RU2704955C1 - Method of locating shooter by sound of shot during movement of shelling object - Google Patents

Method of locating shooter by sound of shot during movement of shelling object Download PDF

Info

Publication number
RU2704955C1
RU2704955C1 RU2018107337A RU2018107337A RU2704955C1 RU 2704955 C1 RU2704955 C1 RU 2704955C1 RU 2018107337 A RU2018107337 A RU 2018107337A RU 2018107337 A RU2018107337 A RU 2018107337A RU 2704955 C1 RU2704955 C1 RU 2704955C1
Authority
RU
Russia
Prior art keywords
sound
sensors
shooter
sensor
location
Prior art date
Application number
RU2018107337A
Other languages
Russian (ru)
Inventor
Виктор Андреевич Антропов
Андрей Викторович Антропов
Алексей Николаевич Гладков
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Пермский военный институт войск национальной гвардии Российской Федерации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Пермский военный институт войск национальной гвардии Российской Федерации" filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Пермский военный институт войск национальной гвардии Российской Федерации"
Priority to RU2018107337A priority Critical patent/RU2704955C1/en
Application granted granted Critical
Publication of RU2704955C1 publication Critical patent/RU2704955C1/en

Links

Images

Abstract

FIELD: physics.
SUBSTANCE: invention relates to measurement equipment, in particular to determination of position of shooter on ground during movement of shooting object using sound from shot, and involves its use in movement of troops and equipment on railway and motor transport, during movement in the formation. Method is based on use of sensors sensitive to sound, location of which and number enable to determine coordinates of shot point - shooter, including the distance to the shooter, the angle between the sound sensors direct arrangement and the arrow direction, as well as the inclination angle of the same straight line in the vertical plane. Distinctive features of the method are introduction of corrections to the initial location of sensors due to movement of the object of fire and in accordance with the measured time intervals between the arrival of the sound signal from the shot to the peripheral sensors and the base sensor, measurement of the error of arrival of the signal to two sensors lying in a vertical plane on one straight line. Correction to the measured value is introduced, which depends on the speed of the object and the speed of propagation of the sound wave, as well as on the angle of inclination of the straight line connecting the pointer and the straight location of the three measuring sensors. Ratio for introducing said correction is determined. Introduction of the correction is directly related to the dynamic character of determining the coordinates of the shooter and is necessary to ensure the required accuracy.
EFFECT: technical result is providing the possibility of determining the position of a shooter during movement of object.
1 cl, 2 dwg

Description

Изобретение относится к измерительной технике, в частности, к определению местоположения стрелка на местности при движении объекта обстрела с использованием звука от выстрела.The invention relates to measuring technique, in particular, to determining the location of the shooter on the ground when moving the object of fire using sound from the shot.

Из существующего уровня техники известен способ определения направления на источник звука, который включает два датчика звука и по разности времени прихода звуковой волны определяется пеленг на источник звука - [1]. Кроме того, известны способы определения дальности, например, патенты №№2406964, 2494336, известны также устройства и способы, определяющие координаты с использованием датчиков звука [2, 3, 4, 5].From the existing level of technology there is a known method for determining the direction to the sound source, which includes two sound sensors and the bearing to the sound source is determined by the difference in the time of arrival of the sound wave - [1]. In addition, methods for determining the range are known, for example, patents Nos. 2,409,664, 2,494,336; devices and methods for determining coordinates using sound sensors are also known [2, 3, 4, 5].

Наиболее близким к заявленному техническому решению является: «Способ определения местоположения стрелка по звуку выстрела» - [2]. Патент №2610908 Российская Федерация. Антропов В.А., Антропов А.В., Успаленко В.Б., 2017 год.Closest to the claimed technical solution is: "A method for determining the location of a shooter by the sound of a shot" - [2]. Patent No. 2610908 Russian Federation. Antropov V.A., Antropov A.V., Uspalenko V.B., 2017.

Недостатком данного технического решения является:The disadvantage of this technical solution is:

- невозможность решения задачи при движении объекта.- the impossibility of solving the problem when moving the object.

Задачи, на решение которых направлено заявляемое изобретение являются:The tasks to which the invention is directed are:

- определение координат стрелка при движении объекта обстрела в реальных условиях передвижения войск и техники;- determination of the coordinates of the arrow during the movement of the object of fire in real conditions of movement of troops and equipment;

- обеспечение точности определения координат с минимальными затратами машинного времени;- ensuring the accuracy of determining coordinates with minimal expenditure of computer time;

- минимизация времени вычислительного процесса;- minimizing the time of the computing process;

- однозначное и гарантированное определение трех пространственных координат, служащих основанием для использования устройств подавления средств обстрела.- An unambiguous and guaranteed definition of three spatial coordinates, which serve as the basis for the use of devices to suppress the means of fire.

