RU2706417C1 - Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента - Google Patents

Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента Download PDF

Info

Publication number
RU2706417C1
RU2706417C1 RU2019110643A RU2019110643A RU2706417C1 RU 2706417 C1 RU2706417 C1 RU 2706417C1 RU 2019110643 A RU2019110643 A RU 2019110643A RU 2019110643 A RU2019110643 A RU 2019110643A RU 2706417 C1 RU2706417 C1 RU 2706417C1
Authority
RU
Russia
Prior art keywords
composition
electrolyte
cell
bczdy
anode
Prior art date
Application number
RU2019110643A
Other languages
English (en)
Inventor
Юлия Георгиевна Лягаева
Геннадий Константинович Вдовин
Дмитрий Андреевич Медведев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority to RU2019110643A priority Critical patent/RU2706417C1/ru
Application granted granted Critical
Publication of RU2706417C1 publication Critical patent/RU2706417C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

Изобретение относится к изготовлению единичных многослойных ячеек с тонкослойным электролитом, которые могут быть использованы в качестве твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ). Способ включает формирование ячейки из слоев функциональных материалов: пленок несущего анода состава NiO–BCZDy–крахмал, функционального анода состава NiO–BCZDy, электролита состава BCZDy и катода состава PN, с использованием нагрева и спекания, где BZCDy = BaCe0.5Zr0.3Dy0.2O3–δ, а PN = Pr1.9Ba0.1NiO4+δ . Технический результат заключается в упрощении технологии изготовления единичных ячеек ТОТЭ на основе высокопроводящего электролита за счет использования одного технологического метода и одного технологического режима. 2 ил., 1 табл.

