RU2704511C2 - Лопатка соплового аппарата высокого давления, содержащая вставку с изменяющейся геометрией - Google Patents

Лопатка соплового аппарата высокого давления, содержащая вставку с изменяющейся геометрией Download PDF

Info

Publication number
RU2704511C2
RU2704511C2 RU2018106098A RU2018106098A RU2704511C2 RU 2704511 C2 RU2704511 C2 RU 2704511C2 RU 2018106098 A RU2018106098 A RU 2018106098A RU 2018106098 A RU2018106098 A RU 2018106098A RU 2704511 C2 RU2704511 C2 RU 2704511C2
Authority
RU
Russia
Prior art keywords
wall
holes
insert
blade
trough
Prior art date
Application number
RU2018106098A
Other languages
English (en)
Other versions
RU2018106098A (ru
RU2018106098A3 (ru
Inventor
Фредерик Филипп Жан-Жак ПАРДО
Гильам ВЕРРОН
Original Assignee
Сафран Хеликоптер Энджинз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сафран Хеликоптер Энджинз filed Critical Сафран Хеликоптер Энджинз
Publication of RU2018106098A publication Critical patent/RU2018106098A/ru
Publication of RU2018106098A3 publication Critical patent/RU2018106098A3/ru
Application granted granted Critical
Publication of RU2704511C2 publication Critical patent/RU2704511C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • F05D2250/141Two-dimensional elliptical circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/24Three-dimensional ellipsoidal
    • F05D2250/241Three-dimensional ellipsoidal spherical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/711Shape curved convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/712Shape curved concave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Toys (AREA)

