RU2704148C1 - Способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования - Google Patents

Способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования Download PDF

Info

Publication number
RU2704148C1
RU2704148C1 RU2019105402A RU2019105402A RU2704148C1 RU 2704148 C1 RU2704148 C1 RU 2704148C1 RU 2019105402 A RU2019105402 A RU 2019105402A RU 2019105402 A RU2019105402 A RU 2019105402A RU 2704148 C1 RU2704148 C1 RU 2704148C1
Authority
RU
Russia
Prior art keywords
nickel
flux
zinc
briquette
nickel powder
Prior art date
Application number
RU2019105402A
Other languages
English (en)
Inventor
Александр Сергеевич Барабанов
Original Assignee
Александр Сергеевич Барабанов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Сергеевич Барабанов filed Critical Александр Сергеевич Барабанов
Priority to RU2019105402A priority Critical patent/RU2704148C1/ru
Application granted granted Critical
Publication of RU2704148C1 publication Critical patent/RU2704148C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области металлургии, в частности к изготовлению брикета для легирования расплава цинка, содержащего легирующий материал, флюс и оболочку. Может применяться для горячего цинкования изделий или заготовок из стали методом погружения их в расплав цинка. Подвергнутый симметричной горизонтальной вибрации порошок никеля, содержащий мелкозернистые и крупнозернистые фракции, смешивают с флюсом, растворенным в воде, и высушивают смесь. В смесь заливают расплавленный жидкий полимер для формирования оболочки и производят вакуумное прессование. Обеспечивается повышение концентрации никеля в расплаве цинка при увеличении прочности и плотности брикета. 4 з.п. ф-лы, 3 ил., 1 пр.