Description

Изобретение относится к изготовлению единичных многослойных ячеек с тонкослойным электролитом, которые могут быть использованы в качестве твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ).
Многослойные ячейки ТОТЭ или ТОЭ рассматриваются в качестве перспективных электрохимических устройств, характеризующихся высокими параметрами производительности, эффективности, экономичности и экологической перспективности. Оптимизация технологических параметров получения таких ячеек является одной из важнейших задач для масштабирования ТОТЭ и ТОЭ и их успешной коммерциализации.
Большинство ячеек ТОТЭ и ТОЭ получают с использованием нескольких температурных циклов, наиболее часто – двух: высокотемпературной стадии (1300 – 1500°С) для формирования полуэлементов “NiO–электролитǀэлектролит” и низкотемпературной стадии (800–1200°С) для формирования хорошо адгезированного противоэлектрода. Количество стадий и значения используемых температур обусловливаются химической и термической совместимостью компонентов ячейки.
Известен одностадийный способ изготовления единичной ячейки ТОТЭ [1]. Способ включает следующие стадии: формирование несущего пористого анода состава NiO–BCZYYb, где BCZYYb = BaCe0.7Zr0.1Y0.1Yb0.1O3–δ, путем сухого прессования, формирование электролита состава BCZYYb на обеих поверхностях полученного анода с использованием метода трафаретной печати, формирование катода состава BaCo0.4Fe0.4Zr0.1Y0.1O3–δ на поверхности одного из сформированных слоев электролита методом трафаретной печати, совместное спекание трехслойной структуры при 1400 °С в течение 18 ч. Данный способ требует применения различных технологических методов, таких как прессование и трафаретная печать, а также достаточно длительных временных выдержек при используемой температуре спекания.
Температура и время спекания снижены в способе изготовления единичной ячейки ТОТЭ [2]. Однако данный способ также предполагает использование различных методов формирования функциональных материалов соответствующего состава. Способ включает многостадийное прессование: сначала при давлении 200 мПа несущего анода состава NiO–BCI при массовом соотношении (6:4), затем при 250 мПа несущего анода с функциональным анодом состава NiO–BCI при массовом соотношении (5:5) и, наконец, двухслойную прессовку при 300 мПа с электролитом состава BCI, где BCI = BaCe0.7In0.3O3–δ. После получения трехслойной структуры формируют катод состава BCI–LaSr3Co1.5Fe1.5O10–δ методом трафаретной печати с последующим спеканием при 1250°С в течение 5 ч. Электролит состава BCI по сравнению с электролитом состава BCZYYb может быть спечен при пониженных температурах за счет наличия спекающего агента – индия, но в то же время электролит состава BCI обладает проводимостью в 5–10 раз ниже, чем электролит состава BCZYYb.
Задача настоящего изобретения состоит в упрощении технологии изготовления единичных ячеек ТОТЭ на основе высокопроводящего электролита.
Заявленным способом получена многослойная единичная ячейка твердооксидного топливного элемента состава BCZDy. Ячейка представляет собой три слоя: несущий пористый никель-керметный слой NiO–BCZDy (водородный электрод), газоплотную мембрану состава BCZY (электролит) и пористый слой состава BCZY – PN (кислородный электрод), где BZCDy = BaCe0.5Zr0.3Dy0.2O3–δ, PN = Pr1.9Ba0.1NiO4+δ. Высокая химическая и термическая совместимость этих материалов позволяет сформировать субстрат четырехслойной структуры, которая не деформируется механически при одностадийном спекании при 1350 °С.
Способ осуществляют следующим образом. Порошки всех функциональных материалов состава NiO–BCZDy–крахмал, NiO–BCZDy, BCZDy, PN были смешаны со связкой из бутадиенового каучука в растворе ацетона и бензина. Полученные смеси были высушены на воздухе при обычных комнатных условиях, затем вначале прокатаны в отдельности с необходимой толщиной, далее прокатаны совместно по схеме: пленка катодного материала с пленкой электролита, двухслойная пленка два раза с пленкой функционального никель-кермета при массовом соотношении NiO:BCZDy = 5.5:4.5 и трехслойная пленка с пленкой несущего никель-кермета при массовом соотношении NiO:BCZDy: порообразователя = 6:4:2). После этого полученная многослойная структура была медленно нагрета до 1350 °С и спечена при этой температуре в течение 5 ч. Для формирования ячейки из слоев функциональных материалов был использован метод прокатки пленок, известный из [3].
Новый технический результат, достигаемый заявленным изобретением, заключается в упрощении технологии изготовления единичных ячеек ТОТЭ на основе высокопроводящего электролита за счет использования одного технологического метода и одного технологического режима.
Изобретение иллюстрируется таблицей, в которой отражены составы используемых функциональных материалов и толщины полученных индивидуальных пленок, а также рисунками, где на фиг. 1 изображены основные этапы формирования единичной ячейки ТОТЭ, а на фиг. 2 представлены изображения поперечного слома полученной ячейки.
Высушенные пленки функциональных материалов прокатывали на вальцовой машине Durston, задавая необходимую толщину (см. таблицу) путем регулировки зазора между двумя вальцами. Вначале проводили совместную прокатку пленок катода и электролита с толщинами 240 мкм, задавая зазор между вальцами 240 мкм. Поэтому толщины катодного и электролитного слоев в полученной двухслойной пленке составляет примерно 120 мкм. Второй этап включает прокатку двухслойной пленки с пленкой функционального анода толщиной 240 мкм при том же уровне зазора. Результатом второй прокатки является формирование трехслойной пленки, в которой толщины катода, электролита и функционального анода составляют 60, 60 и 120 мкм соответственно. Третий этап включает последующую накатку пленки функционального анода на трехслойную пленку, цель которой состоит в уменьшении толщин катода и электролита до ~30 мкм. Последний этап заключается в прокатке трехслойной пленки толщиной 200 мкм с пленкой несущего анода толщиной 800 мкм на зазоре 950 мкм. В процессе этого толщины пленок катода, электролита и функционального анода практически не изменяются.
Полученный сырой субстрат, представляющий неспеченную основу единичной ячейки ТОТЭ, размещают на ровную поверхность и оставляют на 24 ч до самопроизвольного снятия напряжений. Этот субстрат затем спекают при одной и той же температуре до формирования единичной ячейки ТОТЭ, слом которой представлен на фиг. 2, из которого видно, что толщины слоев катода, электролита и функционального анода составляют примерно 25, 25 и 50 мкм соответственно.
Таким образом, заявленный способ позволяет упростить технологию изготовления единичных ячеек ТОТЭ на основе высокопроводящего электролита за счет использования одного технологического метода и одного технологического режима.
Источники информации
1. Duan C., Tong J., Shang M., Nikodemski S., Sanders M., Ricote S., Almansoori A., O’Hayre R. Readily processed protonic ceramic fuel cells with high performance at low temperatures // Science. 2015. V. 349. P. 1321–1326.
2. Bi L., Tao Z., Sun W., Zhang S., Peng R., Liu W. Proton-conducting solid oxide fuel cells prepared by a single step co-firing process // Journal of Power Sources 2009. V. 191. P. 428–432.
3. Мурашкина А.А., Сергеева В.С., Гульбис Ф.Я., Медведев Д.А., Демин А.К. Способ изготовления газоплотной керамики для элементов электрохимических устройств. Патент на изобретение 2522492 (2012141531/03) от 20.07.2014. Бюл. № 20.