Данные задачи решаются за счет того, что заявленный способ определения координат объекта, включает размещение четырех датчиков, регистрирующих возмущение воздушной среды, в измерительных точках с известными координатами, регистрацию датчиками звукового сигнала от выстрела, определение моментов времени ti, соответствующих достижению сигналом каждого из датчиков, и интервалов времени Δti, соответствующих задержке распространения сигнала к периферийным датчикам относительно одного из датчиков, выбранного за базовый, определение координат стрелка на основании полученных данных и координат датчиков. Датчики размещают следующим образом: три датчика располагаются вдоль прямой, перпендикулярной возможному направлению на стрелка в горизонтальной плоскости и на известных расстояниях друг от друга, при этом первый из этих датчиков принимают за базовый, второй и третий (иногда будем называть периферийными), а четвертый датчик располагается на вертикали базового также на известном расстоянии. Анализ распространения звука позволяет составить три уравнения, решение которых позволяет определить неизвестные параметры, это: расстояния d между базовым датчиком и стрелком, угла χ между направлением на стрелка и прямой расположения периферийных датчиков, угла γ между направлением на стрелка и вертикалью базового датчика. Эти параметры находятся решением уравнений с учетом ограничений 180>χ>0. За счет движения объекта начальные расстояния между датчиками изменятся в соответствии с измеренными временными разностями прихода звуковой волны к периферийным датчикам относительно базового датчика и скоростью движения объекта. Что касается четвертого датчика, находящегося на вертикали базового датчика, то он фиксирует сигнал звука, который в совокупности с сигналом базового датчика дает разность сигналов, однако это измерение, как показывает анализ, несет ошибку, связанную с движением объекта и нуждается в корректировке.These tasks are solved due to the fact that the claimed method for determining the coordinates of an object includes the placement of four sensors that record the disturbance of the air in measuring points with known coordinates, the registration of the sound signal from the shot by the sensors, the determination of the time t i corresponding to the signal reaching each of the sensors , and time intervals Δt i corresponding to the propagation delay of the signal to peripheral sensors relative to one of the sensors selected as the base one, determining the coordinate inat arrow based on the received data and the coordinates of the sensors. The sensors are placed as follows: three sensors are located along a straight line, perpendicular to the possible direction of the arrow in the horizontal plane and at known distances from each other, with the first of these sensors being taken as the base, second and third (sometimes called peripheral), and the fourth sensor located on the vertical of the base also at a known distance. Analysis of sound propagation allows you to make three equations, the solution of which allows you to determine unknown parameters, these are: the distance d between the base sensor and the arrow, the angle χ between the direction of the arrow and the direct location of the peripheral sensors, the angle γ between the direction of the arrow and the vertical of the base sensor. These parameters are found by solving equations taking into account the constraints 180>χ> 0. Due to the movement of the object, the initial distances between the sensors will change in accordance with the measured time differences of the arrival of the sound wave to the peripheral sensors relative to the base sensor and the speed of the object. As for the fourth sensor, which is located on the vertical of the base sensor, it captures a sound signal, which together with the signal of the base sensor gives the signal difference, however, this measurement, as the analysis shows, carries an error related to the movement of the object and needs to be adjusted.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является возможность определения местоположения стрелка при движении объекта, повышение точности измерения пространственных координат при минимальном времени расчета.The technical result provided by the given set of features is the ability to determine the location of the shooter during the movement of the object, improving the accuracy of measuring spatial coordinates with a minimum calculation time.

Сущность изобретения поясняется чертежами, на которых изображено:The invention is illustrated by drawings, which depict:

- на фиг. 1 представлена картина распространения звука в некоторой, в общем случае, наклонной плоскости; этот рисунок позволяет понять принцип формирования уравнений при расчете неизвестных параметров местоположения стрелка.- in FIG. 1 shows a picture of the propagation of sound in a generally inclined plane; This figure allows you to understand the principle of the formation of equations in the calculation of unknown parameters of the location of the shooter.

- на фиг. 2 представлена схема, позволяющая определить текущие координаты периферийных датчиков из-за движения объекта, а также определить истинное значения времени рассогласования в приходе звуковой волны к датчикам D и А.- in FIG. 2 is a diagram that allows you to determine the current coordinates of peripheral sensors due to the movement of the object, as well as to determine the true value of the mismatch time in the arrival of the sound wave to the sensors D and A.

Работает устройство по данному способу следующим образом.The device operates according to this method as follows.