Abstract

Лопатка (10) соплового аппарата (8) газотурбинного двигателя (1) содержит перо (12), содержащее стенку (16) корытца и стенку (14) спинки, и вставку (20), расположенную между стенкой (16) корытца и стенкой (14) спинки. Вставка (20) содержит замкнутую стенку (22), имеющую наружную поверхность (24), расположенную напротив стенки (16) корытца и стенки (14) спинки, и внутреннюю поверхность (26), противоположную наружной поверхности (24). Наружная поверхность (24) замкнутой стенки (22) и находящаяся напротив стенка пера (12) разделены воздушным зазором (30). В замкнутой стенке (22) выполнен ряд сквозных отверстий (28), проходящих между наружной поверхностью (24) и внутренней поверхностью (26). В замкнутой стенке (22) выполнен ряд углублений (25), выходящих на наружную поверхность (24). Сквозные отверстия (28) выполнены в углублениях (25). Высоты (h) воздействия между указанными сквозными отверстиями (28) и стенкой (16) корытца или стенкой (14) спинки превышают величину воздушного зазора (30). Углубления (25) в основном имеют полусферическую форму, яйцевидную форму или каплевидную форму. Изобретение направлено на оптимизацию охлаждения, для уменьшения количества охлаждающего воздуха, ограничение термомеханических повреждений. 3 н. и 6 з.п. ф-лы, 5 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к общей области одноконтурных или двухконтурных газотурбинных двигателей и, в частности, к охлаждению лопаток охлаждаемых сопловых аппаратов.
Уровень техники
Газотурбинный двигатель 1 обычно содержит гондолу или воздухозаборник (пленум), который образует отверстие, через которое заранее определенное количество воздуха поступает собственно в двигатель. Как правило, газотурбинный двигатель содержит одну или несколько зон сжатия 4 для сжатия воздуха, поступающего в двигатель (обычно секцию низкого давления и секцию высокого давления). Сжатый воздух поступает в камеру 5 и смешивается в ней с горючим для осуществления горения.
Затем горячие газообразные продукты сгорания расширяются на различных ступенях 6, 7 турбины. Первое расширение происходит на ступени 6 высокого давления, которая находится непосредственно на выходе из камеры и в которую газ поступает с наиболее высокой температурой. Дальнейшее расширение газов происходит при их прохождении через так называемые ступени турбины 7 низкого давления.
Классически турбина высокого давления 6 или низкого давления 7 содержит одну или несколько ступеней, каждая из которых состоит из ряда неподвижных лопаток турбины, называемых также сопловым аппаратом 8, за которым следует ряд подвижных лопаток турбины, отстоящих друг от друга в окружном направлении вокруг всего диска турбины. Сопловой аппарат 8 отклоняет и ускоряет поток газа, выходящий из камеры сгорания, в сторону подвижных лопаток турбины под соответствующим углом и с соответствующей скоростью, чтобы приводить во вращение эти подвижные лопатки и диск турбины.
Сопловой аппарат 8 содержит множество лопаток, расположенных радиально относительно оси вращения Х газотурбинного двигателя и соединяющих радиально внутренний кольцевой элемент (или внутреннюю полку) и радиально наружный кольцевой элемент (или наружную полку). Все эти компоненты образуют кольцевой проточный тракт напротив подвижных лопаток турбины.
В частности, сопловой аппарат 8 состоит из неподвижных лопаток, расположенных в виде венца, который, в случае необходимости, можно разделить на множество сегментов, распределенных в окружном направлении вокруг оси Х газотурбинного двигателя. Каждый сегмент содержит одну или несколько смежных неподвижных лопаток, соединенных с элементом в виде сектора кольца, а также входное средство удержания и выходное средство удержания. В данном случае вход и выход следует определять по направлению прохождения потока газов в газотурбинном двигателе.
Как правило, лопатки соплового аппарата 8 выполнены посредством литья из жаропрочного сплава на основе никеля или монокристаллического материала, который обладает хорошей жаростойкостью.
Сопловые аппараты 8 турбин 6 высокого давления газотурбинного двигателя являются узлами, подверженными воздействию очень сильных термических напряжений. Действительно, они установлены на выходе из камеры сгорания, и, следовательно, через них проходят очень горячие газы, которые подвергают их очень сильным термическим воздействиям, при этом температура газов на выходе из камеры сгорания намного превышает температуру плавления материалов соплового аппарата 8. Действительно, температура потока на входе в сопловой аппарат 8 может локально достигать 2000°С, при этом в некоторых точках можно нередко наблюдать серьезные повреждения детали, температура плавления которой имеет значение ниже 1400°С.
Чтобы понизить температуру детали и ограничить ее разрушение, необходимо производить охлаждение сопловых аппаратов 8. Обычно функцию охлаждения сопловых аппаратов 8 обеспечивают одна или несколько вставок, расположенных внутри лопаток соплового аппарата 8. Вставка является полой деталью из листового проката или литой деталью, содержащей цилиндрические отверстия, как правило, выполненные при помощи лазера и максимально повторяющей форму охлаждаемой лопатки. «Холодный» воздух, отбираемый на уровне компрессора газотурбинного двигателя, поступает через эти отверстия на внутреннюю сторону лопатки для ее охлаждения.
