RU2706048C1 - Прибор для спектрального анализа излучения от объектов - Google Patents

Прибор для спектрального анализа излучения от объектов Download PDF

Info

Publication number
RU2706048C1
RU2706048C1 RU2019111484A RU2019111484A RU2706048C1 RU 2706048 C1 RU2706048 C1 RU 2706048C1 RU 2019111484 A RU2019111484 A RU 2019111484A RU 2019111484 A RU2019111484 A RU 2019111484A RU 2706048 C1 RU2706048 C1 RU 2706048C1
Authority
RU
Russia
Prior art keywords
radiation
drum
spectral analysis
mirrors
objects
Prior art date
Application number
RU2019111484A
Other languages
English (en)
Inventor
Николай Сергеевич Кузнецов
Original Assignee
Акционерное общество "Научно-производственное предприятие "Дельта"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное предприятие "Дельта" filed Critical Акционерное общество "Научно-производственное предприятие "Дельта"
Priority to RU2019111484A priority Critical patent/RU2706048C1/ru
Application granted granted Critical
Publication of RU2706048C1 publication Critical patent/RU2706048C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к области спектрального анализа и касается прибора для спектрального анализа излучения от объектов. Прибор содержит последовательно соединенные оптический блок с объективом, оптический фильтр, ПЗС-матрицу, аппаратуру цифровой обработки и систему отображения. Оптический фильтр представляет собой поворачивающийся многогранный барабан с зеркалами, на которые нанесены прозрачные покрытия различной толщины h. Угол наклона зеркал по отношению к потоку излучения i задается за счет изменения числа граней барабана p и определяется из соотношения i=360/р. Длина волны спектра, измеренного с помощью каждого зеркала, определяется из соотношения: λ=4h(n2-sin2i)1/2/3, где n - показатель преломления материала покрытия. Устройство вращения барабана соединено с аппаратурой цифровой обработки через блок синхронизации. Технический результат заключается в повышении чувствительности и разрешающей способности устройства. 2 ил.