Пусть имеем скорость распространения звука в воздухе равной ν, а скорость движения объекта обстрела известна, примем ее равной u. Скорость звука в воздухе легко рассчитывается по формулам физики и в основном зависит от температуры воздуха. Пусть необходимо определить направление на точку О - угол χ и расстояние OA=d. Согласно фиг. 1, с приходом звука в точку А, звук одновременно приходит и в точки В' и С'. Расстояния ВВ' и СС' зависят от скорости звука и разностей времени прихода звука в точку A, и в точки В и С (в точках В' и С' находился звук в момент его прихода к датчику А). Из рисунка видно, что за время преодоления звуком расстояния ВВ' датчик звука переместится из точки B1 в точку В. Соответственно за время преодоления звуком расстояния СС' датчик звука переместится из точки C1 в точку С.Suppose that we have the speed of sound propagation in air equal to ν, and the speed of movement of the object of fire is known, we assume it is equal to u. The speed of sound in air is easily calculated by the formulas of physics and mainly depends on air temperature. Let it be necessary to determine the direction to the point O — the angle χ and the distance OA = d. According to FIG. 1, with the arrival of sound at point A, sound simultaneously arrives at points B 'and C'. The distances BB 'and CC' depend on the speed of sound and the differences in the time of arrival of sound at point A, and at points B and C (at points B 'and C' there was sound at the time it arrived at sensor A). It can be seen from the figure that during the time the sound travels the distance BB ', the sound sensor moves from point B 1 to point B. Accordingly, the time the sound travels the distance CC', the sound sensor moves from point C 1 to point C.

Местоположение датчиков А, В и С являются определяющими при нахождении координат местоположения стрелка и именно в моменты прихода к ним звуковой волны. Это положение не изменяется придвижении объекта, как и в статической постановке [2].The location of the sensors A, B and C are decisive when finding the coordinates of the location of the shooter and precisely at the moments of arrival of the sound wave to them. This position does not change the movement of the object, as in the static setting [2].

Звук распространяется из точки О, координаты которой определяются в данной задаче, и достигает в разное время датчиков. Согласно фиг. 2, звук при данном расположении датчиков и местоположении точки выстрела достигает сначала датчика D, затем датчика A, затем датчиков В и С. В момент достижения звуком датчика А датчики В и С находились в точках В1 и С1 соответственно. Звуковая волна достигает этих датчиков в точках В и С, координаты которых учитывают факт перемещения датчиков из-за движения объекта. Координаты точек В и С участвуют в составлении уравнений для решения навигационной задачи. Расстояния АВ1 и В1С1 были первоначальным и известным расположением датчиков В и С на прямой АС. С учетом движения объекта эти датчики переместились в точки В и С. При этом расстояния ВВ1 и СС1 равны:Sound propagates from point O, the coordinates of which are determined in this task, and reaches the sensors at different times. According to FIG. 2, the sound at this location of the sensors and the location of the firing point reaches first sensor D, then sensor A, then sensors B and C. At the time the sound reached sensor A, sensors B and C were at points B 1 and C 1, respectively. The sound wave reaches these sensors at points B and C, whose coordinates take into account the fact that the sensors move due to the movement of the object. The coordinates of points B and C are involved in the preparation of equations for solving the navigation problem. The distances AB 1 and B 1 C 1 were the initial and known location of the sensors B and C on the direct speaker. Given the movement of the object, these sensors moved to points B and C. In this case, the distances BB 1 and CC 1 are equal to:

ВВ1=u⋅Δt1, СС1=u⋅Δt2,BB 1 = u⋅Δt 1 , SS 1 = u⋅Δt 2 ,

где Δt1=tB-tA - разница прихода звуковой волны к датчикам А и В;where Δt 1 = t B -t A is the difference in the arrival of a sound wave to sensors A and B;

Δt2=tC-tA - разница времени прихода звуковой волны к датчикам А и С;Δt 2 = t C -t A is the difference in the time of arrival of the sound wave to the sensors A and C;

u - скорость движения объекта обстрела.u is the velocity of the object of fire.

В данном случае датчик А был принят за базовый и относительно его определяются промежутки времени достижения звука датчиков. Рассмотрим принцип определения координат стрелка.In this case, sensor A was taken as the base one and the time intervals for reaching the sound of the sensors are determined relative to it. Consider the principle of determining the coordinates of the arrow.

Для этого рассмотрим два косоугольных треугольника ОАВ и ОАС - фиг. 1. В этих треугольниках OA и ОВ' равны между собой: ОА=ОВ', и аналогично ОА=ОС', как радиусы одной окружности. Воспользуемся теоремой косинусов:To do this, we consider two oblique triangles OAV and OAS - Fig. 1. In these triangles, OA and OV 'are equal to each other: OA = OV', and similarly OA = OS ', as the radii of one circle. We use the cosine theorem:

а 2=b22-2bc⋅cosA, a 2 = b 2 + s 2 -2bc⋅cosA,

где треугольник ABC является косоугольным, а сторона а расположена против угла А (угол А это угол ОАВ, угол между направлением на точку выстрела и прямой расположения датчиков звука). Примем значение угла А равным χ.where the triangle ABC is oblique, and side a is opposite the angle A (angle A is the angle OAB, the angle between the direction of the shot point and the direct location of the sound sensors). We take the value of angle A equal to χ.

