RU2706284C1 - Способ проведения инженерно-геологических изысканий - Google Patents

Способ проведения инженерно-геологических изысканий Download PDF

Info

Publication number
RU2706284C1
RU2706284C1 RU2019104448A RU2019104448A RU2706284C1 RU 2706284 C1 RU2706284 C1 RU 2706284C1 RU 2019104448 A RU2019104448 A RU 2019104448A RU 2019104448 A RU2019104448 A RU 2019104448A RU 2706284 C1 RU2706284 C1 RU 2706284C1
Authority
RU
Russia
Prior art keywords
soils
field
calculation
computer
engineering
Prior art date
Application number
RU2019104448A
Other languages
English (en)
Inventor
Геннадий Григорьевич Болдырев
Елена Геннадьевна Болдырева
Илья Хамитович Идрисов
Original Assignee
Общество с ограниченной ответственностью "Научно-производственное предприятие "Геотек" (ООО "НПП "Геотек")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственное предприятие "Геотек" (ООО "НПП "Геотек") filed Critical Общество с ограниченной ответственностью "Научно-производственное предприятие "Геотек" (ООО "НПП "Геотек")
Priority to RU2019104448A priority Critical patent/RU2706284C1/ru
Application granted granted Critical
Publication of RU2706284C1 publication Critical patent/RU2706284C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Soil Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

Изобретение относится к области строительства и предназначено для инженерно-геологических изысканий и проектирования оснований зданий и сооружений. Техническим результатом является сокращение сроков строительства зданий и сооружений путём совмещения этапов инженерно-геологических исследований и проектирования оснований зданий и сооружений, повышение точности исследования свойств грунтов. Технический результат достигается тем, что в способе проведения инженерно-геологических изысканий с помощью измерительно-вычислительного комплекса, содержащего буровую установку, механизм силового нагружения, буровые штанги, дальномер, блок электроники, компьютер, устройства для полевых испытаний грунтов и набор датчиков, подключенных к аналого-цифровым преобразователям и цифро-аналоговым преобразователям, выходы которых через интерфейсы RS-485 и RS-232 соединены с компьютером, включающим программные средства обработки данных измерений и управления механизмом силового нагружения, согласно изобретению выполняют полевые испытания грунтов, используя произвольное число устройств для полевых испытаний грунтов, определяют параметры испытаний, используя параметры испытаний и корреляционные зависимости между параметрами испытаний и характеристиками грунтов, компьютер и программы выполняют расчет осадки, расчет крена и расчет глубины сжимаемой толщи непосредственно в полевых условиях в процессе проведения испытаний грунтов. 3 з.п. ф-лы, 5 ил.