Description

Изобретение относится к области металлургии и может применяться для горячего цинкования изделий или заготовок из стали методом погружения их в расплав цинка с добавлением брикета для легирования расплава цинка, содержащего легирующий материал, флюс и оболочку, а именно к способам изготовления брикета.
В настоящее время никель является наиболее распространенным металлом, используемым для легирования расплава цинка в процессе горячего цинкования. Использование никеля снижает толщину цинкового покрытия на сталях с повышенным содержанием кремния (реактивные стали), а на сталях, пригодных к цинкованию, обеспечивает более гладкое и блестящее покрытие.
Известно, что никель может добавляться в ванну цинкования в виде легирующих таблеток (брикетов), состоящих из порошка никеля и флюса, заключенных в оболочку из легковоспламеняющегося органического материала. Брикеты распределяются разбрасыванием по поверхности ванны без применения специального оборудования. Это обеспечивает удобство подачи легирующего материала. Добавка никеля в ванну цинкования способствует уменьшению толщины цинкового покрытия на обрабатываемом изделии и дает возможность контролировать толщину покрытия с временем выдержки изделия в расплаве, снижая расход цинка (file:///C:/Users/ГТА/Desktop/цинкование/Статьи.htm, статья «Никелевые таблетки в горячем цинковании»).
До недавнего времени основными средствами, применяемыми для легирования цинкового расплава, являлись слитки из цинк-никеля (0,5% никеля) или порошок никеля, который инжектировали в расплав. Задачей легирования является получение концентрации никеля в расплаве цинка на уровне 0,05%-0,06% что отвечает пределу растворимости никеля в цинковом расплаве при рабочей температуре 450°С и эквивалентно 500 г никеля на тонну цинка. Однако на практике обычно приходится вносить в 3-3,5 раз больше требуемых 500 г никеля на тонну цинка (как правило, вносится 1,5-1,8 кг на тонну цинка), так как значительная часть никеля оседает на дно ванны в гартцинк. В настоящее время на смену технологии введения никелевого порошка с помощью «миксера» пришла новая технология - никельсодержащие брикеты или таблетки, обеспечивающие необходимую концентрацию никеля в расплаве цинка.
Известен способ изготовления легирующих брикетов - таблеток (заявка на изобретение WO 2006123945, опубл. 23.11.2006). Способ включает формирование смеси навески флюса и навески порошка никеля, содержащего крупнозернистую и мелкозернистую фракции, в заготовку и выполнение наружной оболочки вокруг заготовки из воска или полимера. При добавке таблетки в ванну цинкования из-за высокой температуры в ванне (450°С) оболочка и флюс воспламеняются и сгорают, а частицы порошка никеля начинают оседать вглубь расплава, растворяясь по мере оседания в расплаве цинка.
В данном изобретении нормы внесения таблеток, содержащих порошок никеля, в процессе цинкования достигают значений 1,8-1,9 кг никеля на 1 т вносимого цинка. Из сказанного выше следует, что масса внесенного никеля к требуемой норме после его растворения до получения средней концентрации, близкой к значению 0,05% (0,5 кг на тонну цинка) также больше 3.
Известен также способ изготовления таблетки - брикета для легирования расплава цинка в процессе горячего цинкования металлических изделий (патент RU №2647066, опубл. 13.03.2018), выбранный в качестве прототипа. В данном способе механически смешивают навески порошка никеля, содержащего крупнозернистую и мелкозернистую фракции, с навеской частиц флюса, формируют из них заготовки с наружной оболочкой из воска или из полимера путем заливки жидкого полимера с последующим прессованием для создания брикета. Крупнозернистую фракцию брикета готовят из частиц никеля с размерами от 100 до 300 мкм в количестве 65-75% от массы навески никеля, содержащей долю осаждаемых на дно ванны цинкования крупнозернистых частиц никеля, мелкозернистую фракцию брикета готовят из частиц никеля с размерами от 5 до 20 мкм в количестве от 25 до 35% от массы навески порошка никеля, определяемой из условия получения концентрации никеля в пределах 0,05%.
Недостатком данного способа является то, что полученная таблетка в процессе горячего цинкования не обеспечивает увеличения концентрации никеля больше 0,05%. Важно отметить, что ощутимое снижение толщины цинкового покрытия на сталях происходит при концентрации в расплаве цинка никеля от 0,05%. При такой концентрации цинковое покрытие на изделии будет содержать в себе около 0,1% никеля. При увеличении концентрации никеля в расплаве происходит снижение расхода цинка при цинковании изделий.
Технической задачей данного изобретения является создание способа изготовления брикета для легирования расплава цинка, который позволит повысить концентрацию никеля в расплаве цинка до 0,06% при улучшении качества самого брикета при хранении и транспортировке за счет увеличения ее прочности и плотности.
Поставленная задача достигается тем, что способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования включает смешивание в рабочей форме навески порошка никеля, содержащего мелкозернистые и крупнозернистые фракции с флюсом в определенном соотношении и формирование из них заготовки путем заливки жидкого полимера для создания наружной оболочки с последующим прессованием для создания брикета. Новым является то, что до смешивания навески порошка никеля с флюсом порошок никеля подвергают горизонтальной вибрации. Затем добавляют флюс в виде раствора заданной концентрации и температуры с последующим высушиванием полученной смеси. В смесь заливают расплавленный жидкий полимер и производят вакуумное прессование при определенной температуре. Кроме этого симметричную горизонтальную вибрацию навеску порошка никеля производят с частотой 7-10 Гц. В качестве флюса берут порошок хлористого аммония, растворенного в воде при температуре 90-100°С в концентрации 70-80 гр/100 гр H2O. Вакуумное прессование производят при температуре 75-85°С и величине вакуума 120-140 Па. В качестве жидкого полимера используют парафин.
Изобретение поясняется чертежами, где на фиг. 1 представлен общий вид брикета для легирования расплава цинка, на фиг. 2 - навеска порошка никеля в рабочей форме после горизонтальной вибрации, на фиг. 3 представлен график зависимости концентрации хлористого аммония в водном растворе от температуры.
Способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования металлических изделий осуществляют следующим образом. В рабочую форму засыпают навеску порошка никеля, содержащего мелкозернистые и крупнозернистые фракции одной плотности. Рабочую формы с навеской устанавливают на вибростол и производят воздействие симметричной горизонтальной вибрацией определенной частоты, выбранной из интервала 7-10 Гц. Для этого используют вибрационную установку с электродинамическим столом (вибростенд). Экспериментально установлено, что при горизонтальной вибрации навески порошка никеля с такой частотой происходит послойное разделение частиц порошковой навески по крупности фракций. Навеска состоит из частиц порошка никеля разных фракций одной плотности (например, 70% частиц крупной фракции и 30% мелкой). В результате вибрирования более мелкие частицы оседают внизу формы, а крупные частицы размещаются над мелкими (фиг. 2), что значительно улучшает качество (равномерность) дальнейшей пропитки навески флюсом и расплавленным парафином. Вибрацию осуществляют 2-3 мин, при этом происходит максимальное расслоение крупных и мелких фракций навески порошка никеля, что определено экспериментально. Затем пропитывают навеску порошка никеля раствором флюса. В качестве флюса используют раствор хлористого аммония (NH4Cl), который получают растворяя порошок NH4Cl в воде при температурах 90-100°С до концентрации 70-80 гр/100 гр H2O (фиг. 3). Из графика видно, что растворимость порошка флюса в воде увеличивается при увеличении температуры воды и максимальная концентрация получается при температурах близких к кипению воды. Раствор флюса заливают в рабочую форму с порошком никеля до полной пропитки навески порошка никеля раствором, что наблюдают визуально. Полученную смесь помещают в термопечь и высушивают до полного удаления влаги и получения сухой смеси. Экспериментально пропитывали порошок никеля раствором флюса, полученного при температурах 20, 60, 100 градусов Цельсия. После высушивания и удаления влаги определяли привес флюса к исходному порошку никеля. Наибольший привес получали при использовании раствора флюса, полученного при температуре 90-100°С за счет использования раствора флюса большей концентрации. При этом за счет горизонтальной вибрации навески порошка никеля и послойного разделения частиц разных фракций таким образом, что крупные частицы оказываются сверху раствор флюса свободно проникает через крупные частицы и хорошо смачивает мелкие частицы, оказавшиеся внизу. При использовании флюса в виде раствора происходит полное и равномерное проникновение флюса в поры порошка никеля, при этом обеспечивается полный физический контакт частиц порошка с раствором. Кроме этого при использовании раствора флюса большой концентрации происходит разрушение (растворение) оксидной пленки, покрывающей частицы порошка никеля. За счет этого офлюсованный порошок никеля хорошо смачивается цинком в ванне, повышается его растворимость. Все это позволяет увеличивать растворимость никеля при добавлении полученного брикета в ванну с цинком и достигать концентрации никеля в расплаве на уровне 0,06%. Также при использовании раствора флюса исключается пыление порошковой смеси при добавлении флюса, что улучшает экологическую составляющую производства никелевого брикета. Затем формируют заготовку с наружной оболочкой и пропиткой внутри из жидкого полимера. Для этого в форму с заготовкой из порошка никеля и флюса заливают жидкий полимер, например, расплавленный пищевой парафин. За счет послойного разделения частиц навески порошка никеля при вибрации происходит равномерное проникновение парафина в полученную смесь никеля и флюса. Полученную заготовку помещают в вакуумную печь для вакуумного прессования полученной заготовки при температуре 75-85°С и величине вакуума 120-140 Па. Поддержание температуры в вакууме необходимо для того, чтобы расплавленный парафин оставался в состоянии повышенной текучести, что позволяет дополнительно осуществлять дальнейшую равномерную пропитку парафином смеси никеля с флюсом. Вакуумное прессование при величине вакуума 120-140 Па позволяет изготовить брикет никеля практически безпористым (происходит удаление воздуха между частицами смеси), плотным с высокими механическими свойствами - увеличивается прочность брикета. Равномерная пропитка парафином и вакуумное прессование позволяют получить брикеты высокого качества при длительном хранении, а также транспортировке и перемещении брикета без его разрушения. Получают никелевый слоистый брикет - таблетку (фиг. 1), имеющую усеченную прямоугольную форму с литейными уклонами по толщине брикета 15 мм, которую извлекают из рабочей формы. Под микроскопом при различном увеличении определяют качество полученного брикета - полноту пропитки парафином, наличие пор и дефектов в поперечном разрезе. Качество полученных брикетов определяли при разных параметрах вакуума - температуре и величине вакуума. Наилучший результат получен при температуре 80°С и величине вакуума 130 Па.
Пример
Изготовлены и испытаны брикеты из электролитического никелевого порошка (ГОСТ 9722-97), состоящего на 70% из крупных фракций с размерами частиц 200-300 мкм и 30% из мелких фракций с размерами частиц 20-35 мкм. Брикет готовят из компонентов со следующим весовым соотношением никеля, хлористого аммония и парафина в мас. %:
частицы никелевого порошка 40-80
флюс 15-35
парафин остальное
В конкретном примере брали никелевого порошка - 335 гр, флюса - 100 гр, парафина - 65 гр.
1. Порошок никеля засыпали в рабочую форму. Горизонтальная вибрация навески порошка никеля произведена с частотой f=9 Гц. Раствор флюса добавлен при Т=95°С и концентрации 75 гр/100 гр H2O. Смесь высушена в термошкафу. Залит расплавленный до Т=90°С пищевой парафин. Вакуумное прессование проведено в вакуумной печи при Т=80°С и Р=130 Па. Брикет охлаждали и извлекали из формы.
2. Горизонтальная вибрация навески порошка никеля произведена с частотой f=7 Гц. Раствор флюса добавлен при Т=90°С и концентрации 70 гр/100 гр H2O. Смесь высушена в термошкафу. Залит расплавленный до Т=90°С пищевой парафин. Вакуумное прессование проведено в вакуумной печи при Т=80°С и Р=130 Па.
3. Горизонтальная вибрация навески порошка никеля произведена с частотой f=10 Гц. Раствор флюса добавлен при Т=100°С и концентрации 80 гр/100 гр H2O. Смесь высушена в термошкафу. Залит расплавленный до Т=90°С пищевой парафин. Вакуумное прессование проведено в вакуумной печи при Т=80°С и Р=130 Па.
Полученные брикеты испытывали на предприятии горячего цинкования. В процессе производственных испытаний при соприкосновении брикета с расплавом цинка оболочка и флюс воспламеняются и сгорают, а частицы порошка никеля оседать вглубь ванны, растворяясь по мере оседания. Были получены следующие результаты по концентрации никеля в расплаве цинка в представленных примерах изготовления брикета:
1 пример - 0,058%, 2 пример = 0,053%; 3 пример - 0,056%.
Растворимость никеля в цинке в соответствии с диаграммой состояния сплавов максимально составляет 0,06%. Отмечено хорошее качество брикета.
Таким образом предложен способ изготовления брикета для легирования расплава цинка, который позволяет повысить концентрацию никеля в расплава цинка до 0,06%, что больше, чем у прототипа, где обеспечивается концентрация 0,05%. При этом улучшено качество самого брикета при хранении и транспортировке за счет увеличения его прочности и плотности, а также улучшена экология изготовления брикета.