Для нашего случая (фиг. 1) имеем:For our case (Fig. 1) we have:

Figure 00000001
Figure 00000001

Эта система двух уравнений содержит два неизвестных параметра: угол χ и расстояние OA=d, все остальные параметры известны, в том числе расстояние от датчика А до датчика В равно а, с учетом движения объекта обстрела расстояние а увеличится за счет движения объекта, расстояние от датчика С до датчика А исходное равно a+b, но оно аналогично увеличится, при этом приращения расстояний а и а+b не равны между собой, а они пропорциональны промежуткам времени Δt1 и Δt2.This system of two equations contains two unknown parameters: the angle χ and the distance OA = d, all other parameters are known, including the distance from the sensor A to the sensor B is equal to a , taking into account the movement of the fired object, the distance a will increase due to the movement of the object, the distance from from sensor C to sensor A, the initial value is a + b, but it will increase similarly, while the increments of the distances a and a + b are not equal to each other, and they are proportional to the time intervals Δt 1 and Δt 2 .

В свою очередь сторона OB=d+ν⋅Δt1 и ОС=d+ν⋅Δt2;In turn, the side OB = d + ν⋅Δt 1 and OS = d + ν⋅Δt 2 ;

где Δt1=tB-tA, Δt2=tC-tA where Δt 1 = t B -t A , Δt 2 = t C -t A

Запишем:We write:

Figure 00000002
Figure 00000002

Здесь обозначено АВ=а+u⋅Δt1, ВС=b+u⋅Δt2.…Here, AB = a + u⋅Δt 1 , BC = b + u⋅Δt 2. ...

Раскроем скобки и упростим выражение, получим:Expand the brackets and simplify the expression, we get:

Figure 00000003
Figure 00000003

Если обозначить:If designated:

а 1=2⋅ν⋅Δt1, and 1 = 2⋅ν⋅Δt 1 ,

а 2=2⋅ν⋅Δt2, and 2 = 2⋅ν⋅Δt 2 ,

b1=2⋅a+u⋅Δt1,b 1 = 2⋅ a + u⋅Δt 1 ,

b2=2⋅(a+b+u⋅Δt2),b 2 = 2⋅ ( a + b + u⋅Δt 2 ),

с1=(а+u⋅Δt1)2-(ν⋅Δt1)2,c 1 = ( a + u⋅Δt 1 ) 2 - (ν⋅Δt 1 ) 2 ,

c2=(a+b+u⋅Δt2)2-(ν+Δt2)2,c 2 = ( a + b + u⋅Δt 2 ) 2 - (ν + Δt 2 ) 2 ,

то имеем:then we have:

Figure 00000004
Figure 00000004

Это система двух уравнений с постоянными коэффициентами и двумя неизвестными. ОбозначимThis is a system of two equations with constant coefficients and two unknowns. Denote

d=x1, d⋅cosχ=x2;d = x 1 , d⋅cosχ = x 2 ;

тогда:then:

Figure 00000005
Figure 00000005

Расчет этой системы уравнений позволяет определить две переменных - угол χ и расстояние d.The calculation of this system of equations allows us to determine two variables - the angle χ and the distance d.

Для расчета третьего параметра, угла возвышения γ, обозначим расстояние OD равное l, тогда согласно фиг. 2 имеем:To calculate the third parameter, the elevation angle γ, we denote the distance OD equal to l, then according to FIG. 2 we have:

l=d-ν⋅Δt3,l = d-ν⋅Δt 3 ,

где Δt3=tD-tA - рассогласование времени прихода звуковой волны к датчикам D и A в точках D и A.where Δt 3 = t D -t A is the mismatch of the arrival time of the sound wave to the sensors D and A at points D and A.

Из треугольника OAD найдем третье уравнение системы:From the triangle OAD we find the third equation of the system:

l2=h2+d2-2⋅h⋅d⋅cosγ,l 2 = h 2 + d 2 -2⋅h⋅d⋅cosγ,

откуда:where from:

Figure 00000006
Figure 00000006

илиor

Figure 00000007
Figure 00000007

здесь h=AD.here h = AD.

Параметр γ может быть определен из вышеприведенных выкладок, а может быть определен и из системы трех уравнений.The parameter γ can be determined from the above calculations, and can be determined from a system of three equations.

Таким образом, по данному способу определения местоположения стрелка при движении объекта обстрела составляются три уравнения, из которых определяются неизвестные параметры γ, d, χ. Все три уравнения представлены в тексте выше.Thus, according to this method for determining the location of the shooter when the object of fire is fired, three equations are composed, from which unknown parameters γ, d, χ are determined. All three equations are presented in the text above.