Description

Область техники
Изобретение относится к области строительства и предназначено для инженерно-геологических изысканий и проектирования оснований зданий и сооружений.
Уровень техники
Аналогом заявляемого технического решения является ЗОНД ДЛЯ СТАТИЧЕСКОГО ЗОНДИРОВАНИЯ ВОДОНАСЫЩЕННЫХ ГРУНТОВ (патент SU №1742415, заявка 4838433/33 от 12.06.90, МПК E02D, 1/00 опубликовано 23.06.92 [1]), включающий корпус, полый конусный наконечник с фильтром, датчик лобового сопротивления, датчик порового давления мембранного типа, гидравлически связанный рабочей камерой с фильтром конусного наконечника, компенсационный фильтр, уширитель, при этом компенсационный фильтр расположен на верхнем торце уширителя, а компенсационная камера расположена над нерабочей поверхностью мембраны и гидравлически связана с компенсационным фильтром.
Недостатком данного устройства является невозможность контроля постоянной скорости перемещения зонда при его погружении в грунт, что снижает точность измерений.
Другим аналогом заявляемого технического решения является УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ БУРЕНИЯ (патент RU №2626865, [2]), содержащее транспортное средство, на платформе которого размещены мачта с вращателем, гидравлическая система, обеспечивающая работу бурильно-кранового оборудования, и устройство для измерения параметров бурения, один конец которого соединен с валом вращателя транспортного средства, другой - с хвостовиком буровой колонны, отличающаяся тем, что с целью расширения функциональных возможностей и повышения точности измерений устройство для измерения параметров бурения снабжено датчиком силы двунаправленного действия, датчиком для измерения скорости вращения и датчиком для измерения угла наклона буровой колонны, при этом измерение глубины погружения буровой колонны и линейной скорости выполняется потенциометрическим дальномером.
Недостатком данного устройства является невозможность контроля скорости вращения вращателя и линейной скорости перемещения буровой колонны.
Наиболее близким аналогом (прототипом) заявляемого технического решения является СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МОДЕЛЕЙ ГРУНТОВ И МАТЕРИАЛОВ (Патент на изобретение RU №2404418, заявка: 2009107801/28, 04.03.2009, опубликовано 20.11.2010, МПК G01N 3/00, E02D 1/00), содержащий измерительно-вычислительный комплекс автоматизированной системы испытаний в строительстве (ИВК АСИС), прибор (механическое устройство) силового нагружения, применяемый при определении параметров моделей материалов, с набором датчиков, подключенных к аналого-цифровому преобразователю (АЦП) и цифроаналоговому преобразователю (ЦАП), выходы которых через интерфейсы RS-485 и RS-232 соединены с цифровой электронно-вычислительной машиной, имеющей программные средства обработки результатов (данных) измерений и управления силовым нагружением, отличающийся тем, что по данному способу производят одновременные физические испытания образцов одного и того же материала, используя произвольное число приборов силового нагружения, проводят испытания при различном виде напряженного состояния и траекториях напряжений, определяют начальные значения параметров для выбранных моделей материалов, выполняют численное моделирование испытаний, результаты численного моделирования идентифицируют с результатами механических испытаний с использованием различных моделей материалов и одного из методов оптимизации, выбирают модель материала, наилучшим образом отвечающую результатам механических испытаний.
Основным недостатком данного изобретения является невозможность определения параметров моделей грунтов в полевых условиях. В настоящее время испытания грунтов в полевых условиях различными методами такими как статическое зондирование, динамическое зондирование, буровое зондирование, испытания винтовым штампом, испытания методом вращательного среза и другие [4, 5, 6] выполняются путем силового нагружения соответствующих устройств погружаемые в грунт механизмом с ручным управлением усилия подачи (осевой нагрузки), визуальным контролем скорости вращения и линейной скорости перемещения, которые должны быть постоянными. Например, согласно ГОСТ 19912-2012 [4] линейная скорость погружения зонда статического зондирования должна быть постоянной, равная 2 см/с, что невозможно контролировать при ручном управлении механизмом нагружения. При испытании грунтов винтовым или плоским штампами согласно ГОСТ 20276-2012 [5] требуется постоянство давления на грунт до завершения процесса стабилизации осадки штампа на текущей ступени нагружения. Как правило, давление создается гидравлическим домкратом, в результате, вследствие осадки штампа давление в системе гидропривода изменяется и приходится его вручную поддерживать постоянным. Кроме того, испытания могут длиться несколько суток и заранее неизвестно, когда закончится процесс стабилизации осадки штампа, что вызывает необходимость постоянных наблюдений за его осадкой. В методе бурового зондирования [6] важным является сохранение постоянной скорости вращения и линейной скорости перемещения буровой колонны, которая зависит от прочности разбуриваемого грунта и глубины погружения буровой колонны.
Существенным недостатком является также то, что в настоящее время инженерно-геологические изыскания и проектирование оснований зданий и сооружений выполняются раздельно друг от друга. В первом случае выполняются рекомендации СП 47.13330 [7], а при проектировании оснований требования СП 22.13330, СП 24.13330, СП 25.13330 и др. [10, 11, 12]. Последовательность работ на изыскания и проектирование увеличивает продолжительность строительства зданий и сооружений.
