RU2703921C1 - Способ скрытия оптико-электронных приборов от лазерных локационных средств - Google Patents
Способ скрытия оптико-электронных приборов от лазерных локационных средств Download PDFInfo
- Publication number
- RU2703921C1 RU2703921C1 RU2018144048A RU2018144048A RU2703921C1 RU 2703921 C1 RU2703921 C1 RU 2703921C1 RU 2018144048 A RU2018144048 A RU 2018144048A RU 2018144048 A RU2018144048 A RU 2018144048A RU 2703921 C1 RU2703921 C1 RU 2703921C1
- Authority
- RU
- Russia
- Prior art keywords
- time
- radiation
- oed
- main
- llf
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/02—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
- G02B26/04—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light by periodically varying the intensity of light, e.g. using choppers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B11/00—Filters or other obturators specially adapted for photographic purposes
- G03B11/04—Hoods or caps for eliminating unwanted light from lenses, viewfinders or focusing aids
- G03B11/045—Lens hoods or shields
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия. Способ скрытия оптико-электронных приборов (ОЭП) от лазерных локационных средств (ЛЛС) базируется на приеме оптического излучения ОЭП, измерении частотных, временных и энергетических параметров принимаемого оптического излучения, различении по их значениям частотных, временных и энергетических параметров спонтанного излучения передающего канала ЛЛС, предшествующего основному, и определении момента времени прихода tO основного излучения передающего канала ЛЛС, симметричном делении за время tC<Δt<tO оптического входа ОЭП на две части, поглощении с направления входа и выхода ОЭП падающего на одну часть основного оптического излучения передающего канала ЛЛС, где tC - момент времени регистрации спонтанного излучения передающего канала ЛЛС. Технический результат - повышение эффективности скрытия ОЭП от ЛЛС. 2 ил.
Description
Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия.
Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ маскировки оптико-электронного прибора (ОЭП) [см. например, Пархоменко В.А., Рыбаков А.Н., Устинов Е.М. и др. Патент RU №2350992. Устройство маскировки оптико-электронных приборов от средств лазерной пеленгации. М: РОСПАТЕНТ, 2009], основанный на нанесении светопоглощающего покрытия на отражающие поверхности формирующей оптики ОЭП и поглощении им части локационного оптического излучения. Недостатком способа является низкая эффективность скрытия ОЭП при высоком уровне облучения, а также невозможность снижения уровня эффективной площади рассеивания (ЭПР) ОЭП до «нулевого» значения. Это недостаток обусловлен тем, что снижение ЭПР производится при непосредственном оптическом «контакте» отражающих поверхностей ОЭП с зондирующим излучением. При этом в способе-прототипе снижение ЭПР ОЭП носит постоянный фиксированный характер, без адаптации к величине плотности излучения, падающего на основные отражающие поверхности. В дополнение, возможности использования светопоглощающих покрытий ограничены необходимостью сохранения пропускной способности формирующей оптики ОЭП.
Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности скрытия ОЭП от лазерных локационных средств (ЛЛС).
Сущность изобретения заключается в приеме спонтанного излучения ЛЛС, обеспечивающего время для скрытия ОЭП путем симметричного деления оптического входа ОЭП на две части и поглощении с направления входа и выхода ОЭП падающего на одну часть основного оптического излучения передающего канала ЛЛС.
Технический результат достигается тем, что в известном способе скрытия ОЭП от ЛЛС, основанном на приеме оптического излучения ОЭП, измеряют частотные, временные и энергетические параметры принимаемого оптического излучения, по значениям которых различают частотные, временные и энергетические параметры спонтанного излучения передающего канала ЛЛС, предшествующего основному, и определяют момент времени прихода tO основного излучения передающего канала ЛЛС, за время tC<Δt<tO делят симметрично оптический вход ОЭП на две части, поглощают с направления входа и выхода ОЭП падающее на одну часть основное оптическое излучение передающего канала ЛЛС, где tC - момент времени регистрации спонтанного излучения передающего канала ЛЛС.
