диапазона;
3.2 - блок фильтрации изображений видимого диапазона;
4.1 - блок выделения фона на изображениях ИК диапазона;
4.2 - блок выделения фона на изображениях видимого диапазона;
5 - блок расчета термодинамических температур;
6 - блок определения структуры поверхности;
7 - блок параметров граничных условий поверхности;
8 - блок расчета пространственного распределения теплофизических параметров;
9 - блок регистрации и выдачи метеорологических условий;
10 - блок регистрации количества суммарной солнечной радиации;
11 - блок расчета температурного поля земной поверхности;
Блоки 1 и 2 предназначены для получения изображений исследуемой поверхности в ИК и видимом диапазонах соответственно. Съемка в ИК диапазоне осуществляется с заданной периодичностью в течение всего времени проведения мониторинга, а в видимом диапазоне - с заданной периодичностью только в светлое время суток. Таким образом, получают совокупность многовременных изображений исследуемого участка земной поверхности в ИК и видимом диапазонах длин волн соответственно.
Блоки 3.1 и 3.2 предназначены для фильтрации полученных ИК и видимых изображений путем получения среднего значения по нескольким изображениям в соответствии с выражениями:
Где Gk - матрицы отдельно взятых изображений ИК и видимого диапазонов соответственно из множества одновременных K и L выборок; - матрица усредненного видимого изображения; - матрица усредненного ИК изображения. [Яне Б. Цифровая обработка изображений Москва.: Техносфера, 2007 г. - с. 109].
Блоки 4.1 и 4.2 предназначены для выделения фона на усредненных ИК изображении и видимом изображении Операция выделения фона может быть выполнена, например, путем сегментации данных изображений, заключающейся в определении принадлежности каждого отдельно взятого пикселя изображения к фону или к объекту. Операция сегментации из исходного изображения образует бинарное изображение, каждый пиксель которого имеет значение единицы, если он принадлежит объекту, в противном случае он равен нулю и принадлежит фону. Операция сегментации выполняется в блоках 4.1 и 4.2 для усредненных ИК изображения и видимого изображения соответственно и может быть реализована, например, на основе метода анализа контуров. [Яне Б. Цифровая обработка изображений Москва.: Техносфера, 2007 г. - с. 445, 449-450]. В результате на выходе блоков 4.1 и 4.2 получают бинарные ИК изображение и видимое изображение на которых пиксели с нулевыми значениями соответствуют фону, а пиксели, значения которых равны единице соответствуют объектам.
Блок 6 предназначен для определения структуры земной поверхности. Эта задача может быть решена, например, путем совмещения бинарного видимого изображения G' с бинарным ИК изображением Y' и последовательного покоординатного сравнения между собой каждой пары совмещенных пикселей g' и у' видимого и ИК изображений соответственно, например, с использованием функции алгебраической логики в соответствии с таблицей истинности.
Из таблицы следует, что:
если на обоих изображениях присутствует фон (g'=0, y'=0), то принимается решение о наличии фона;
если на бинарном видимом изображении присутствует фон, а на бинарном ИК изображении - объект (g'=0, у'=1), то принимается решение о наличии подповерхностного объекта;
если на бинарном видимом изображении присутствует объект, а на бинарном ИК изображении - фон или объект (g'=1, y'=0; g'=1, у'=1), то принимается решение о наличии надповерхностного объекта в данной точке пространственной сетки земной поверхности.
Реализация данной логической функции может быть выполнена на основе функциональной схемы, представленной на фиг. 2.
На выходе блока 6 получают матрицу-вектор Z, элементы которой Z1 и Z2 являются управляющими параметрами, на основе которых уточняются граничные условия для каждой точки пространственной сетки земной поверхности.
Блок 7 предназначен для уточнения и выдачи параметров граничных условий сопряжения слоистых сред μ, определяющих тепловые состояния граничных поверхностей сред и описанных, например, в статье И.Н. Ищука, А.А. Долгова, А.А. Бебенина и С.А. Панова «Расчет пространственного распределения температурных полей при дистанционном мониторинге поверхности территорий с беспилотного летательного аппарата», журнал Сибирского федерального университета «Техника и технологии» №11(3), 2018 г., с. 273-279, на основе поступающих в него управляющих параметров Z1 и Z2 - элементов матрицы Z.