Предлагаемый способ объединяет в единый производственный процесс инженерно-геологические изыскания и проектирование оснований сооружений. Результатом является сокращение сроков инженерно-геологических изысканий вследствие применения методов полевых испытаний грунтов с автоматизированным контролем процесса испытаний и интерпретации данных испытаний. При этом результатом инженерно-геологических исследований является не только информация о свойствах грунтов, но и оценка их влияния на поведение проектируемого здания или сооружения.
Сущность технического решения
Целью изобретения является сокращение сроков строительства зданий и сооружений путем совмещения этапов инженерно-геологических исследований и проектирования оснований зданий и сооружений, повышение точности исследования свойств грунтов.
Цель достигается тем, что способ осуществляется с помощью измерительно-вычислительного комплекса (ИВК), содержащего буровой станок с механизмом силового нагружения с датчиками, устройства для испытаний грунтов в полевых условиях с датчиками (например, устройство статического зондирования, СРТ; устройство динамического зондирования, SPT; устройство бурового зондирования, RDT; винтовой штамп, RST и другие), датчики которых подключены к аналого-цифровому преобразователю (АЦП), и цифро-аналоговому преобразователю (ЦАП), выходы которых через интерфейсы RS-485 и RS-232 соединены с компьютером, имеющий программные средства обработки данных измерений и управления механизмом силового нагружения, производят испытания, используя произвольное число устройств для полевых испытаний грунтов, определяют параметры испытаний (например, при статическом зондировании: лобовое сопротивление, силы трения, поровое давление [4]), используя параметры испытаний и корреляционные зависимости между параметрами испытаний и характеристиками грунтов определяют тип грунта [13], физические и механические характеристики грунтов [7], используя компьютер и программы выполняют расчет осадки, крена и глубины сжимаемой толщи [10] непосредственно в полевых условиях в процессе проведения испытаний грунтов. Контроль работой механизма силового нагружения (скорость вращения, осевая нагрузка, линейная скорость) выполняется ИВК с использованием прямой и обратной связи, путем анализа данных показаний датчиков механизма силового нагружения и результатов расчета осадки, крена и глубины сжимаемой толщи.
Признаки, отличающие предлагаемый способ инженерно-геологических изысканий и проектирования оснований зданий и сооружений, заключаются в том, что проводят полевые испытания грунтов с помощью ИВК, содержащего буровой станок с управляемым ИВК механизмом силового нагружения, различные устройства с датчиками для испытаний грунтов в полевых условиях (например, устройство статического зондирования, устройство динамического зондирования, устройство бурового зондирования, винтовой штамп, крыльчатку и др.), датчики которых подключены к аналого-цифровому преобразователю (АЦП) и цифроаналоговому преобразователю (ЦАП), выходы которых через интерфейсы RS-485 и RS-232 соединены с компьютером, имеющий программные средства обработки результатов измерений и управления механизмом силового нагружения, по команде компьютера используя ЦАП управляют механизмом силового нагружения бурового станка. В процессе измерений выполняют расчет физико-механических характеристик грунтов и расчет оснований зданий и сооружений по предельным состояниям - деформациям и несущей способности. Данные расчета оснований, например, осадка фундамента, используются для определения глубины испытаний и оценки крена проектируемого здания или сооружения. Полевые испытания грунтов с использованием ИВК продолжаются до вычисляемой ИВК глубины сжимаемой толщи и заданной разности осадок и крена здания или сооружения.
Предлагаемый способ включает ИВК, в который входит несколько различных устройств для полевых испытаний грунтов с целью определения физических и механических характеристик грунтов. Использование нескольких типов устройств позволяет определить одни и те же характеристики грунтов различными методами. Например, модуль деформации грунтов в полевых условиях может быть найден с использованием устройства статического зондирования, устройства динамического зондирования, устройства бурового зондирования, винтовым и плоскими штампами, прессиометром, дилатометром [4, 5, 6, 7, 8]. Используя данные нескольких испытаний и ГОСТ 20522-2012 [9] выполняют статистическую обработку данных испытаний и определяют нормативное значение модуля деформации и расчетные значения характеристик прочности (угол внутреннего трения и силы удельного сцепления) с заданной доверительной вероятностью. Точность определения характеристик грунта подобным образом увеличивается.
В программную подсистему ИВК входят системное и прикладное программное обеспечение, в совокупности образующие математическое обеспечение ИВК. Системное программное обеспечение представляет собой совокупность программного обеспечения компьютера (операционная система WINDOWS или любая другая) и дополнительных программных средств, позволяющих работать в диалоговом режиме; управлять измерительными компонентами; обмениваться информацией внутри подсистем комплекса; проводить диагностику технического состояния. Прикладное программное обеспечение представляет собой взаимодействующую совокупность подпрограмм, реализующих: типовые алгоритмы представления и обработки сигналов с датчиков, управления процессом силового нагружения устройств для испытаний грунтов; архивирование данных измерений; метрологические функции ИВК (аттестация, поверка и т.п.); подпрограммы расчета оснований по предельным состояниям.
Перечень фигур, чертежей и иных материалов
На фиг. 1 изображена буровая установка для испытаний грунтов в полевых условиях.
На фиг. 2 изображена структурная схема измерительно-вычислительного комплекса.
На фиг. 3 изображена блок схемы испытаний грунтов и расчета оснований зданий и сооружений.