Таким образом, охлаждение внутренней стороны лопатки происходит за счет обдува струями и за счет явления принудительной конвекции между вставкой и стенкой профиля. Расстояние между вставкой и внутренней стороной лопатки, называемое воздушным зазором, по сути является постоянным.
Вместе с тем, охлаждение лопатки зависит от двух явлений, а именно от воздействия струй и от принудительной конвекции между вставкой и внутренней стороной лопатки. Одним из определяющих параметров для эффективности охлаждения при этих двух режимах является значение воздушного зазора. Действительно, воздушный зазор должен быть минимальным, если необходимо обеспечить максимальную конвекцию, но он не должен быть слишком малым, если необходимо получить максимальную высоту воздействия струй (которая соответствует расстоянию между выходом отверстия и внутренней стенкой лопатки), чтобы оптимизировать эффективность воздействия струй.
В настоящее время, поскольку воздушный зазор является постоянным, компромисс касается его значения, чтобы не слишком снижать воздействия струи в пользу эффективной принудительной конвекции.
Однако характеристики газотурбинного двигателя частично связаны с применяемой системой вентиляции. Действительно, любой отбор воздуха, осуществляемый с целью охлаждения компонентов, отрицательно сказывается на термодинамическом цикле газотурбинного двигателя, в частности, на мощности и на удельном расходе двигателя. Следовательно, необходимо ограничить отборы воздуха до строгого минимума. Таким образом, эффективность используемых систем охлаждения является первостепенной для производительности двигателя и для срока службы соответствующего компонента.
В документе ЕР 2 228 517 описаны лопатка соплового аппарата газотурбинного двигателя, перо и вставка, которую устанавливают в пере и в которой выполняют отверстия. Кроме того, стенку вставки локально сгибают на уровне отверстий, чтобы скрестить воздушные струи и создать завихрения.
В документе ЕР 1 284 338 описаны лопатка соплового аппарата газотурбинного двигателя, перо и вставка, которую устанавливают в пере и в которой выполняют отверстия. Стенка вставки является прерывистой, чтобы получить перекрывания и изменять направление воздействия воздушных струй, направляемых через отверстия на внутреннюю стенку пера.
Раскрытие сущности изобретения
Таким образом, задачей изобретения является оптимизация охлаждения лопаток сопловых аппаратов, чтобы ограничить используемое количество холодного воздуха, при этом конечной целью является ограничение термомеханических повреждений (трещин, обгорания, окисления и т.д.).
В связи с этим изобретением предложена лопатка соплового аппарата газотурбинного двигателя, при этом указанная лопатка содержит:
- перо, содержащее стенку корытца и стенку спинки, и
- вставку, расположенную между стенкой корытца и стенкой спинки, при этом вставка содержит:
- замкнутую стенку, имеющую наружную поверхность, расположенную напротив стенки корытца и стенки спинки, и внутреннюю поверхность, противоположную наружной поверхности, при этом наружная поверхность замкнутой стенки и находящаяся напротив стенка пера разделены воздушным зазором, и
- ряд сквозных отверстий, выполненных в замкнутой стенке между наружной поверхностью и внутренней поверхностью.
Вставка лопатки содержит ряд углублений в основном полусферической формы, яйцевидной формы или каплевидной формы, выполненных в замкнутой стенке и выходящих на наружную поверхность. Кроме того, сквозные отверстия выполнены в указанных углублениях, и высоты воздействия между указанными сквозными отверстиями и находящейся напротив стенкой корытца или стенкой спинки превышают воздушный зазор.
Вышеупомянутая лопатка имеет также следующие предпочтительные, но неограничивающие признаки, рассматриваемые отдельно или в комбинации:
- сквозные отверстия имеют периферию определенной максимальной ширины, при этом соотношение между высотой воздействия и максимальной шириной всех или части сквозных отверстий составляет от 2,5 до 10, предпочтительно от 2,5 до 7, еще предпочтительнее от 2,5 до 5, как правило, от 2,8 до 3,2, например, равно 3,
- сквозные отверстия являются круглыми, при этом максимальная ширина указанных сквозных отверстий соответствует их диаметру,
- внутренняя поверхность замкнутой стенки вставки дополнительно содержит приливы, при этом указанные сквозные отверстия выходят в указанные приливы,
- высота воздействия составляет от 1,0 мм до 3,0 мм, предпочтительно от 1 мм до 2мм, как правило, от 1 мм до 1,5 мм,
- воздушный зазор составляет от 0,5 мм до 1,0 мм, предпочтительно от 0,5 мм до 0,8мм и, как правило, равен 0,6 мм, и/или
- внутренняя сторона стенки корытца и стенки спинки дополнительно содержит выступы, выполненные на указанной внутренней стороне в направлении наружной поверхности вставки.
Вторым объектом изобретения является также сопловой аппарат турбины газотурбинного двигателя, содержащий внутреннюю кольцевую полку и наружную кольцевую полку, коаксиальные вокруг оси, а также ряд описанных выше лопаток соплового аппарата, при этом указанные лопатки распределены в окружном направлении вокруг оси между внутренней полкой и наружной полкой.