В блоке 11 осуществляется расчет пространственного распределения термодинамических температур на поверхности исследуемого района на основе уточненных граничных условий μ, поступающих с блока 7, значений суммарной солнечной радиации Q, поступающей с блока 10, а также метеорологических условий: температуры воздуха ТА и скорости ветра Fƒ в приземном слое, влажности U, поступающих с блока 9, путем численного решения прямой задачи теплопроводности для исследуемого участка земной поверхности с граничными условиями μ, задаваемыми управляющими параметрами Z1 и Z2 матрицы Z. Измерения значений метеорологических параметров и количества суммарной солнечной радиации производятся с периодичностью проведения съемки в ИК диапазоне.
Регистрация количества суммарной солнечной радиации Q, поступающей на земную поверхность может производиться пиранометром.
Значения измеренных радиационных температур ИК изображений земной поверхности, полученных с оптико-электронной системы ИК диапазона (блок 1), поступает на блок 5, осуществляющий расчет термодинамических температур. Пересчет значений радиационных температур в термодинамические осуществляется в соответствии с уравнением [Яне Б. Цифровая обработка изображений Москва.: Техносфера, 2007 г. - с. 183]:
где Tr - значение радиационной температуры поверхности исследуемой территории Т - значение термодинамической температуры поверхности исследуемой территории, ε - коэффициент излучательной способности для спектрального диапазона в котором работает телевизионный приемник, ТА - значение приземной температуры воздуха.
В большинстве случаев ИК термография оперирует с оптически непрозрачными средами, в которых коэффициент пропускания среды равен нулю [В.П. Вавилов Инфракрасная термография и тепловой контроль. - М.: ИД Спектр, 2009 - с. 263-264]. В результате имеет место следующее соотношение:
где ε - коэффициент излучательной способности; А - коэффициент отражательной способности поверхности.
Расчет значений теплофизических параметров и их пространственное распределение на исследуемой поверхности осуществляется в блоке 8 в два этапа.
На первом этапе решается многопараметрическая оптимизационная задача, учитывающая тепловой режим исследуемого района земной поверхности, находящейся в условиях естественного теплообмена с окружающей средой, которые описываются уравнением радиационного баланса земной поверхности. [Л.Т. Матвеев Курс общей метеорологии. Физика атмосферы, издание 2-е переработанное и дополненное, - Ленинград.: Гидрометеоиздат, 1984. - с. 198]. Решение оптимизационной задачи находится путем минимизации функционала невязки моделируемого Т и эмпирически измеренного температурных полей поверхности района мониторинга:
где ψ{Λ,h,Q,Fƒ,TA} - вектор оптимизируемых параметров математической модели для исследуемой поверхности; Λ{λi,Ci,ρi} - совокупность теплофизических параметров используемой математической модели; λi - теплопроводность i-го слоя, Ci - удельная теплоемкость i-го слоя, ρi - плотность i-го слоя - номер слоя; h - глубина моделирования; Q - поток суммарной солнечной радиации, приходящей на исследуемую поверхность; Fƒ - скорость ветра в приземном слое; ТА - температура воздуха в приземном слое; ξ1,ξ2 - весовые коэффициенты; T[ψ] - температурное поле, полученное решением прямой задачи теплопроводности численными методами; t∈[0,τ] - временной интервал наблюдения; - матрица пространственного распределения теплофизических параметров на исследуемой поверхности; Ω - площадь исследуемой поверхности; Dƒ - множество допустимых значений ƒ.
На втором этапе, для температурного поля, полученного в результате решения оптимизационной задачи (5), решается коэффициентная обратная задача нахождения значений и пространственного распределения теплофизических параметров в каждой точке пространственной сетки исследуемого участка земной поверхности, которые могут быть представлены в виде следующих матриц [А.А. Самарский, П.Н. Вабишевич Численные методы решения обратных задач математической физики. М.: Едиториал УРСС, 2004. - с. 24-27]:
Здесь матрица (6) - распределение теплопроводности, а матрица (7) - распределение температуропроводности исследуемой земной поверхности.
