RU2704380C1 - Гелиоэлектрическая установка - Google Patents
Гелиоэлектрическая установка Download PDFInfo
- Publication number
- RU2704380C1 RU2704380C1 RU2018143779A RU2018143779A RU2704380C1 RU 2704380 C1 RU2704380 C1 RU 2704380C1 RU 2018143779 A RU2018143779 A RU 2018143779A RU 2018143779 A RU2018143779 A RU 2018143779A RU 2704380 C1 RU2704380 C1 RU 2704380C1
- Authority
- RU
- Russia
- Prior art keywords
- working medium
- radiator
- solar
- receiver
- pump
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/20—Climate change mitigation technologies for sector-wide applications using renewable energy
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Изобретение относится к гелиотехнике и конструкции преобразователя солнечной энергии в тепловую с использованием механического привода электрогенератора и может применяться кроме электрогенерации в широком диапазоне отраслей и различных видов работ, где необходим механический привод как вращательного, так и возвратно-поступательного движения. Гелиоэлектрическая установка снабжена ресивером с жидкой рабочей средой, насосом с электромотором, обратным клапаном, цилиндрическим радиатором нагрева, роторным паровым мотором, радиатором-охладителем, которые соединены между собой трубопроводом и представляют собой замкнутый контур для циркуляции рабочей среды, при этом ресивер с жидкой рабочей средой соединен с насосом с электромотором, а насос через обратный клапан соединен с цилиндрическим радиатором нагрева, который механически связан с параболоцилиндрическим солнечным концентратором, цилиндрический радиатор нагрева через подпорный клапан для пропускания нагретой жидкой рабочей среды соединен с роторным паровым мотором, который механически связан с электрогенератором, вырабатывающим электроэнергию, рабочий объем роторного парового мотора соединен с радиатором-охладителем, который через подпорный клапан для пропускания охлажденной жидкой рабочей среды соединен с ресивером. Изобретение использует тепловую энергию Солнца и преобразует эту энергию в механическую энергию привода электрического генератора при небольших температурах нагрева рабочего тела. 1 ил.
Description
Изобретение относится к гелиотехнике и конструкции преобразователя солнечной энергии в тепловую с использованием механического привода электрогенератора и может применяться кроме электрогенерации в широком диапазоне отраслей и различных видов работ, где необходим механический привод как вращательного, так и возвратно-поступательного движения.
Известен компрессор, принцип действия которого основан на использовании тепловой энергии, возникающей при адиабатическом сжатии газа (воздуха) (патент РФ №2638 143, МПК F04B 39/06, опубл. 11.12.2017 г.).
Недостатком известного устройства является отсутствие использования солнечной энергии для обеспечения функционирования устройства, так как в установке используют двигатель возвратно- поступательного действия.
Наиболее близкой по технической сущности к предлагаемому изобретению является гелиоэлектрическая установка, принцип работы которой основан на преобразовании солнечного излучения в тепловую, которая преобразуется в механическую посредством двигателя Стирлинга и электрогенератора в электрическую энергию, содержащая параболоидный концентратор солнечной энергии, приемник преобразования фотонов в тепло, которое преобразуется двигателем Стирлинга в механическую и с помощью электрогенератора в электрическую энергию (патент USA № 4.586.334. MAY 6. 1986).
Недостатками известной гелиоэлектрической установки являются:
- высокая температура нагрева приемника солнечной энергии параболоидным концентратором, снижающая эффективность преобразования солнечной энергии в тепловую;
- эффективность двигателя Стирлинга увеличивается с ростом температуры в соответствии с теорией Карно, что требует увеличения размеров концентратора, необходимы особые требования к теплоизоляции и системы охлаждения.
Задачей изобретения является повышение КПД установки и снижение габаритных размеров установки.
В результате использования предлагаемого изобретения появляется возможность использования тепловой энергии Солнца и преобразования этой энергии в механическую энергию привода электрического генератора при небольших температурах нагрева рабочего тела за счет применения в качестве механического привода роторного парового мотора с низкокипящим рабочим телом, используя жидкую рабочую среду (рабочее тело) в замкнутом цикле.
Технический результат достигается тем, что предлагаемая гелиоэлектрическая установка, содержащая концентратор солнечной энергии, двигатель преобразующий солнечную энергию в механическую и электрогенератор, согласно изобретению, снабжена ресивером с жидкой рабочей средой, насосом с электромотором, обратным клапаном, цилиндрическим радиатором нагрева, роторным паровым мотором, радиатором - охладителем, которые соединены между собой трубопроводом, и представляют собой замкнутый контур для циркуляции рабочей среды, при этом ресивер с жидкой рабочей средой соединен с насосом с электромотором, а насос через обратный клапан соединен с цилиндрическим радиатором нагрева, который механически связан с параболоцилиндрическим солнечным концентратором, цилиндрический радиатор нагрева через подпорный клапан для пропускания нагретой жидкой рабочей среды соединен с роторным паровым мотором, который механически связан с электрогенератором, вырабатывающим электроэнергию, рабочий объем роторного парового мотора соединен с радиатором–охладителем, который через подпорный клапан для пропускания охлажденной жидкой рабочей среды соединен с ресивером.