Динамика данной задачи приводит к необходимости отдельного определения Δt3, которое в статической постановке определяется однозначно, как разность прихода звуковой волны к датчикам D и A.The dynamics of this problem leads to the need for a separate determination of Δt 3 , which in a static setting is uniquely determined as the difference in the arrival of a sound wave to sensors D and A.

Вернемся к фиг. 2. Согласно рисунку, звук от выстрела сначала приходит к датчику звука в точку D1, затем звук приходит к базовому датчику в точку А. Однако, за счет того, что объект движется, а датчики А и D находятся на одной вертикали, то временное расстояние между этими точками оказываются зависящими как от расстояния AD, так и от времени движения объекта от прихода звуковой волны к датчику D (в точке D1) до прихода звуковой волны к датчику А. Согласно фиг. 2 расстояние OD может быть записано в видеReturning to FIG. 2. According to the figure, the sound from the shot first comes to the sound sensor at point D 1 , then the sound comes to the base sensor at point A. However, due to the fact that the object is moving, and the sensors A and D are on the same vertical, then temporary the distance between these points turns out to depend on both the distance AD and the time the object moves from the arrival of the sound wave to the sensor D (at point D 1 ) until the sound wave arrives at the sensor A. According to FIG. 2 OD distance can be written as

OD=d-Δt3⋅ν.OD = d-Δt 3 ⋅ν.

Время, за которое датчик D преодолел расстояниеTime over which the sensor D covered the distance

DD1=u⋅δt3,DD 1 = u⋅δt 3 ,

где δt3=tD-tA - время рассогласования между приходом звука к датчику D (в точке D1) и к датчику А (в точке А).where δt 3 = t D -t A is the mismatch time between the sound coming to the sensor D (at point D 1 ) and to the sensor A (at point A).

В момент, когда датчик D получил звуковой сигнал (точка D1), звук находился, также, в точке L1. Далее датчик D1 движется в сторону точки D со скоростью u, а звук движется из точки К1 к точке К со скоростью звука ν. За время δt3 звуковая волна оказалась в точке К, пройдя через точку D, значит, разность прихода волны в точки А и D численно равна времени прохождения этой волной расстояния DK, то естьAt the moment when the sensor D received an audio signal (point D 1 ), the sound was also at point L 1 . Next, the sensor D 1 moves towards the point D with speed u, and the sound moves from point K 1 to point K with the speed of sound ν. During the time δt 3, the sound wave appeared at point K, passing through point D, which means that the difference in the arrival of the wave at points A and D is numerically equal to the travel time of the distance DK by this wave, i.e.

Δt3=DK/ν.Δt 3 = DK / ν.

Именно DK является характеристикой временного рассогласования между временем прихода звука к датчику D и датчику А.It is DK that is a characteristic of the temporal mismatch between the time of sound arrival to the sensor D and sensor A.

Здесь умышленно введены обозначения δt3 (измеренное) не равное Δt3 (вычисленное) значение.Here, the notation δt 3 (measured) is not equal to Δt 3 (calculated) value.

Для определения расстояния DK заметим, что OA=OK, OD=OL и OD1=OK1 (как радиусы окружностей), отсюда следует вывод, что DK=AL. Примем, что угол D1K1D=90 градусов, а угол D1DK1=χ ввиду того, что расстояние OD много больше величины AD (это единственное в данной работе приближение).To determine the distance DK, we note that OA = OK, OD = OL and OD 1 = OK 1 (as the radii of circles), this implies that DK = AL. We assume that the angle D 1 K 1 D = 90 degrees, and the angle D 1 DK 1 = χ due to the fact that the distance OD is much larger than AD (this is the only approximation in this paper).

Тогда из треугольника D1K1D найдемThen from the triangle D 1 K 1 D we find

K1D=δt3⋅(u⋅cos(180-χ)).K 1 D = δt 3 ⋅ (u⋅cos (180-χ)).

За время δt3 точка D1 переместилась в точку D, а звук переместился из точки К1 в точку К. Учтя это, длина отрезкаDuring the time δt 3, point D 1 moved to point D, and the sound moved from point K 1 to point K. Given this, the length of the segment

DK=δt3⋅(ν-u⋅cos(180-χ)).DK = δt 3 ⋅ (ν-u⋅cos (180-χ)).

ИлиOr

Δt3=δt3⋅(ν-u⋅cos(180-χ))/ν.Δt 3 = δt 3 ⋅ (ν-u⋅cos (180-χ)) / ν.

Из приведенных соотношений видно, что величина δt3 не равна Δt3. Это видно также из выраженийFrom the above relations it is seen that the value of δt 3 is not equal to Δt 3 . This is also evident from the expressions

DK=δt3⋅(ν-u⋅cos(180-χ)) и Δt3=DK/ν.DK = δt 3 ⋅ (ν-u⋅cos (180-χ)) and Δt 3 = DK / ν.