По полученным распределениям теплопроводности и температуропроводности (6) и (7) определяют значения тепловой инерции земной поверхности [К.Ф. Фокин. Строительная теплотехника ограждающих частей зданий. - 4-е, переработанное и дополненное. - Москва: Стройиздат, 1973. - с. 117]:
а также коэффициенты теплоусвоения земной поверхности [К.Ф. Фокин. Строительная теплотехника ограждающих частей зданий. - 4-е, переработанное и дополненное. - Москва: Стройиздат, 1973. - с. 112-115]:
где τ - временной интервал наблюдения.
Из описания следует, что схема устройства, реализующая предлагаемый способ, может быть реализована на основе известных функциональных устройств: суммирующих и вычитающих устройств, устройств умножения и деления, возведения в степень и извлечения корня, а также логических и интегрирующих устройств, которые подробно описаны с конструктивными признаками их технической реализации, например, в книге: Шумоподобные сигналы в системах передачи информации. / Под ред. Пестрякова В.Б. М.: Сов. радио, 1973. Все вычислительные операции в данном способе являются элементарными в техническом исполнении и могут быть реализованы в едином специально запрограммированном устройстве.
Таким образом, предлагаемый способ дистанционного определения пространственного распределения теплофизических параметров земной поверхности не имеет принципиальных ограничений в техническом исполнении и может быть реализован на основе известных функциональных устройств радиоэлектроники.
Claims (1)
- Способ дистанционного определения пространственного распределения теплофизических параметров земной поверхности, основанный на съемке земной поверхности в ИК диапазоне, измерении значений радиационной температуры исследуемой поверхности и расчете и построении пространственного распределения значений теплопроводности, температуропроводности, тепловой инерции и коэффициента теплоусвоения, отличающийся тем, что дополнительно осуществляют съемку земной поверхности в видимом диапазоне, усредняют полученные изображения видимого и ИК диапазонов, определяют коэффициент излучающей способности земной поверхности, пересчитывают измеренные значения радиационных температур в термодинамические, выделяют фон на видимом и ИК изображениях, определяют структуру земной поверхности, с учетом полученных результатов уточняют граничные условия при расчете пространственного распределения значений теплопроводности, температуропроводности, тепловой инерции и коэффициента теплоусвоения земной поверхности.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019105773A RU2707387C1 (ru) | 2019-02-28 | 2019-02-28 | Способ дистанционного определения пространственного распределения теплофизических параметров земной поверхности |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019105773A RU2707387C1 (ru) | 2019-02-28 | 2019-02-28 | Способ дистанционного определения пространственного распределения теплофизических параметров земной поверхности |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2707387C1 true RU2707387C1 (ru) | 2019-11-26 |
Family
ID=68653120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019105773A RU2707387C1 (ru) | 2019-02-28 | 2019-02-28 | Способ дистанционного определения пространственного распределения теплофизических параметров земной поверхности |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2707387C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2760528C1 (ru) * | 2021-03-01 | 2021-11-26 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ дистанционной оценки пространственного распределения теплофизических параметров объектов и фонов |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006292604A (ja) * | 2005-04-13 | 2006-10-26 | Keio Gijuku | 断熱材の断熱特性リモートセンシング方法及び装置 |
RU2395074C2 (ru) * | 2008-07-21 | 2010-07-20 | Государственное образовательное учреждение высшего профессионального образования Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) | Способ идентификации скрытых объектов в грунте |
RU2544894C1 (ru) * | 2013-08-23 | 2015-03-20 | Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" | Способ оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона |
RU2659461C2 (ru) * | 2016-05-04 | 2018-07-02 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ дистанционного определения пространственного распределения теплофизических параметров поверхности земли |
-
2019
- 2019-02-28 RU RU2019105773A patent/RU2707387C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006292604A (ja) * | 2005-04-13 | 2006-10-26 | Keio Gijuku | 断熱材の断熱特性リモートセンシング方法及び装置 |