Третьим объектом изобретения является способ изготовления описанной выше лопатки соплового аппарата, в котором вставку выполняют путем селективного плавления на слое порошка при помощи пучка высокой энергии.
Краткое описание чертежей
Другие отличительные признаки, задачи и преимущества настоящего изобретения будут более очевидны из нижеследующего подробного описания со ссылками, которые иллюстрируют неограничивающие примеры.
На фиг. 1 показан пример выполнения вставки заявленной лопатки соплового аппарата, вид в перспективе;
на фиг. 2 показан пример выполнения заявленной лопатки соплового аппарата, содержащей вставку, показанную на фиг. 1, при этом вставка показана прозрачно внутри пера лопатки, вид сбоку;
на фиг. 3 показан пример выполнения заявленной лопатки соплового аппарата, частичный вид;
на фиг. 4 показан пример выполнения соплового аппарата в соответствии с изобретением, вид в перспективе;
на фиг. 5 показан пример выполнения газотурбинного двигателя, содержащего сопловой аппарат в соответствии с изобретением, схематичный вид в разрезе.
Осуществление изобретения
Изобретение будет описано для случая одноступенчатой турбины 6 высокого давления, содержащей сопловой аппарат 8 высокого давления (или статор) и подвижное колесо (или ротор). Однако этот пример не является ограничивающим, поскольку турбина 6 может содержать больше ступеней и изобретение может находить свое применение как в турбине 7 низкого давления, так и в компрессоре 4 (высокого или низкого давления), которые тоже содержат несколько неподвижных ступеней. Кроме того, сопловой аппарат 8 может быть моноблочным или разделенным на сектора.
Классически турбина 6 содержит одну или несколько ступеней, каждая из которых имеет сопловой аппарат 8, за которым следует ряд подвижных лопаток 3 турбины, отстоящих друг от друга в окружном направлении вокруг диска турбины 6.
Сопловой аппарат 8 отклоняет газовый поток, выходящий из камеры 5 сгорания, в сторону подвижных лопаток под соответствующим углом и с соответствующей скоростью, чтобы приводить во вращение лопатки и диск турбины 6. Этот сопловой аппарат 8 содержит множество неподвижных лопаток, расположенных в радиальном направлении относительно оси вращения Х газотурбинного двигателя и соединяющих радиально внутреннюю кольцевую полку 9а и радиально наружную кольцевую полку 9b.
Каждая лопатка 10 содержит перо 12, имеющее стенку 16 корытца и стенку 14 спинки, соединенные между собой передней кромкой 18 и задней кромкой 19. Передняя кромка 18 пера 12 соответствует входной части его аэродинамического профиля. Она обращена к газовому потоку и делит его на воздушный поток корытца, который проходит вдоль стенки 16 корытца, и на воздушный поток спинки, который проходит вдоль стенки 14 спинки. Задняя кромка 19 соответствует выходной части аэродинамического профиля, где сходятся потоки корытца и спинки.
Кроме того, сопловой аппарат 8 содержит систему охлаждения. Для этого каждая лопатка 10 содержит вставку 20, установленную в пере 12 между стенкой 16 корытца и стенкой 14 спинки. Вставка 20 содержит:
- замкнутую стенку 12, имеющую наружную поверхность 24, расположенную напротив стенки 16 корытца и стенки 14 спинки, и внутреннюю поверхность 26, противоположную наружной поверхности 24, при этом наружная поверхность 24 замкнутой стенки 12 и находящаяся напротив стенка лопатки 10 разделены воздушным зазором 30, и
- ряд сквозных отверстий 28, выполненных в замкнутой стенке 12 между наружной поверхностью 24 и внутренней поверхностью 26.
Кроме того, в замкнутой стенке 12 вставки 20 выполнен ряд углублений 25, которые выходят на наружную поверхность 24. Сквозные отверстия 28 выполнены в углублениях 25, и высоты h воздействия между сквозными отверстиями 28 и находящейся напротив стенкой лопатки 12 превышают величину воздушного зазора 30.
В варианте осуществления воздушный зазор может быть постоянным. В данном случае под воздушным зазором 30 следует понимать наименьшее расстояние между точкой наружной поверхности 24 замкнутой стенки 12 вставки 20 вокруг углублений 25 и находящейся напротив стенкой пера 12, то есть стенкой 16 корытца или стенкой 14 спинки. Воздушный зазор 30 измеряют в плоскости, параллельной плоскости, касательной к внутренней полке 9а на уровне основания пера 12, и он в основном является постоянным между внутренней полкой 9а и наружной полкой 9b.
Под высотой h воздействия следует понимать расстояние между выходом (относительно направления прохождения охлаждающего воздушного потока) сквозного отверстия 28 и внутренней стороной 15 находящейся напротив стенки пера 12, то есть стенки 16 корытца или стенки 14 спинки вдоль оси Х прохождения охлаждающего воздуха в сквозном отверстии 28.
Эта конфигурация лопатки 10 одновременно обеспечивает малый воздушный зазор 30 между пером 12 и вставкой 20 и, следовательно, позволяет сохранять эффективность принудительной конвекции во время удаления воздуха после воздействия, благодаря высоте h воздействия, увеличенной при помощи углублений 25, которые смещают выход сквозных отверстий 28 относительно наружной поверхности 24 вставки 20.