Концентратор солнечной энергии нагревает радиатор, по которому пропускается насосом рабочее тело в жидком агрегатном состоянии, которое нагревается до критической температуры с регулировкой давления обратным клапаном на входе в радиатор–нагреватель, на выходе которого происходит преобразование жидкой рабочей среды в пар с регулировкой давления подпорным клапаном, с подачей рабочей среды в роторный паровой мотор, обеспечивающий вращение электрического генератора, на выходе из роторного парового мотора установлен радиатор-охладитель, с возможностью преобразования пара в жидкость, поступающую в ресивер, соединенного со всасывающей линией насоса.
Сущность изобретения поясняется чертежом, на котором представлена общая схема гелиоэлектрической установки.
Гелиоэлектрическая установка содержит ресивер с жидкой рабочей средой 1, насос 2 с электромотором 3, обратный клапан 4, цилиндрический радиатор нагрева 5, параболоцилиндрический концентратор солнечной энергии 6, подпорный клапан для пропускания нагретой жидкой среды 7, роторный паровой мотор 8, электрогенератор 9, радиатор-охладитель 10, подпорный клапан для пропускания охлажденной жидкости 11, где пар превращается в жидкое агрегатное состояние, трубопровод для замкнутой циркуляции рабочей среды12.
Ресивер с жидкой рабочей средой 1 соединен трубопроводом 12 с насосом 2 с электромотором 3. Насос 2 через обратный клапан 4 соединен с цилиндрическим радиатором нагрева 5, который механически связан с параболоцилиндрическим солнечным концентратором. Цилиндрический радиатор нагрева 5 через подпорный клапан 7 соединен с роторным паровым мотором 8, который механически связан с электрогенератором 9. Роторный паровой мотор 8 трубопроводом 12 соединен с радиатором – охладителем 10, который через подпорный клапан для пропускания охлажденной рабочей среды 11 трубопроводом 12 соединен с ресивером 1.
Гелиоэлектрическая установка работает следующим образом.
Первоначально ресивер 1, трубопровод 12, насос 2, и цилиндрический радиатор нагрева 5 до подпорного клапана 7 заполняются низкокипящей жидкой рабочей средой под давлением насоса 2. При прогреве цилиндрического радиатора 5 солнечной энергией от параболоцилиндрического концентратора 6 жидкая рабочая среда превращается в пар, повышая давление в трубопроводе 12 до давления срабатывания подпорного клапана 7.
Пар под давлением насыщенных паров поступает к роторному паровому мотору 8, что обеспечивает вращение привода электрогенератора 9 с необходимой скоростью для выработки электроэнергии. Отработанный пар из роторного парового мотора 8 поступает в радиатор-охладитель 10, охлаждается до температуры окружающей среды и под действием избыточного давления, создаваемого подпорным клапаном 11, конденсируется и в жидком агрегатном состоянии поступает в ресивер 1. Затем цикл работы установки повторяется многократно, обеспечивая работу гелиоэлектрической установки с замкнутой циркуляцией рабочей среды.
Таким образом, цилиндрический радиатор нагрева 5 с параболоцилиндрическим концентратором солнечной энергии 6 нагревает жидкую рабочую среду, которая превращается в пар, который приводит во вращение роторный паровой мотор 8 с электрогенератором 9, затем охлаждается в радиаторе-охладителе 10 превращается в жидкость с давлением подпорного клапана 11, которая по трубопроводу 12 возвращается в ресивер 1 и цикл выработки электроэнергии повторяется.
Подогретая жидкость превращается в пар под давлением насыщенных паров в соответствии с температурой перегрева. Объем рабочей среды в парообразном состоянии существенно увеличивается в раз.
Вследствие инерционности системы из нагретого объема выйдет некоторое количество жидкого рабочего тела, что понизит давление в напорном объеме между обратным клапаном 4 и подпорным клапаном 7. Это позволит питающему насосу 2 подать необходимое количество жидкой холодной рабочей среды.
Данный пульсирующий процесс будет повторяться при дальнейшей работе установки.
При использовании низкокипящей, легко конденсируемой жидкости в качестве жидкой рабочей среды происходит потребление им солнечной тепловой энергии и превращение ее в пар, приводящий в движение генератор электрической энергии, затем охлаждаясь в радиаторе-охладителе превращается в жидкость которая по трубопроводу возвращается в ресивер и цикл выработки электроэнергии повторяется, то есть, происходит процесс рекуперации тепловой солнечной энергии.
Предлагаемое изобретение позволяет преобразовать тепловую энергию Солнца в электрическую энергию с высокой эффективностью.