На фиг. 4 изображены некоторые результаты вычислений в программе Geotek Field.
На фиг. 5 изображен пример профиля модуля деформации грунтов.
Пример реализации технического решения
На фиг. 1 буровая установка содержит транспортное средство 1, мачту 2, механизмом силового нагружения 3, буровую штангу 4, устройство для полевых испытаний грунтов 5, дальномер 6, блок электроники 7, компьютер 8.
На фиг. 2 изображена структурная схема ИВК включающая набор датчиков в устройствах для полевых испытаний грунтов и механизме силового нагружения, компьютер, управляющую программу АСИС и вычислительную программу Geotek Field.
На фиг. 3 изображена блок схема программы Geotek Field включающая модули: определение типа поведения грунта, физико-механические характеристики грунтов, расчет оснований зданий и сооружений по предельным состояниям.
Исследования грунтов предлагаемым способом проводятся следующим образом.
В механизм силового нагружения 3 буровой установки 1 вставляется буровая штанга 4, а к ней присоединяется одно из устройств для полевых испытаний грунтов 5 (в дальнейшем по тексту - устройство). Устройство включает датчики, сигналы с которых усиливаются, преобразуются в цифровой вид и по беспроводной связи передаются блок электроники 7, а затем в компьютер 8. Блок электроники и компьютер располагается в кабине автомашины или в пульте управления буровой установки. Измеряемые сигналы с датчиков устройств с использованием управляющей программы АСИС преобразуются в физические величины, передаются для вычислений в программу Geotek Field и выводятся на экран компьютера (фиг. 4).
Процедура полевых испытаний грунтов предлагаемым способом включает следующие операции:
1. Ввод в управляющую программу ИВК ряда параметров.
1.1. Для расчета оснований: ситуационный план здания или сооружения, места испытаний, глубина заложения и нагрузки на фундамент; величина неравномерности осадки и крена здания или сооружения и, другие параметры.
1.2. Для управления механизмом силового нагружения: линейная скорость погружения (см/с), скорость вращения (об/с), параметр стабилизации осадки (см/мин) и другие параметры.
2. Установка бурового станка на месте испытаний согласно заданным географическим координатам и подготовка его к работе.
3. Закрепление в силовом механизме бурового станка устройства для полевых испытаний грунтов и дальномера на мачте бурового станка.
4. Запуск питания ИВК и программы управления испытаниями АСИС. Считывание нулевых показаний измерительной системы.
5. Запуск по команде компьютера силового механизма бурового станка и погружение устройства в грунт. В процессе погружения устройства в грунт выполняется контроль заданных параметров (п. 1.2) управления механизмом силового нагружения программой АСИС.
6. По мере поступления данных измерений с устройств и преобразования их в физические величины, используя программу Geotek Field выполняется определение типа поведения грунта [13], расчет физико-механических характеристик грунтов с использованием корреляционных зависимостей (приложение И [7]), расчет осадки в точке испытаний с использованием решений СП 22.13330 [10], расчет коэффициента жесткости основания [14], расчет сжимаемой толщи и глубины испытаний и др. Результаты вычислений приведены на фиг. 4 и фиг. 5, где 1, 2, 3, 4 - профили модуля деформации по данным зондировании на расстоянии не более 2 м друг от друга.
7. После завершения на первой точке испытаний выполняются испытания в другой точке плана здания или сооружения с выполнением операций по п. 2-6 и расчетом разности осадок и крена здания или сооружения [10].
8. Выполнение операций по п. 2-8 в другой точке плана здания или сооружения до достижения заданной величины неравномерности осадок и крена.
Промышленная применимость
Способ проведения инженерно-геологических изысканий промышленно реализуем, позволяет сократить сроки строительства зданий и сооружений и повышает точность исследований свойств грунтов.
Список литературы
1. Патент на изобретение SU №1742415, заявка №4838433/33 от 12.06.90, МПК E02D 1/00, опубликовано 23.06.92. Зонд для статического зондирования водонасыщенных грунтов.
2. Патент на изобретение RU №2626865, заявка №2015154948 от 21.12.2015, опубликовано 02.07.2017, МПК Е21В 44/00. Устройство для измерения параметров бурения.
3. Патент на изобретение RU №2404418, заявка №2009107801/28, 04.03.2009, опубликовано 20.11.2010, МПК G01N 3/00, E02D 1/00. Способ определения параметров моделей грунтов и материалов.
4. ГОСТ 19912-2012. Грунты. Методы полевых испытаний статическим и динамическим зондированием. М., Стандартинформ, 2012.
5. ГОСТ 20276-2012. Грунты. Методы полевого определения характеристик прочности и деформируемости. М., Стандартинформ, 2013.
6. Болдырев Г.Г., Кальбергенов Р.Г., Кушнир Л.Г., Новичков Г.А. Буровое зондирование грунтов. Инженерные изыскания, 2012, №12, с. 38-45.
7. СП 47.13330.2012. Инженерные изыскания для строительства. Общие положения. Актуализированная редакция СНиП 11-02-96. М., 2012.
8. Болдырев Г.Г. Полевые методы испытаний грунтов, 2013, 356 с.
9. ГОСТ 20522-2012. Грунты. Методы статистической обработки результатов испытаний, 2013.
10. СП 22.1330.2011. Основания зданий и сооружений. М.: Минрегион России, 2011.
11. СП 24.1330.2011. Свайные фундаменты. М.: Минрегион России, 2011.
12. СП 25.13330.2012. Основания и фундаменты на вечномерзлых грунтах. М.: Минрегион России, 2012.
13. Lunne Т., Robertson Р.K., Powell, J.J.M. Cone penetration testing in geotechnical practice. Blackie Academic. Chapman-Hall Publishers, U.K.; available from EF Spon. Routledge Pub., New York, 1997, 312 p.
14. Патент на изобретение №2631445, заявка №2016106683, от 25.02.2016, дата публикации 30.09.2017, МПК E02D 1/02. Способ определения количества выработок при проведении инженерно-геологических изысканий.