Чем выше скорость объекта u, тем больше вклад скорости объекта обстрела в значение δt3. Расчеты показывают, что пройденный путь объектом за время δt3 составляет единицы сантиметров, а то и миллиметры, но далее они сказываются на величине Δt3, а та, в свою очередь, на значение γ, что нежелательно, так как этот параметр является решающим при нахождении азимута при инструментальной реализации способа.The higher the velocity of the object u, the greater the contribution of the velocity of the object of fire to the value δt 3 . Calculations show that the path traveled by the object during the time δt 3 is units of centimeters, or even millimeters, but then they affect the value of Δt 3 , and that, in turn, affects the value of γ, which is undesirable, since this parameter is crucial for finding the azimuth in the instrumental implementation of the method.

Влияние движения объекта приводит к ошибкам в измерении Δt3 из-за того, что скорость объекта в одном случае увеличивает путь, проходимый звуковой волной (при углах χ более 90 градусов), а в другом случае (при углах χ менее 90 градусов) уменьшает этот путь за счет проекции скорости объекта на направление распространения звука.The influence of the movement of the object leads to errors in the measurement of Δt 3 due to the fact that the speed of the object in one case increases the path traveled by the sound wave (at angles χ more than 90 degrees), and in the other case (at angles χ less than 90 degrees) path due to the projection of the speed of the object on the direction of sound propagation.

Таким образом, расчет Δt3 по формулеThus, the calculation of Δt 3 by the formula

Δt3=δt3⋅(ν-u⋅cos(180-χ))/νΔt 3 = δt 3 ⋅ (ν-u⋅cos (180-χ)) / ν

позволяет более точно определить этот параметр, а не опираться на измеренное значение δt3.allows you to more accurately determine this parameter, and not rely on the measured value of δt 3 .

Расчеты показали, что чем выше скорость объекта u, тем больше вклад скорости объекта обстрела в значение δt3. При скоростях объекта в пределах от 36 до 72 км/час (10…20 м/с) величина Δt3 всегда отличается от δt3, т.е. влиянием неравенства δt3 и Δt3 нельзя пренебречь; нужно измерять δt3, а затем с использованием формулы вводить поправку и вычислять Δt3,The calculations showed that the higher the speed of the object u, the greater the contribution of the speed of the object of fire to the value of δt 3 . At object speeds ranging from 36 to 72 km / h (10 ... 20 m / s), Δt 3 always differs from δt 3 , i.e. the influence of the inequalities δt 3 and Δt 3 cannot be neglected; you need to measure δt 3 , and then using the formula to introduce a correction and calculate Δt 3 ,

Что касается влияния скорости объекта на местоположение датчиков, то это влияние достаточно велико. Например, изменение положения датчиков относительно базового датчика при углах χ близких к 0 и 180 градусам при начальном разнесении датчиков от базового датчика а=5 метров, b=5 метров и скоростях движения объекта 20 м/с и звука - 330 м/с, Δt1=0,016129 сек., Δt2=0,0343392 сек. коррекция а составляет 0,32258 метра, а+b - соответственно 0,64516 метра, что, конечно, значимо для целей навигации.As for the influence of the speed of the object on the location of the sensors, this influence is quite large. For example, a change in the position of the sensors relative to the base sensor at angles χ close to 0 and 180 degrees with the initial separation of the sensors from the base sensor a = 5 meters, b = 5 meters and the speed of the object 20 m / s and sound - 330 m / s, Δt 1 = 0.016129 sec., Δt 2 = 0.0343392 sec. Correction a is 0.32258 meters, and + b 0.64516 meters, respectively, which, of course, is significant for navigation purposes.

Авторами были проведены численные расчеты, подтверждающие предложенный в работе способ. Эти результаты не вошли в данный материал, так как оказались слишком объемными и заслоняющими материалы данной заявки. При необходимости они могут быть представлены в адрес ФИПС.The authors performed numerical calculations confirming the method proposed in the work. These results were not included in this material, since they turned out to be too voluminous and obscuring the materials of this application. If necessary, they can be submitted to FIPS.

ЛитератураLiterature

1. Патент РФ №2377594. Способ определения координат объекта. Гришин Алексей Валерьевич (RU), Кортюков Иван Иванович (RU), Ниточкин Евгений Николаевич (RU), Хорошко Алексей Николаевич (RU), Штарев Сергей Леонидович (RU) Российская Федерация, - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU). Начало действия патента 23.06.2008 год.1. RF patent No. 2377594. A method for determining the coordinates of an object. Grishin Aleksey Valerievich (RU), Kortyukov Ivan Ivanovich (RU), Nitochkin Evgeny Nikolaevich (RU), Khoroshko Aleksey Nikolaevich (RU), Shtarev Sergey Leonidovich (RU) Russian Federation, - All-Russian Research Institute of Experimental Physics - FSUE RFNC -VNIIEF "(RU). The patent is valid on 23.06.2008.