Claims (1)

  1. Способ изготовления многослойной единичной ячейки твердооксидного топливного элемента, включающий формирование ячейки из слоев функциональных материалов несущего анода, несущего анода с функциональным анодом, электролита и катода, с использованием нагрева и спекания, отличающийся тем, что ячейку формируют из пленок несущего анода состава NiO–BCZDy–крахмал, функционального анода состава NiO–BCZDy, электролита состава BCZDy и катода состава PN, где BZCDy = BaCe0.5Zr0.3Dy0.2O3–δ, а PN = Pr1.9Ba0.1NiO4+δ.
RU2019110643A 2019-04-10 2019-04-10 Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента RU2706417C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019110643A RU2706417C1 (ru) 2019-04-10 2019-04-10 Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019110643A RU2706417C1 (ru) 2019-04-10 2019-04-10 Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Publications (1)

Publication Number Publication Date
RU2706417C1 true RU2706417C1 (ru) 2019-11-19

Family

ID=68579610

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019110643A RU2706417C1 (ru) 2019-04-10 2019-04-10 Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Country Status (1)

Country Link
RU (1) RU2706417C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183609B1 (en) * 1996-09-26 2001-02-06 Ngk Insulators, Ltd. Sintered laminated structures, electrochemical cells and process for producing such sintered laminated structures
RU2342740C2 (ru) * 2003-12-02 2008-12-27 Нанодайнэмикс, Инк. Твердооксидные топливные элементы с несущим анодом и с керметным электролитом
RU2522492C2 (ru) * 2012-10-01 2014-07-20 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ изготовления газоплотной керамики для элементов электрохимических устройств
CN103985888A (zh) * 2014-04-15 2014-08-13 淮南师范学院 陶瓷膜燃料电池用连接材料薄膜和电解质薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183609B1 (en) * 1996-09-26 2001-02-06 Ngk Insulators, Ltd. Sintered laminated structures, electrochemical cells and process for producing such sintered laminated structures
RU2342740C2 (ru) * 2003-12-02 2008-12-27 Нанодайнэмикс, Инк. Твердооксидные топливные элементы с несущим анодом и с керметным электролитом
RU2522492C2 (ru) * 2012-10-01 2014-07-20 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ изготовления газоплотной керамики для элементов электрохимических устройств
CN103985888A (zh) * 2014-04-15 2014-08-13 淮南师范学院 陶瓷膜燃料电池用连接材料薄膜和电解质薄膜的制备方法

Similar Documents

Publication Publication Date Title
US9962918B2 (en) Production method for a support type coating membrane using tape casting
US20050089739A1 (en) Process for solid oxide fuel cell manufacture
Lee et al. Fabrication of solid oxide fuel cells (SOFCs) by solvent-controlled co-tape casting technique
Shen et al. Co-sintering anode and Y2O3 stabilized ZrO2 thin electrolyte film for solid oxide fuel cell fabricated by co-tape casting
KR100849994B1 (ko) 고체산화물 연료전지의 단위전지 제조용 가압장치 및 이를이용한 제조방법
Park et al. Fabrication of the large area thin-film solid oxide fuel cells
Huang et al. Fabrication of integrated BZY electrolyte matrices for protonic ceramic membrane fuel cells by tape-casting and solid-state reactive sintering
Gondolini et al. Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application
Dai Proton conducting solid oxide fuel cells with chemically stable BaZr0. 75Y0. 2Pr0. 05O3-δ electrolyte
Mu et al. Rapid laser reactive sintering of BaCe0. 7Zr0. 1Y0. 1Yb0. 1O3-δ electrolyte for protonic ceramic fuel cells
JP2002175814A (ja) 固体電解質型燃料電池用燃料極の製造方法並びに固体電解質型燃料電池及びその製造方法
Menzler et al. Development of high power density solid oxide fuel cells (SOFCs) for long-term operation
KR101215418B1 (ko) 고체산화물연료전지의 단위셀 제조공정
RU2706417C1 (ru) Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента
KR20140043039A (ko) 금속 기판으로 지지된 음극-전해질-양극 장치를 가지는 고체 산화물 연료 전지의 제조 방법 및 이용
KR20100134347A (ko) 고체산화물 연료전지의 연료극 지지체형 전해질 및 그 제조방법
CN116632303A (zh) 一种质子陶瓷燃料电池及其制备方法
Carpanese et al. Study of reversible SOFC/SOEC based on a mixed anionic-protonic conductor
Hedayat et al. Tubular solid oxide fuel cells fabricated by tape-casting and dip-coating methods
KR102247782B1 (ko) 캘린더링 공정을 이용한 고체산화물 연료전지의 제조방법
JP5198908B2 (ja) 高性能固体酸化物形燃料電池膜電極接合体(sofc−mea)に積層する完全緻密な電解質層の製造方法。
KR20150123527A (ko) 반응방지막을 포함하는 고온 고체산화물 셀, 이의 제조방법
Le et al. Constrained sintering of Y2O3-stabilized ZrO2 electrolyte on anode substrate
KR101542906B1 (ko) 이트리아 안정화 지르코니아(ysz) 및 이트리아(y2o3)를 포함하는 복합재료를 포함하는 전해질 및 이를 이용한 전해질층 제조방법
RU2779042C1 (ru) Способ получения структур для твердооксидных электрохимических устройств

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210411