Claims (5)

1. Способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования, включающий смешивание в рабочей форме навески порошка никеля, содержащего мелкозернистые и крупнозернистые фракции с флюсом, формирование из них заготовки путем заливки жидкого полимера для создания наружной оболочки с последующим прессованием для создания брикета, отличающийся тем, что до смешивания навески порошка никеля с флюсом порошок никеля подвергают симметричной горизонтальной вибрации, добавляют флюс, растворенный в воде с последующим высушиванием полученной смеси, в которую заливают расплавленный жидкий полимер и производят вакуумное прессование.
2. Способ по п. 1, отличающийся тем, что симметричную горизонтальную вибрацию навеску порошка никеля производят с частотой 7-10 Гц.
3. Способ по п. 1, отличающийся тем, что в качестве флюса берут порошок хлористого аммония, растворенного в воде при температуре 90-100°С в концентрации 70-80 гр/100 гр H2O.
4. Способ по п. 1, отличающийся тем, что вакуумное прессование проводят при температуре 75-85°С и величине вакуума 120-140 Па.
5. Способ по п. 1, отличающийся тем, что в качестве жидкого полимера используют парафин.
RU2019105402A 2019-02-26 2019-02-26 Способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования RU2704148C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019105402A RU2704148C1 (ru) 2019-02-26 2019-02-26 Способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019105402A RU2704148C1 (ru) 2019-02-26 2019-02-26 Способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования

Publications (1)

Publication Number Publication Date
RU2704148C1 true RU2704148C1 (ru) 2019-10-24

Family

ID=68318571

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019105402A RU2704148C1 (ru) 2019-02-26 2019-02-26 Способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования

Country Status (1)

Country Link
RU (1) RU2704148C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900018917A1 (it) * 2019-10-15 2021-04-15 Soprin S R L Capsula monodose per bagni di zincatura