В варианте осуществления высота h воздействия составляет от 1,0 мм до 3,0 мм, предпочтительно от 1,0 мм до 2,0 мм, например, около 1,5 мм, когда воздушный зазор 30 составляет от 0,5 до 1,0 мм, предпочтительно от 0,5 до 0,8 мм, например, порядка 0,6 мм.
Периферия сквозных отверстий 28 имеет определенную максимальную ширину L. Под шириной L периферии в данном случае следует понимать расстояние между двумя параллельными прямыми (или «опорными линиями»), которые являются касательными в двух разных точках к замкнутой кривой, образованной периферией сквозного отверстия 28 на уровне углубления. При этом максимальная ширина L соответствует наибольшей ширине L периферии. Когда сквозное отверстие 28 имеет круглое сечение, максимальная ширина L равна, например, наружному диаметру круга. В варианте сквозное отверстие 28 может иметь квадратное или прямоугольное сечение, и в этом случае максимальная ширина L соответствует его диагонали.
Чтобы еще больше оптимизировать эффективность воздействия струй на внутреннюю сторону 15 пера 12, соотношение между высотой h воздействия и максимальной шириной L всех или части сквозных отверстий составляет от 2,5 до 10, предпочтительно от 2,5 до 7, еще предпочтительнее от 2,5 до 5, например, от 2,8 до 3,2. Как правило, в случае лопатки 12, замкнутая стенка 12 которой имеет толщину от 0,4 до 0,6 мм с воздушным зазором, по существу равным 0,6 мм, оптимальное соотношение между высотой h воздействия и максимальной шириной L отверстий составляет порядка 3. Такое соотношение позволяет, в частности, получить расстояние воздействия в 1,5 мм.
Углубления 25 могут иметь в основном полусферическую форму или «яйцевидную» форму или каплевидную форму. Следует отметить, что в соответствии с требуемой высотой h воздействия и толщиной наружной стенки внутренняя поверхность 26 вставки 20 может не быть плоской.
Такая форма позволяет достигать таких отношений высоты h воздействия к максимальной ширине L.
Таким образом, в примере осуществления, представленном на фиг. 1-3, воздушный зазор 30 равен 0,6 мм, замкнутая стенка лопатки 12 имеет толщину порядка 0,6 мм, тогда как требуемая высота h воздействия равна 1,5 мм. Углубления 25 получены, таким образом, за счет изменения геометрии внутренней поверхности 26 и наружной поверхности 24 замкнутой стенки 12, а не посредством выполнения выемки в указанной наружной стенке. Следовательно, внутренняя поверхность 26 замкнутой стенки 12 не является гладкой и содержит приливы 27, соответствующие углублениям 25, выполненным в наружной поверхности 24. В данном случае углубления 25 являются полусферическими: таким образом, наружная поверхность 24 замкнутой стенки 12 имеет ряд полусферических впадин, в дне которых выполнены сквозные отверстия 28, тогда как ее внутренняя поверхность 26 имеет полусферические приливы 27 соответствующей формы и размера, который выступают из указанной внутренней поверхности 26, при этом сквозные отверстия 28 выходят в вершине указанных приливов 27.
В варианте осуществления внутренняя сторона 15 стенки 14 спинки и стенки 16 корытца может содержать выступы 13, выполненные на указанной внутренней стороне 15 в направлении вставки 20, чтобы защищать струю, обдувающую внутреннюю сторону 15 пера 12, от сдвигающего потока. Выступы 13 могут, например, иметь в основном треугольное сечение или сечение в виде V, при этом вершина сечения направлена к передней кромке 18 пера 12.
Этот вариант осуществления в сочетании с оптимальными максимальной шириной L и высотой h воздействия позволяет получить эффективное и постоянное охлаждение на всем профиле пера 12.
Конфигурация вставки 20 и, в случае необходимости, выполнение выступов 13 на внутренней стороне 15 пера 12 дает существенный выигрыш в локальной эффективности охлаждения соплового аппарата 8 и возможность контролировать эффективность принудительной конвекции в воздушном зазоре 30, ограничивая при этом сдвигание выходных рядов струй рядами струй, находящимися ближе к входу. Кроме того, оптимизация всех этих параметров позволяет лучше использовать воздух, применяемый для охлаждения стенки. Это позволяет при одном и том же расходе повысить термическую эффективность (выигрыш в сроке службы) или уменьшить расход при одной и той же термической эффективности, что выражается выигрышем в производительности двигателя.
Перо 12 можно получить известным способом, например, посредством литья из соответствующего материала, такого как жаропрочный сплав на основе никеля, или из монокристаллического материала, который обладает очень хорошей жаростойкостью. В варианте, перо 12 можно получить путем селективного плавления на слое порошка при помощи пучка высокой энергии.
Вставку можно получить посредством литья или путем селективного плавления на слое порошка при помощи пучка высокой энергии. В частности, селективное плавление на слое порошка при помощи пучка высокой энергии позволяет получить вставку с меньшими затратами (по сравнению с литьем), содержащую углубления 25 (и, в случае необходимости, приливы 27) соответствующей формы. При этом наружная стенка вставки может иметь толщину, составляющую от 0,4 до 0,8 мм, например, около 0,6 мм и даже 0,4мм.