Description

Изобретение относится к оптическим устройствам для проведения спектрального анализа излучения от объектов.
Известны технические решения для проведения спектрального анализа излучения от объектов, включающие последовательно соединенные оптический блок с объективом, оптический фильтр, ПЗС-матрицу, аппаратуру цифровой обработки и систему отображения (Описание к АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР (21) 4016140/24-21 (22) 29.12.85 (46) 30.04.87. Бюл. 1 16 (71) Ленинградский электротехнический институт связи им. проф. М.А. Бонч-Бруевича (72) А.Ф. Бухенский, А.П. Лонский, С.В. Морозов, Т.Н. Сергеенко и В.И. Яковлев (53) 621.317.757(088.8) (56) Hessel К.R. Appl. Opt, 1974, v. 13, №15, p. 1023-1028; Патент США 6154297; Патент РФ №780699 «Когерентно-оптический спектроанализатор»).
В качестве оптических фильтров в них используются различные прозрачные материалы, которые, как правило, пропускают определенный узкий диапазон анализируемого излучения, а для остального спектра являются непрозрачными. Но, в любом случае, установка такого фильтра в оптическую систему прибора сопровождается потерей мощности излучения на анализируемой длине волны λ. Поэтому спектры малой интенсивности с помощью таких устройств зарегистрировать очень сложно.
Автором установлено, что при взаимодействии исследуемого излучения с прозрачными пленками различной толщины, нанесенными на непрозрачные зеркала можно увеличить интенсивность потока на определенных длинах волн, а на других волнах существенно уменьшить, за счет их интерференции, и, тем самым, повысить чувствительность спектроанализатора при проведении анализа излучений малой интенсивности на исследуемых длинах волн.
Предлагаемое техническое решение поясняется рисунками, приведенными на фиг. 1 и фиг. 2.
Фиг. 1. Схема хода оптических лучей в плоскопараллельной пластине: S - направления, падающих на прозрачную пластину лучей; U и О - направления лучей, отраженных от поверхностей пластины без преломления и с преломлением соответственно; i - угол падения лучей на пластину; h - толщина пластины; r - угол преломления лучей в пластине.
Фиг. 2. Схема построения спектроанализатора: 1 - корпус; 2 - фотопоток от объекта; 3 - оптический блок с объективом; 4 - поворотный барабан с зеркалами; 5 - покрытие на зеркалах; 6 - направление поворота барабана; 7 - фотоприемник (ПЗС-матрица).
Как известно, поток излучения световых волн состоит из множества элементарных некогерентных цугов волн, соответствующих различным актам спонтанного излучения атомов или молекул источника энергии.
В классической теории излучения света атомом заряд частицы принимают равным заряду электрона. За время релаксации (время, за которое совершается число полных колебаний - один цуг волн) принимают промежуток времени, в течение которого амплитуда свободных колебаний заряда уменьшается в е раз вследствие потерь энергии на излучение.
Для частот видимого и инфракрасного излучения время релаксации составляет примерно 10-8 с - 10-7 с, а число полных колебаний составляет примерно - 107. Исходя из этих данных, представляется возможным оценить длину хода оптических лучей за время одного цуга. Но, так как в одном цуге лучи когерентны, то значит можно определить длину хода ΔS когерентных лучей в каждом цуге излучаемых волн. Это можно выполнить с использованием известного соотношения
Figure 00000001
где τ - средняя продолжительность одного акта излучения света атомом источника, c - скорость света в вакууме.
Как видно, с учетом времени релаксации τ, ΔS может изменяться от трех до тридцати метров.
Ход лучей в современных оптических системах, как правило, меньше этих величин. Это обстоятельство позволяет создавать оптические системы, обеспечивающие преобразование волн в пределах одного цуга. В таком случае каждый цуг можно считать квазимонохроматичным.
Рассмотренные выше свойства волн предлагается использовать в устройствах для повышения их разрешающей способности по регистрации излучения от объектов в заданном диапазоне длин волн и обеспечения возможности выполнения спектрального анализа излучения от объекта.
Для этого предлагается в течение каждого цуга излучения производить разделение потока, как минимум, на два, которые после прохождения различных путей накладываются друг на друга. В каждом из таких потоков имеются попарно когерентные между собой и одинаково поляризованные цуги, соответствующие одним и тем же актам излучения атомов источника (объекта). Создавая определенную разность фаз между когерентными цугами волн, вследствие прохождения ими различных расстояний от источника до фотоприемника в плоскости фотоприемника можно создать интерференционную картину этих волн.
Предлагается регистрировать изображение в условиях, когда на заданной длине волны в зоне фотоприемника будет обеспечено совпадение фаз разделенных потоков, что, в свою очередь, обеспечит максимальную интенсивность потока на этой длине волны, в то время как другие волны (из-за рассогласования фаз) будут иметь меньшую интенсивность. При этом на фотоприемнике будет обеспечено максимальное соотношение интенсивности регистрируемого изображения на данной длине волны к интенсивности шума от других длин волн, и тем самым будет обеспечено повышение чувствительности и разрешающей способности способа регистрации изображения объектов.
Кроме того, предлагается регистрировать интенсивность интерференционной картины того же изображения для той же длины волны в условиях, когда волны находятся в противофазе. Интенсивность излучения на данной длине волны в этом случае будет близка к нулю, а интенсивности излучения на других длинах волн останутся примерно такими же, что и в случае совпадения фаз. Проведя вычитание интенсивностей изображений в «фазе» и «противофазе», можно получить дополнительное снижение уровня шума в зарегистрированном изображении.