2. Патент №2 610908 Российской Федерации. Способ определения местоположения стрелка по звуку выстрела. Антропов В.А., Антропов А.В., Успаленко В.Б., 2017 год.2. Patent No. 2 610908 of the Russian Federation. The method of determining the location of the shooter by the sound of the shot. Antropov V.A., Antropov A.V., Uspalenko V.B., 2017.

3. Патент №2323449. Способ определения пеленга источника звука. Шмелев В.В. и др. - 2006 г.3. Patent No. 2323449. A method for determining the bearing of a sound source. Shmelev V.V. et al. - 2006

4. Патент №2494336. Способ оценки дальности идо точки выстрела. - 2010 г.4. Patent No. 2494336. A method for assessing the range and point of a shot. - 2010

5. Патент №2406964. Устройство для определения координат места выстрела из огнестрельного оружия. - 2010 г.ц5. Patent No. 2406964. A device for determining the coordinates of the place of a shot from a firearm. - 2010 Hz

6. Красильников В.А. Звуковые и ультразвуковые волны в воздухе, воде и твердых телах. - М.: Государственное издательство физико-математической литературы. 1960.6. Krasilnikov V.A. Sound and ultrasonic waves in air, water and solids. - M .: State publishing house of physical and mathematical literature. 1960.

Claims (4)

Способ определения местоположения стрелка по звуку выстрела при прямолинейном движении объекта обстрела, включающий три датчика звука, первый из которых выбирается базовым, которые помещают в горизонтальной плоскости на известных расстояниях вдоль прямой, перпендикулярной возможному местонахождению источника звука, четвертый датчик размещают на вертикали от базового датчика также на известном расстоянии, при этом, на основании известного расположения датчиков, известных расстояний между ними, измеренной разности времени прихода звуковой волны к датчикам относительно базового датчика, а также с учетом скорости распространения звука в воздухе, получают координаты стрелка, решая систему уравнений с тремя неизвестными, причем неизвестными являются:The method of determining the location of the shooter by the sound of a shot during the rectilinear movement of the target, including three sound sensors, the first of which is selected as the base, which are placed in a horizontal plane at known distances along a straight line perpendicular to the possible location of the sound source, the fourth sensor is also placed vertically from the base sensor at a known distance, and on the basis of the known location of the sensors, the known distances between them, the measured difference in the time of arrival of sound waves to the sensors relative to the base sensor, and also taking into account the speed of sound propagation in the air, the coordinates of the shooter are obtained by solving a system of equations with three unknowns, the unknown being: - расстояние d между базовым датчиком и стрелком;- distance d between the base sensor and the shooter; - угол χ между прямой, вдоль которой размещают три датчика и прямой между базовым датчиком и стрелком, при этом должно выполняться условие 180>χ>0 (градусов);- the angle χ between the straight line along which three sensors are placed and the straight line between the base sensor and the shooter, while the condition 180> χ> 0 (degrees) must be fulfilled; - угол γ между вертикалью, на которой расположен четвертый датчик, и прямой между базовым датчиком и стрелком, отличающийся тем, что расстояния между тремя датчиками, находящимися на одной горизонтальной прямой, определяют как сумму их начального распределения вдоль горизонтальной прямой с приращениями, полученными за счет движения объекта и в соответствии с измеренными рассогласованиями по времени, а измеренная с помощью двух датчиков, расположенных на одной вертикальной прямой, разность времени прихода звука корректируется с учетом скорости движения объекта, скорости звука и угла χ между направлением на стрелка и прямой расположения трех датчиков.- the angle γ between the vertical, on which the fourth sensor is located, and the straight line between the base sensor and the shooter, characterized in that the distances between three sensors located on the same horizontal line are determined as the sum of their initial distribution along the horizontal line with increments obtained by the movement of the object and in accordance with the measured discrepancies in time, and measured using two sensors located on the same vertical line, the difference in the time of arrival of sound is adjusted taking into account the speed of the movement of the object, the speed of sound and the angle χ between the direction of the arrow and the direct location of the three sensors.
RU2018107337A 2018-02-27 2018-02-27 Method of locating shooter by sound of shot during movement of shelling object RU2704955C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018107337A RU2704955C1 (en) 2018-02-27 2018-02-27 Method of locating shooter by sound of shot during movement of shelling object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018107337A RU2704955C1 (en) 2018-02-27 2018-02-27 Method of locating shooter by sound of shot during movement of shelling object

Publications (1)

Publication Number Publication Date
RU2704955C1 true RU2704955C1 (en) 2019-10-31

Family

ID=68500838

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018107337A RU2704955C1 (en) 2018-02-27 2018-02-27 Method of locating shooter by sound of shot during movement of shelling object

Country Status (1)