Claims (15)

1. Лопатка (10) соплового аппарата (8) газотурбинного двигателя (1), содержащая:
- перо (12), содержащее стенку (16) корытца и стенку (14) спинки, и
- вставку (20), расположенную между стенкой (16) корытца и стенкой (14) спинки, при этом вставка (20) содержит:
- замкнутую стенку (22), имеющую наружную поверхность (24), расположенную напротив стенки (16) корытца и стенки (14) спинки, и внутреннюю поверхность (26), противоположную наружной поверхности (24), при этом наружная поверхность (24) замкнутой стенки (22) и находящаяся напротив стенка пера (12) разделены воздушным зазором (30), и
- ряд сквозных отверстий (28), выполненных в замкнутой стенке (22) и проходящих между наружной поверхностью (24) и внутренней поверхностью (26), и
- ряд углублений (25), выполненных в замкнутой стенке (22) и выходящих на наружную поверхность (24), при этом сквозные отверстия (28) выполнены в указанных углублениях (25), при этом высоты (h) воздействия между указанными сквозными отверстиями (28) и стенкой (16) корытца или стенкой (14) спинки превышают величину воздушного зазора (30), при этом углубления (25) в основном имеют полусферическую форму, яйцевидную форму или каплевидную форму.
2. Лопатка (10) по п. 1, в которой сквозные отверстия (28) имеют периферию определенной максимальной ширины (L), при этом соотношение между высотой (h) воздействия и максимальной шириной (L) всех или части сквозных отверстий (28) составляет от 2,5 до 10, предпочтительно от 2,5 до 7, еще предпочтительнее от 2,5 до 5, как правило, от 2,8 до 3,2, например равно 3.
3. Лопатка (10) по п. 2, в которой сквозные отверстия (28) являются круглыми, при этом максимальная ширина (L) указанных сквозных отверстий (28) соответствует их диаметру.
4. Лопатка (10) по одному из пп. 1-3, в которой внутренняя поверхность (26) замкнутой стенки (22) вставки (20) дополнительно содержит приливы (27), при этом указанные сквозные отверстия (28) выходят в указанные приливы (27).
5. Лопатка (10) по одному из пп. 1-4, в которой высота (h) воздействия составляет от 1,0 мм до 3,0 мм, предпочтительно от 1 мм до 2 мм, как правило, от 1 мм до 1,5 мм.
6. Лопатка (10) по одному из пп. 1-5, в которой воздушный зазор (30) составляет от 0,5 мм до 1,0 мм, предпочтительно от 0,5 мм до 0,8 мм и, как правило, равен 0,6 мм.
7. Лопатка (10) по одному из пп. 1-6, в которой внутренняя сторона (15) стенки (16) корытца и стенки (14) спинки дополнительно содержит выступы (13), выполненные на указанной внутренней стороне (15) в направлении наружной поверхности (24) вставки (20).
8. Сопловой аппарат (8) газотурбинного двигателя (1), содержащий внутреннюю кольцевую полку (9а) и наружную кольцевую полку (9b), коаксиальные вокруг оси (Х) соплового аппарата (8),
отличающийся тем, что содержит ряд лопаток (10) соплового аппарата (8) по одному из пп. 1-7, распределенных в окружном направлении вокруг оси (Х) между внутренней полкой (9а) и наружной полкой (9b).
9. Способ изготовления лопатки (10) соплового аппарата (8) по одному из пп. 1-7, отличающийся тем, что вставку (20) выполняют путем селективного плавления на слое порошка при помощи пучка высокой энергии.
RU2018106098A 2015-07-20 2016-07-20 Лопатка соплового аппарата высокого давления, содержащая вставку с изменяющейся геометрией RU2704511C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1556860 2015-07-20
FR1556860A FR3039199B1 (fr) 2015-07-20 2015-07-20 Aubage de distributeur haute pression avec un insert a geometrie variable
PCT/FR2016/051866 WO2017013354A1 (fr) 2015-07-20 2016-07-20 Aubage de distributeur haute pression avec un insert à géométrie variable