Регистрируя, таким образом, изображение объекта на конкретных длинах волн, представляется возможным производить и спектральный анализ излучения данного объекта.
Для проверки работоспособности и осуществимости предлагаемых технических решений создание разности оптического хода интерферирующих лучей выполнено с использованием плоскопараллельных пластин.
Расчеты, с использованием известных соотношений, поясняющие возможность создания интерференционной картины с помощью плоскопараллельных прозрачных пластин приведены ниже. Схема хода лучей в такой пластине поясняется на рисунке фиг. 1.
Оптическую разность хода интерферирующих лучей ΔS, отраженных от обеих поверхностей плоскопараллельной пластины, можно определить из известного соотношения:
Figure 00000002
где n - показатель преломления материала пластины, λ - длина волны излучения.
Условия максимумов и минимумов для интерференционной картины, образуемой когерентными волнами, отраженными от обеих поверхностей пластины, определяются условием:
Figure 00000003
здесь k=2m, где m - целое число, для минимумов и k=2m+1 для максимумов.
Если отражение от обеих поверхностей пластины происходит с потерями λ/2 (или без них), то интерференционная картина смещается на полполосы, т.е. значения k=2m соответствуют интерференционным максимумам, а k=2m+1 - минимумам.
Следует отметить, что наблюдение интерференции возможно лишь при малых разностях хода волн ΔS. Если ΔS≥τc, то накладывающиеся волны заведомо некогерентны и не интерферируют. Поэтому, для обеспечения малой разности хода волн, плоскопараллельные пластины должны быть тонкими, например, в виде тонких пленок.
Для подтверждения расчетов проведены эксперименты. В проведенных экспериментах пластины выполнены в виде тонких пленок, нанесенных на зеркальное металлическое основание. На зеркала с алюминиевой основой напылением в вакууме были нанесены покрытия из сульфата цинка (n=2,4) различной толщины, рассчитанные в соответствие с соотношением (3) для различных длин волн и углов падения. В результате получено:
- прямоугольное зеркало с толщиной покрытия h
Figure 00000004
0,26 мкм - в нем белый лист при угле i=45° по внешнему виду при сравнении с цветовой гаммой стандартной шкалы длин волн сопоставим с цветовой гаммой, соответствующей длине волны, примерно 460 нм;
- круглое зеркало с толщиной покрытия h
Figure 00000004
0,45 мкм - в нем белый лист при угле i=45° по внешнему виду сопоставим с цветовой гаммой соответствующей длинам волн
Figure 00000005
710-715 нм.
Приведенные данные (расчет и эксперимент) по толщинам пластин и полученным длинам волн основного спектра пластин (при сопоставлении со стандартной шкалой) подтверждают правомерность приведенных выше предположений и расчетов. А именно, изменением толщины прозрачной плоскопараллельной пластины можно создавать условия для интерференции электромагнитных волн отраженных (излученных) от объекта.
Для прямой проверки этого предположения был создан макет устройства, аналогичный приведенному на фиг. 2. В этом устройстве использованы лазерный излучатель с длиной волны 8 мкм, плоскопараллельные пластины с толщиной прозрачного слоя 2,7 мкм и 1,63 мкм из сульфата цинка, а также фотоприемное устройство. В качестве фотоприемного устройства в ИК-диапазоне использован прибор с фотоприемником на неохлаждаемом болометре, работающем в диапазоне длин волн 8-12 мкм. Зеркала устанавливались под углом 45° к фотоприемному устройству и объекту. Результаты экспериментов показали, что при наблюдении объекта с использованием зеркала с толщиной покрытия 1,63 мкм объект не наблюдается, а при установке зеркала с толщиной покрытия 2,7 мкм объект четко наблюдается с высоким уровнем контрастности.
Таким образом, приведенные выше данные показывают, что для повышения чувствительности и разрешающей способности технических устройств по фиксации объектов с низким уровнем излучения (в том числе, ночью) могут быть использованы плоскопараллельные тонкие пленки, устанавливаемые определенным способом в оптическую систему приема информации. Описанные выше эффекты могут быть использованы для проведения спектрального анализа излучения от объекта, т.е. применяться как своеобразный усиливающий фильтр.
Схема работы спектроанализатора приведена на фиг. 2. Спектроанализатор работает следующим образом.
Излучение от объекта 2 после прохождения через оптический блок 3 падает на одно из зеркал поворачивающегося барабана 4 под углом i к поверхности, на которой нанесена тонкая пленка 5 толщиной h из прозрачного материала с показателем преломления материала пленки n. Часть потока излучения отражается от поверхности пленки, а часть проходит сквозь пленку и отражается от непрозрачной поверхности зеркала. Эти потоки излучения смещены относительно друг друга на расстояние ΔS. Такое смещение позволяет потокам излучения, упав на поверхность фотоприемника 7 (ПЗС-матрицы) интерферировать, усиливая общий поток излучения. Тем самым достигается выделение и усиление, исследуемой длины волны излучения. При повороте барабана по направлению 6 на пути потока излучения встает зеркало с другими параметрами покрытия. При этом выделяется поток излучения с другой длиной волны. Таким образом, выполняется последовательный анализ спектра излучения от объекта.
Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленное техническое решение соответствует условию промышленной применимости.