Claims (4)

1. Способ проведения инженерно-геологических изысканий с помощью измерительно-вычислительного комплекса, содержащего буровую установку, механизм силового нагружения, буровые штанги, дальномер, блок электроники, компьютер, устройства для полевых испытаний грунтов и набор датчиков, подключенных к аналого-цифровым преобразователям и цифро-аналоговым преобразователям, выходы которых через интерфейсы RS-485 и RS-232 соединены с компьютером, включающим программные средства обработки данных измерений и управления механизмом силового нагружения, отличающийся тем, что по данному способу выполняют полевые испытания грунтов, используя произвольное число устройств для полевых испытаний грунтов, определяют параметры испытаний, используя параметры испытаний и корреляционные зависимости между параметрами испытаний и характеристиками грунтов, компьютер и программы выполняют расчет осадки, расчет крена и расчет глубины сжимаемой толщи непосредственно в полевых условиях в процессе проведения испытаний грунтов.
2. Способ проведения инженерно-геологических изысканий по п. 1, отличающийся тем, что глубина испытаний грунтов определяется глубиной сжимаемой толщи, определяемой из расчета осадки здания или сооружения непосредственно в процессе проведения полевых испытаний грунтов.
3. Способ проведения инженерно-геологических изысканий по п. 1, отличающийся тем, что управление работой механизма силового нагружения выполняется измерительно-вычислительным комплексом с использованием прямой и обратной связи, путем анализа данных показаний датчиков механизма силового нагружения и результатов расчета осадки, крена и глубины сжимаемой толщи.
4. Способ проведения инженерно-геологических изысканий по п. 1, отличающийся тем, что, используя данные нескольких различных полевых испытаний грунтов, выполняют статистическую обработку данных испытаний и определяют расчетные значения физико-механических характеристик грунтов с заданной доверительной вероятностью.
RU2019104448A 2019-02-18 2019-02-18 Способ проведения инженерно-геологических изысканий RU2706284C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019104448A RU2706284C1 (ru) 2019-02-18 2019-02-18 Способ проведения инженерно-геологических изысканий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019104448A RU2706284C1 (ru) 2019-02-18 2019-02-18 Способ проведения инженерно-геологических изысканий

Publications (1)

Publication Number Publication Date
RU2706284C1 true RU2706284C1 (ru) 2019-11-15

Family

ID=68579620

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019104448A RU2706284C1 (ru) 2019-02-18 2019-02-18 Способ проведения инженерно-геологических изысканий

Country Status (1)