Publications (3)

Publication Number Publication Date
RU2018106098A RU2018106098A (ru) 2019-08-20
RU2018106098A3 RU2018106098A3 (ru) 2019-10-07
RU2704511C2 true RU2704511C2 (ru) 2019-10-29

Family

ID=54329743

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018106098A RU2704511C2 (ru) 2015-07-20 2016-07-20 Лопатка соплового аппарата высокого давления, содержащая вставку с изменяющейся геометрией

Country Status (10)

Country Link
US (1) US10914179B2 (ru)
EP (1) EP3325777B1 (ru)
JP (1) JP2018525560A (ru)
KR (1) KR20180030672A (ru)
CN (1) CN107849930B (ru)
CA (1) CA2992068A1 (ru)
FR (1) FR3039199B1 (ru)
PL (1) PL3325777T3 (ru)
RU (1) RU2704511C2 (ru)
WO (1) WO2017013354A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU225855U1 (ru) * 2024-02-29 2024-05-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Сопловая лопатка газотурбинного двигателя с системой демпфирования колебаний

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10577954B2 (en) 2017-03-27 2020-03-03 Honeywell International Inc. Blockage-resistant vane impingement tubes and turbine nozzles containing the same
FR3079551B1 (fr) 2018-03-29 2020-04-24 Safran Helicopter Engines Aube de distributeur de turbine comportant une paroi interne de refroidissement issue de fabrication additive
GB201900474D0 (en) * 2019-01-14 2019-02-27 Rolls Royce Plc A double-wall geometry
US20200263557A1 (en) * 2019-02-19 2020-08-20 Rolls-Royce Plc Turbine vane assembly with cooling feature
FR3094034B1 (fr) * 2019-03-20 2021-03-19 Safran Aircraft Engines Chemise tubulaire de ventilation pour un distributeur de turbomachine
US11268392B2 (en) 2019-10-28 2022-03-08 Rolls-Royce Plc Turbine vane assembly incorporating ceramic matrix composite materials and cooling
FR3112367B1 (fr) 2020-07-07 2022-08-12 Safran Helicopter Engines Aubage de distributeur de turbomachine comprenant un systeme de refroidissement par impact de jets d’air
US11898467B2 (en) 2022-02-11 2024-02-13 Pratt & Whitney Canada Corp. Aircraft engine struts with stiffening protrusions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284338A2 (en) * 2001-08-13 2003-02-19 General Electric Company Tangential flow baffle
RU2238411C1 (ru) * 2003-06-03 2004-10-20 "МАТИ"-Российский государственный технологический университет им. К.Э. Циолковского Охлаждаемая лопатка газовой турбины
EP2228517A2 (en) * 2009-03-13 2010-09-15 United Technologies Corporation A cooled airfoil and an impingement baffle insert therefor
US20140105726A1 (en) * 2010-09-20 2014-04-17 Ching-Pang Lee Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles
RU2518729C1 (ru) * 2013-04-04 2014-06-10 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Охлаждаемая турбина
EP2792850A1 (en) * 2011-12-15 2014-10-22 IHI Corporation Impingement cooling mechanism, turbine blade and combustor
RU2546371C1 (ru) * 2013-09-27 2015-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Охлаждаемая турбина