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU837985A1 (ru) * 1971-12-10 1981-06-15 Феб Швермашиненбау, Комбинат "Эрнсттельман" (Инопредприятие) Способ цинковани бесконечно соеди-НЕННыХ пРОВОлОчНыХ РЕшЕТчАТыХ пЕРЕ-плЕТЕНий
SU1224349A1 (ru) * 1984-06-21 1986-04-15 Институт проблем литья АН УССР Брикет дл модифицировани чугуна
US4647308A (en) * 1984-06-18 1987-03-03 Copper Development Association, Inc. Soldering compositions, fluxes and methods of use
US5810946A (en) * 1997-02-04 1998-09-22 Metals Recycling Technologies Corp. Method for the production of galvanizing fluxes and flux feedstocks
WO2006123945A1 (en) * 2005-05-19 2006-11-23 Fletcher Building Holdings Limited Galvanising procedures
RU2647066C1 (ru) * 2016-07-19 2018-03-13 Ян Михайлович Туровский Таблетка для горячего цинкования металлических изделий (варианты) и способ её подготовки

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU837985A1 (ru) * 1971-12-10 1981-06-15 Феб Швермашиненбау, Комбинат "Эрнсттельман" (Инопредприятие) Способ цинковани бесконечно соеди-НЕННыХ пРОВОлОчНыХ РЕшЕТчАТыХ пЕРЕ-плЕТЕНий
US4647308A (en) * 1984-06-18 1987-03-03 Copper Development Association, Inc. Soldering compositions, fluxes and methods of use
SU1224349A1 (ru) * 1984-06-21 1986-04-15 Институт проблем литья АН УССР Брикет дл модифицировани чугуна
US5810946A (en) * 1997-02-04 1998-09-22 Metals Recycling Technologies Corp. Method for the production of galvanizing fluxes and flux feedstocks
WO2006123945A1 (en) * 2005-05-19 2006-11-23 Fletcher Building Holdings Limited Galvanising procedures
RU2647066C1 (ru) * 2016-07-19 2018-03-13 Ян Михайлович Туровский Таблетка для горячего цинкования металлических изделий (варианты) и способ её подготовки

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900018917A1 (it) * 2019-10-15 2021-04-15 Soprin S R L Capsula monodose per bagni di zincatura
WO2021074844A1 (en) * 2019-10-15 2021-04-22 Soprin S.R.L. Single-dose capsule for galvanizing baths

Similar Documents

Publication Publication Date Title
Girelli et al. Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy
RU2704148C1 (ru) Способ изготовления брикета для легирования расплава цинка в процессе горячего цинкования
JP2017160522A (ja) 溶融Al系めっき鋼板およびその製造方法
Golkovsky et al. Cladding of tantalum and niobium on titanium by electron beam, injected in atmosphere
Spinelli et al. The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloys
Tański Determining of laser surface treatment parameters used for light metal alloying with ceramic powders: Bestimmung der Parameter zur Laser‐Oberflächenbehandlung einer Leichtmetalllegierung mit Keramikpulver
US1819364A (en) Hot top
Kania The structure of coatings obtained in a ZnAl23Si bath by the batch hot dip method
KR20150095378A (ko) 몰드 플럭스 및 이를 이용한 연속주조방법
RU2011109379A (ru) Инжекционное формование металлов с многокомпонентным составом
RU2647066C1 (ru) Таблетка для горячего цинкования металлических изделий (варианты) и способ её подготовки
Snehashis et al. Analyzing properties of semi-molten powder granules in laser powder bed fusion
RU2691828C1 (ru) Способ получения расходуемых электродов титанового сплава для отливки деталей оборудования, работающего в агрессивных средах под высоким давлением
US3393996A (en) Treating agent for ferrous metals
CN102974804B (zh) 表面具有耐磨性和耐蚀性铸件的制造方法
CA2678074C (en) Dezincification-resistant copper alloy and method for producing product comprising the same
Fuentes et al. Wear behavior of a self‐lubricating aluminum/graphite composite prepared by powder metallurgy
Hou et al. Effects of surface aluminizing on structure and compressive strength of Fe foam prepared by electrodeposition
Yang et al. Rapidly Solidified Microstructure in Laser Alloyed Ni–Al Layer by TEM, STEM z-contrast and HRTEM Techniques
Ciupitu et al. The improving of the process of the iron, the cast iron and the copper powder mixing
CN107557710B (zh) 一种热镀锌复合型锌液除铁剂及其使用方法
US8349097B2 (en) Dezincification-resistant copper alloy and method for producing product comprising the same
JP2014525839A (ja) インベストメント鋳造の製造方法
RU2297462C1 (ru) Способ получения расходуемых электродов
RU2686165C1 (ru) Термитный стержень для получения расплава в тигель-форме для термитной приварки проводов электрохимзащиты к трубопроводам

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210227