Country Link
RU (1) RU2706284C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748876C1 (ru) * 2020-07-20 2021-06-01 Общество с ограниченной ответственностью "Научно-производственное предприятие "Геотек" (ООО НПП "Геотек") Способ проведения инженерно-геологических и геотехнических изысканий

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1571465A1 (ru) * 1988-04-29 1990-06-15 Кубанский государственный университет Установка дл исследовани динамических свойств грунтов в услови х трехосного нагружени
RU2404418C1 (ru) * 2009-03-04 2010-11-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Геотек" (ООО "НПП "Геотек") Способ определения параметров моделей грунтов и материалов
RU2432572C2 (ru) * 2009-10-14 2011-10-27 Валерий Николаевич Кутергин Способ испытания грунта на срез с одновременным определением порового давления и устройство для его осуществления
JP2015206690A (ja) * 2014-04-21 2015-11-19 国立大学法人広島大学 土の引張強度を測定する方法及び装置
RU2631445C2 (ru) * 2016-02-25 2017-09-22 Общество с ограниченной ответственностью "НПП "Геотек" Способ определения количества выработок при проведении инженерно-геологических изысканий

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1571465A1 (ru) * 1988-04-29 1990-06-15 Кубанский государственный университет Установка дл исследовани динамических свойств грунтов в услови х трехосного нагружени
RU2404418C1 (ru) * 2009-03-04 2010-11-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Геотек" (ООО "НПП "Геотек") Способ определения параметров моделей грунтов и материалов
RU2432572C2 (ru) * 2009-10-14 2011-10-27 Валерий Николаевич Кутергин Способ испытания грунта на срез с одновременным определением порового давления и устройство для его осуществления
JP2015206690A (ja) * 2014-04-21 2015-11-19 国立大学法人広島大学 土の引張強度を測定する方法及び装置
RU2631445C2 (ru) * 2016-02-25 2017-09-22 Общество с ограниченной ответственностью "НПП "Геотек" Способ определения количества выработок при проведении инженерно-геологических изысканий

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748876C1 (ru) * 2020-07-20 2021-06-01 Общество с ограниченной ответственностью "Научно-производственное предприятие "Геотек" (ООО НПП "Геотек") Способ проведения инженерно-геологических и геотехнических изысканий

Similar Documents

Publication Publication Date Title
RU2748876C1 (ru) Способ проведения инженерно-геологических и геотехнических изысканий
Krasiński et al. Static load test on instrumented pile–field data and numerical simulations
Wang et al. Field monitoring of bearing capacity efficiency of permeable pipe pile in clayey soil: A comparative study
RU2706284C1 (ru) Способ проведения инженерно-геологических изысканий
Prokopov et al. Experimental studies of the reinforcement percentage effect on the modulus of soil deformation fixed by cementation
Massarsch New method for measurement of lateral earth pressure in cohesive soils
Baca et al. Pile foot capacity testing in various cases of pile shaft displacement
CN117371279A (zh) 一种基于岩溶发育区灌注桩基础桩端溶蚀石灰岩稳定性、桩基承载力验证方法
Castelli et al. Monitoring of full scale diaphragm wall for a deep excavation
Lentini et al. Numerical modelling and experimental monitoring of a full-scale diaphragm wall
CN108278109B (zh) 地下工程弱化围岩加固时机确定方法、设备和系统
RU2750919C1 (ru) Способ испытания грунтового основания сваей
England et al. Review of foundation testing methods and procedures.
JP6529405B2 (ja) 圧密降伏応力の調査方法
Lim et al. Finite Element Modelling of Prestressed Concrete Piles in Soft Soils, Case Study: Northern Jakarta, Indonesia
RU2510440C2 (ru) Устройство для комплексного определения физических и механических свойств грунтов в полевых условиях
Kozłowski et al. Methods for estimating the load bearing capacity of pile foundation using the results of penetration tests-case study of road viaduct foundation
RU2252297C1 (ru) Способ испытания грунтов статической нагрузкой и устройство для его осуществления
CN206638503U (zh) 海上风电试验台
Nguyen et al. Bidirectional static loading tests on barrette piles. A case history from Ho Chi Minh City, Vietnam
CN117538430B (zh) 一种基于数据识别的建筑结构加固方法及监测系统
CN114707225B (zh) 考虑水位波动及支护时效的基坑支护性能评估方法及装置
Reese Design and evaluation of load tests on deep foundations
Becker et al. Testing in geotechnical design
Prasad et al. Importance of Instrumentation in Hydropower Projects