Country Link
RU (1) RU2704955C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2734289C1 (en) * 2019-12-02 2020-10-14 Федеральное государственное казенное военное образовательное учреждение высшего образования "Михайловская военная артиллерийская академия" Министерства обороны Российской Федерации Method of positioning audio signal source using sound ranging system
CN117022388A (en) * 2023-10-08 2023-11-10 成都交控轨道科技有限公司 Train positioning method based on vehicle-mounted sensing system and transponder system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2285272C1 (en) * 2005-01-31 2006-10-10 Российская Федерация в лице Федерального агентства по атомной энергии Method for determining position of a rifleman in an area
US7586812B2 (en) * 2003-01-24 2009-09-08 Shotspotter, Inc. Systems and methods of identifying/locating weapon fire including return fire, targeting, laser sighting, and/or guided weapon features
RU2470252C1 (en) * 2011-07-07 2012-12-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Method of defining bullet and shell position coordinates in space and time
RU2494336C2 (en) * 2004-08-24 2013-09-27 РЭЙТЕОН БиБиЭн ТЕКНОЛОДЖИЗ КОРП. Method of estimating distance to shot point
RU2610908C2 (en) * 2015-06-29 2017-02-17 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Пермский военный институт внутренних войск Министерства внутренних дел Российской Федерации" Method of shooter locating by sound of shot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586812B2 (en) * 2003-01-24 2009-09-08 Shotspotter, Inc. Systems and methods of identifying/locating weapon fire including return fire, targeting, laser sighting, and/or guided weapon features
RU2494336C2 (en) * 2004-08-24 2013-09-27 РЭЙТЕОН БиБиЭн ТЕКНОЛОДЖИЗ КОРП. Method of estimating distance to shot point
RU2285272C1 (en) * 2005-01-31 2006-10-10 Российская Федерация в лице Федерального агентства по атомной энергии Method for determining position of a rifleman in an area
RU2470252C1 (en) * 2011-07-07 2012-12-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Method of defining bullet and shell position coordinates in space and time
RU2610908C2 (en) * 2015-06-29 2017-02-17 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Пермский военный институт внутренних войск Министерства внутренних дел Российской Федерации" Method of shooter locating by sound of shot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2734289C1 (en) * 2019-12-02 2020-10-14 Федеральное государственное казенное военное образовательное учреждение высшего образования "Михайловская военная артиллерийская академия" Министерства обороны Российской Федерации Method of positioning audio signal source using sound ranging system
CN117022388A (en) * 2023-10-08 2023-11-10 成都交控轨道科技有限公司 Train positioning method based on vehicle-mounted sensing system and transponder system
CN117022388B (en) * 2023-10-08 2024-01-30 成都交控轨道科技有限公司 Train positioning method based on vehicle-mounted sensing system and transponder system

Similar Documents

Publication Publication Date Title
CN110375730A (en) The indoor positioning navigation system merged based on IMU and UWB
CN106500721B (en) A kind of underwater robot dual redundant attitude detection system
RU2704955C1 (en) Method of locating shooter by sound of shot during movement of shelling object
US7656159B2 (en) Locating stationary magnetic objects
Lo et al. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals
Zhao et al. Investigation on total adjustment of the transducer and seafloor transponder for GNSS/Acoustic precise underwater point positioning
Blumrich et al. Medium-range localisation of aircraft via triangulation
CN104422921A (en) Fixed single station passive positioning system based on orientation and self time difference measurement
CN104267205B (en) Road vehicle traveling velocity vertical velocimeter and method thereof
RU2610908C2 (en) Method of shooter locating by sound of shot
CN104977559B (en) Target positioning method in interference environment
RU2545068C1 (en) Measurement method of changes of heading angle of movement of source of sounding signals
KR101480834B1 (en) Target motion analysis method using target classification and ray tracing of underwater sound energy
RU2617447C1 (en) Method of determining range to fixed radiation source by moving direction finder
Sheng et al. A novel bridge curve mode measurement technique based on FOG
RU107370U1 (en) DEVICE FOR DETERMINING MOVEMENT PARAMETERS PURPOSES
Sun et al. Underwater asynchronous navigation using single beacon based on the phase difference
RU2714884C1 (en) Method of determining the course of an object on a linear trajectory using measurements of its radial velocity
RU2381523C2 (en) Method of measuring object motion and range thereto with onboard passive surveying system
CN105842697B (en) Strabismus InSAR joint DEM and GMTI processing methods based on five-element acoustic array
RU2529649C1 (en) Method for angular orientation of object based on spacecraft radio navigation signals
RU2461801C1 (en) Method of determining wind speed aboard aircraft and integrated navigation system for realising said method
Miller et al. On AUV navigation based on acoustic sensing of the seabed profile
RU2684733C2 (en) Method for determining position of object with cut from two measuring points in azimuth, elevation angle and distance
RU2778326C1 (en) Device for determining the coordinates and parameters of motion of the observed ferromagnetic object

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200228