Claims (1)

  1. Прибор для спектрального анализа излучения от объектов, включающий последовательно соединенные оптический блок с объективом, оптический фильтр, ПЗС-матрицу, аппаратуру цифровой обработки и систему отображения, отличающийся тем, что оптический фильтр представляет собой поворачивающийся многогранный барабан с зеркалами, на которые нанесены прозрачные покрытия различной толщины h, причем угол наклона зеркал по отношению к потоку излучения i задается за счет изменения числа граней барабана р и определяется из соотношения i=360/р, а длина волны λ измеренного спектра с помощью каждого зеркала определяется из соотношения λ=4h(n2-sin2i)1/2/3, где n - показатель преломления материала покрытия, причем устройство вращения барабана соединено с аппаратурой цифровой обработки через блок синхронизации.
RU2019111484A 2019-04-17 2019-04-17 Прибор для спектрального анализа излучения от объектов RU2706048C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019111484A RU2706048C1 (ru) 2019-04-17 2019-04-17 Прибор для спектрального анализа излучения от объектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019111484A RU2706048C1 (ru) 2019-04-17 2019-04-17 Прибор для спектрального анализа излучения от объектов

Publications (1)

Publication Number Publication Date
RU2706048C1 true RU2706048C1 (ru) 2019-11-13

Family

ID=68579862

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019111484A RU2706048C1 (ru) 2019-04-17 2019-04-17 Прибор для спектрального анализа излучения от объектов

Country Status (1)

Country Link
RU (1) RU2706048C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU777484A1 (ru) * 1979-01-29 1980-11-07 Предприятие П/Я Г-4371 Устройство дл дистанционного измерени температуры
EP1418409B1 (en) * 2001-08-13 2007-12-05 Hamamatsu Photonics K.K. Spectrometer using a spectral separating method
US9158118B2 (en) * 2011-10-20 2015-10-13 Acea Biosciences, Inc. Device for splitting light into components having different wavelength ranges and methods of use
US20170336250A1 (en) * 2016-05-19 2017-11-23 Topcon Technohouse Corporation Photometric device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU777484A1 (ru) * 1979-01-29 1980-11-07 Предприятие П/Я Г-4371 Устройство дл дистанционного измерени температуры
EP1418409B1 (en) * 2001-08-13 2007-12-05 Hamamatsu Photonics K.K. Spectrometer using a spectral separating method
US9158118B2 (en) * 2011-10-20 2015-10-13 Acea Biosciences, Inc. Device for splitting light into components having different wavelength ranges and methods of use
US20170336250A1 (en) * 2016-05-19 2017-11-23 Topcon Technohouse Corporation Photometric device

Similar Documents

Publication Publication Date Title
Hardy et al. Real-time atmospheric compensation
Strong et al. Lamellar grating far-infrared interferomer
Gay et al. Surface Wave Generation and Propagation on Metallic Subwavelength Structures Measured<? format?> by Far-Field Interferometry
McAulay Military laser technology for defense: Technology for revolutionizing 21st century warfare
CN103940514B (zh) 一种宽波段近景紫外成像光谱装置
Lahiri et al. Twin-photon correlations in single-photon interference
CN105157836A (zh) 一种偏振态同步获取的光谱成像装置及其方法
Lucchini et al. Semi-classical approach to compute RABBITT traces in multi-dimensional complex field distributions
Baker et al. Ultrafast semiconductor x-ray detector
RU2706048C1 (ru) Прибор для спектрального анализа излучения от объектов
CN112904351B (zh) 一种基于量子纠缠光关联特性的单源定位方法
CN106802185B (zh) 一种频率连续可调的窄线宽太赫兹光源及光谱仪、成像仪
Zandi et al. Low-cost laser detection system with a 360-deg horizontal field of view
Goosman Formulas for Fabry–Perot velocimeter performance using both stripe and multifrequency techniques
Melnikov et al. 3D imaging with moving fringe structured illumination microscopy
Dogadin et al. Design of a soft X-ray and extreme UV reflectometer equipped with a high-resolution monochromator and high-brightness laser-plasma radiation source
Kartashev et al. Methods of measuring small phase difference changes in interference devices
Wang Optical Measurement Mechanics
RU2419779C2 (ru) Способ определения показателя преломления поверхностной электромагнитной волны инфракрасного диапазона
US3630624A (en) Arrangement for determining the relative displacement of an object by means of an element rigidly secured to the object
Permyakova et al. Fresnel lens for the generator of encoded sequences of ultrashort pulses. The spectral evidence of series of pulses formation
RU2805002C1 (ru) Оптическая система дисперсионного интерферометра
JP6358710B2 (ja) 回折光学素子
CN116908867A (zh) 基于螺旋相位空间滤波的旋转体探测的装置、方法及存储介质
Baker et al. Solid-state framing camera operating in interferometric mode