RU2395074C2 (ru) * | 2008-07-21 | 2010-07-20 | Государственное образовательное учреждение высшего профессионального образования Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) | Способ идентификации скрытых объектов в грунте |
RU2544894C1 (ru) * | 2013-08-23 | 2015-03-20 | Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" | Способ оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона |
RU2659461C2 (ru) * | 2016-05-04 | 2018-07-02 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ дистанционного определения пространственного распределения теплофизических параметров поверхности земли |
Non-Patent Citations (3)
Title |
---|
Ищук И.Н., Долгов А.А. "Расчет пространственного распределения температурных полей при дистанционном мониторинге поверхности территорий с беспилотного летательного аппарата". Журнал Сибирского федерального университета. Серия: Техника и технологии, 2018, ТОМ 11, номер 3, с.273-279. * |
Ищук И.Н., Долгов А.А. "Расчет пространственного распределения температурных полей при дистанционном мониторинге поверхности территорий с беспилотного летательного аппарата". Журнал Сибирского федерального университета. Серия: Техника и технологии, 2018, ТОМ 11, номер 3, с.273-279. Ищук, И.Н., Степанов Е.А. и др., "Способ классификации объектов оптико-электронными системами разведки на основе обработки многоспектрального кубоида изображений", Журнал Сибирского федерального университета, Серия: Техника и технологии, 2017, Том 10, номер 2, С. 183-190. * |
Ищук, И.Н., Степанов Е.А. и др., * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2760528C1 (ru) * | 2021-03-01 | 2021-11-26 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ дистанционной оценки пространственного распределения теплофизических параметров объектов и фонов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ye et al. | Land surface temperature estimate from Chinese Gaofen-5 satellite data using split-window algorithm | |
Jimenez-Munoz et al. | Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data | |
CN102183237B (zh) | 一种地基双波段云高测量的装置和方法 | |
Rossow | Measuring cloud properties from space: A review | |
Schauwecker et al. | Remotely sensed debris thickness mapping of Bara Shigri glacier, Indian Himalaya | |
Ryan et al. | Derivation of high spatial resolution albedo from UAV digital imagery: application over the Greenland Ice Sheet | |
Schäfer et al. | Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging | |
Hsu et al. | Cross-estimation of Soil Moisture Using Thermal Infrared Images with Different Resolutions. | |
Maltese et al. | Mapping soil water content under sparse vegetation and changeable sky conditions: Comparison of two thermal inertia approaches | |
RU2659461C2 (ru) | Способ дистанционного определения пространственного распределения теплофизических параметров поверхности земли | |
Chapman et al. | Potential applications of thermal fisheye imagery in urban environments | |
Ru et al. | An extended SW-TES algorithm for land surface temperature and emissivity retrieval from ECOSTRESS thermal infrared data over urban areas | |
RU2707387C1 (ru) | Способ дистанционного определения пространственного распределения теплофизических параметров земной поверхности | |
y Miño et al. | Pixel-by-pixel rectification of urban perspective thermography | |
Zhu et al. | Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL | |
Şekertekin et al. | Analysing the effects of different land cover types on land surface temperature using satellite data | |
Clausen et al. | Spatial and Temporal Variance in the Thermal Response of Buried Objects | |
Fricke et al. | Temperature monitoring along the Rhine River based on airborne thermal infrared remote sensing: estimation of in situ water temperatures and inflow detection compared to artificial satellite data | |
Yang et al. | A temperature and emissivity separation algortihm for chinese gaofen-5 satelltie data | |
Ishchuk et al. | Cuboids of infrared images reduction obtained from unmanned aerial vehicles | |
Caspari | Tracking the Cold: Remote Sensing for Glacial Archaeology | |
Zhuravskiy et al. | Field tests of the procedure for a photogrammetric estimation of snow-glacial surface albedo | |
Tian et al. | Estimation of the dust aerosol shortwave direct forcing over land based on an equi‐albedo method from satellite measurements | |
Varentsov et al. | Comparison between in situ and satellite multiscale temperature data for russian arctic cities for winter conditions | |
Yao et al. | Synergistic use of AIRS and MODIS for dust top height retrieval over land |