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844343A (en) * 1973-02-02 1974-10-29 Gen Electric Impingement-convective cooling system
JP2566984B2 (ja) * 1987-09-10 1996-12-25 株式会社東芝 ガスタービン翼
FR2771446B1 (fr) * 1997-11-27 1999-12-31 Snecma Aube de distributeur de turbine refroidie
GB2350867B (en) * 1999-06-09 2003-03-19 Rolls Royce Plc Gas turbine airfoil internal air system
US8109724B2 (en) * 2009-03-26 2012-02-07 United Technologies Corporation Recessed metering standoffs for airfoil baffle
FR2998496B1 (fr) * 2012-11-27 2021-01-29 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines Procede de fabrication additive d'une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie
JP6404312B2 (ja) * 2013-03-15 2018-10-10 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation バッフル、カバー、及び金型の付加製造
EP3071887B1 (en) * 2013-11-22 2020-03-11 United Technologies Corporation Turbine engine multi-walled structure with cooling elements
US11280214B2 (en) * 2014-10-20 2022-03-22 Raytheon Technologies Corporation Gas turbine engine component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284338A2 (en) * 2001-08-13 2003-02-19 General Electric Company Tangential flow baffle
RU2238411C1 (ru) * 2003-06-03 2004-10-20 "МАТИ"-Российский государственный технологический университет им. К.Э. Циолковского Охлаждаемая лопатка газовой турбины
EP2228517A2 (en) * 2009-03-13 2010-09-15 United Technologies Corporation A cooled airfoil and an impingement baffle insert therefor
US20140105726A1 (en) * 2010-09-20 2014-04-17 Ching-Pang Lee Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles
EP2792850A1 (en) * 2011-12-15 2014-10-22 IHI Corporation Impingement cooling mechanism, turbine blade and combustor
RU2518729C1 (ru) * 2013-04-04 2014-06-10 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Охлаждаемая турбина
RU2546371C1 (ru) * 2013-09-27 2015-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Охлаждаемая турбина

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU225855U1 (ru) * 2024-02-29 2024-05-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Сопловая лопатка газотурбинного двигателя с системой демпфирования колебаний

Also Published As

Publication number Publication date
RU2018106098A (ru) 2019-08-20
CA2992068A1 (fr) 2017-01-26
PL3325777T3 (pl) 2019-12-31
KR20180030672A (ko) 2018-03-23
RU2018106098A3 (ru) 2019-10-07
CN107849930A (zh) 2018-03-27
JP2018525560A (ja) 2018-09-06
EP3325777B1 (fr) 2019-06-19
EP3325777A1 (fr) 2018-05-30
WO2017013354A1 (fr) 2017-01-26
FR3039199B1 (fr) 2019-12-13
FR3039199A1 (fr) 2017-01-27
CN107849930B (zh) 2019-08-23
US10914179B2 (en) 2021-02-09
US20180216476A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
RU2704511C2 (ru) Лопатка соплового аппарата высокого давления, содержащая вставку с изменяющейся геометрией
US8858159B2 (en) Gas turbine engine component having wavy cooling channels with pedestals
RU2599413C2 (ru) Канал для охлаждения корпуса
CA2893058C (en) Angled impingement insert
US8727704B2 (en) Ring segment with serpentine cooling passages
US8807945B2 (en) Cooling system for turbine airfoil including ice-cream-cone-shaped pedestals
US9896942B2 (en) Cooled turbine guide vane or blade for a turbomachine
GB2460936A (en) Turbine airfoil cooling
US20130189110A1 (en) Turbine arrangement and gas turbine engine
US9719362B2 (en) Turbine nozzles and methods of manufacturing the same
JP2009144724A (ja) 発散型タービンノズル
US11519281B2 (en) Impingement insert for a gas turbine engine
US10767489B2 (en) Component for a turbine engine with a hole
US20170167272A1 (en) Cooling arrangement
US7967568B2 (en) Gas turbine component with reduced cooling air requirement
EP3441568B1 (en) Turbomachine impingement cooling insert
JP6956779B2 (ja) ガスタービン用のインピンジメント冷却特徴
EP3184736B1 (en) Angled heat transfer pedestal