Claims (1)
- Гелиоэлектрическая установка, содержащая концентратор солнечной энергии, двигатель, преобразующий солнечную энергию в механическую, и электрогенератор, отличающаяся тем, что снабжена ресивером с жидкой рабочей средой, насосом с электромотором, обратным клапаном, цилиндрическим радиатором нагрева, роторным паровым мотором, радиатором-охладителем, которые соединены между собой трубопроводом и представляют собой замкнутый контур для циркуляции рабочей среды, при этом ресивер с жидкой рабочей средой соединен с насосом с электромотором, а насос через обратный клапан соединен с цилиндрическим радиатором нагрева, который механически связан с параболоцилиндрическим солнечным концентратором, цилиндрический радиатор нагрева через подпорный клапан для пропускания нагретой жидкой рабочей среды соединен с роторным паровым мотором, который механически связан с электрогенератором, вырабатывающим электроэнергию, рабочий объем роторного парового мотора соединен с радиатором-охладителем, который через подпорный клапан для пропускания охлажденной жидкой рабочей среды соединен с ресивером.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018143779A RU2704380C1 (ru) | 2018-12-11 | 2018-12-11 | Гелиоэлектрическая установка |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018143779A RU2704380C1 (ru) | 2018-12-11 | 2018-12-11 | Гелиоэлектрическая установка |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2704380C1 true RU2704380C1 (ru) | 2019-10-28 |
Family
ID=68500557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018143779A RU2704380C1 (ru) | 2018-12-11 | 2018-12-11 | Гелиоэлектрическая установка |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2704380C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4586334A (en) * | 1985-01-23 | 1986-05-06 | Nilsson Sr Jack E | Solar energy power generation system |
US5632147A (en) * | 1996-04-10 | 1997-05-27 | Greer; William | Solar powered steam turbine generator |
RU2111422C1 (ru) * | 1995-03-06 | 1998-05-20 | Энергетический научно-исследовательский институт им.Г.М.Кржижановского | Солнечная комбинированная электростанция |
RU2122642C1 (ru) * | 1996-05-28 | 1998-11-27 | Акционерное общество открытого типа "Энергетический научно-исследовательский институт им.Г.М.Кржижановского" | Электростанция с комбинированным паросиловым циклом |
RU2548708C1 (ru) * | 2013-11-14 | 2015-04-20 | Валерий Алфеевич Тараканов | Способ преобразования тепловой энергии в полезную работу |
-
2018
- 2018-12-11 RU RU2018143779A patent/RU2704380C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4586334A (en) * | 1985-01-23 | 1986-05-06 | Nilsson Sr Jack E | Solar energy power generation system |
RU2111422C1 (ru) * | 1995-03-06 | 1998-05-20 | Энергетический научно-исследовательский институт им.Г.М.Кржижановского | Солнечная комбинированная электростанция |
US5632147A (en) * | 1996-04-10 | 1997-05-27 | Greer; William | Solar powered steam turbine generator |
RU2122642C1 (ru) * | 1996-05-28 | 1998-11-27 | Акционерное общество открытого типа "Энергетический научно-исследовательский институт им.Г.М.Кржижановского" | Электростанция с комбинированным паросиловым циклом |
RU2548708C1 (ru) * | 2013-11-14 | 2015-04-20 | Валерий Алфеевич Тараканов | Способ преобразования тепловой энергии в полезную работу |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160201658A1 (en) | Thermal compressor | |
US20140125060A1 (en) | Solar cooling, heating and power system | |
RU2508460C1 (ru) | Космическая энергетическая установка с машинным преобразованием энергии | |
CN102242698A (zh) | 分布式蓄能蓄热热电联产机组 | |
CN102242697A (zh) | 分布式非跟踪太阳能发电及多联产系统 | |
US7089740B1 (en) | Method of generating power from naturally occurring heat without fuels and motors using the same | |
Qiu et al. | An organic Rankine cycle system for solar thermal power applications | |
RU2704380C1 (ru) | Гелиоэлектрическая установка | |
GB2540670A (en) | A solar energy capture, energy conversion and energy storage system | |
EP3779166B1 (en) | Thermal and electrical power transformer | |
Kaczmarczyk et al. | The experimental investigation of the biomass-fired ORC system with a radial microturbine | |
KR101017891B1 (ko) | 태양에너지를 이용한 열병합발전장치 | |
AU2007202622A1 (en) | Method of generating power from naturally occurring heat without fuels and motors using the same | |
KR101623418B1 (ko) | 스터링 엔진 | |
Yamada et al. | Thermal efficiency enhancement of ocean thermal energy conversion (OTEC) using solar thermal energy | |
RU2716766C1 (ru) | Энергетическая установка с машинным преобразованием энергии | |
CN203892043U (zh) | 一种平行运动负压动力设备 | |
Ustaoğlu et al. | Evaluation of an organic Rankine cycle using a non-imaging solar concentrator for different working fluids | |
CN203189068U (zh) | 一种有机朗肯循环涡轮发电机组 | |
JP6541100B2 (ja) | 外燃機関を用いた電力システム | |
CN205477784U (zh) | 一种热电联产装置 | |
WO2013038563A1 (ja) | 太陽熱発電設備、太陽熱発電方法、熱媒体供給装置、および熱媒体加熱装置 | |
CN110005490A (zh) | 一种可控制膨胀机入口工质体温度过热的orc发电系统 | |
RU2509218C2 (ru) | Двигатель внешнего сгорания | |
Bhide | Conversion of solar into mechanical or electrical energy: Indian experience |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20201212 |