Ключевым элементом функционирования ЛЛС является наличие отраженного от ОЭП сигнала. Обобщенная отражающая способность ОЭП характеризуется ЭПР [см. например, Малашин М.С., Каминский Р.П., Борисов Ю.Б. Основы проектирования лазерных локационных систем. М.: «Высшая школа», 1983, 207 с, стр. 26-27; Козирацкий Ю.Л., Гревцев А.И., Донцов А.А., Иванцов А.В., Кулешов П.Е. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов. М.: «ЗАО «Издательство «Радиотехника», 2015, 456 с, стр. 17-20]. В ОЭП снижение ЭПР обеспечивается использованием оптических фильтров, выбором типа формирующей оптики, нанесением светопоглощающих покрытий и т.п.[см. например, Пархоменко В.А., Рыбаков А.Н., Устинов Е.М. и др. Патент RU №2350992. Устройство маскировки оптико-электронных приборов от средств лазерной пеленгации. М.: РОСПАТЕНТ, 2009.; Первулюсов Ю.Б., Радионов С.А., Солдатов В.П. Под редакцией Якушенков Ю.Г. Проектирование оптико-электронных приборов. М.: «Логос», 2000, 180 с, стр. 249-253].
Однако эффективность таких мер носит постоянный характер и в динамике изменения мощности зондирующего направленного оптического излучения может быть достаточно низкая. В этой связи предлагается снизить ЭПР ОЭП путем поглощения части зондирующего когерентного оптического излучения на его входе и выходе ОЭП по факту работы (облучения) передающего канала (лазера) ЛЛС на основе анализа частотной, временной и энергетической структуры его излучения.
ЛЛС функционируют по основному импульсу излучения передающего канала, так как он обеспечивает энергетически более устойчивый процесс локации ОЭП. Одним из путей повышения эффективности скрытия ЭОП является заблаговременное принятие мер по снижению ЭПР. Как уже было определено, меры постоянного характера по снижению ЭПР снижают функциональные возможности ОЭП. Поэтому предлагается уменьшать ЭПР ОЭП до «нулевого» уровня по факту функционирования ЛЛС и при этом сохранить функциональные возможности ОЭП. Это может обеспечить прием спонтанного излучения передающего канала ЛЛС, предшествующего основному [см. например, Козирацкий Ю.Л., Гревцев А.И., Донцов А.А., Иванцов А.В., Кулешов П.Е. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов. М.: «ЗАО «Издательство «Радиотехника», 2015, 456 с, стр. 92].
Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - этап работы ОЭП в режиме приема и анализа спонтанного излучения ЛЛС; 2 - этап работы ОЭП в режиме приема основного излучения ЛЛС с уменьшенной ЭПР; 3 - спонтанное излучение ЛЛС; 4 - основное излучение ЛЛС; 5 - объектив ОЭП; 6 - отражающая поверхность ОЭП; 7 - поглощающая с двух сторон оптическое излучение пластина; 8 - траектория распространения излучения передающего канала ЛЛС на входе, выходе и внутри ОЭП (J - интенсивность принимаемого излучения ЛЛС, t - время, Δt - интервал времени, необходимого на снижение ЭПР ОЭП, tC - момент времени регистрации спонтанного излучения ЛЛС, tQ - определяемый момент времени приема основного излучения ЛЛС).
Динамика формирования локационного сигнала ЛЛС включает генерацию оптических волн, которые можно разделить на спонтанные излучения 3 (под спонтанным излучением понимается совокупность спонтанного и спонтанно-индуцированного излучений) и основное 4 [см. там же стр. 110-111, 128-131]. При этом в соответствии с достижением технического результата рассматривается спонтанное излучение предшествующее основному. Прием спонтанного излучения может характеризовать факт работы передающего канала (лазера) ЛЛС и обеспечить временной ресурс для скрытия (снижения ЭПР) ОЭП [см. там же стр. 109]. Разделение спонтанного излучения 3 по составляющим длинам волн и соответственно от основного 4 можно осуществить по частотным характеристикам, т.е. выделить необходимое спонтанное излучение, предшествующее основному. На этапе работы ОЭП в режиме приема и анализа спонтанного излучения ЛЛС 1 ОЭП функционирует в минимальном режиме скрытия. При поступлении на вход ОЭП спонтанного излучения 3 передающего канала ЛЛС, осуществляется оценка его частотных, временных и энергетических параметров, по которым определяется факт функционирования передающего канала ЛЛС, момент времени регистрации tO, и момент времени приема основного излучения ЛЛС tQ. Факт регистрации спонтанного излучения 3 является управляющей командой для принятия мер по скрытию ОЭП за время tc<Δt<tO и перехода ОЭП на этап работы в режиме приема основного излучения ЛЛС 2 с уменьшенной ЭПР.
Возможность скрытия ОЭП (уменьшения ЭПР) от ЛЛС опирается на представлении оптической системы как линейной системы. Основной вклад в величину ЭПР вносит поверхность, расположенная в фокусе или близко к нему. Поэтому для упрощения понимания сущности изобретения и описания процесса скрытия ОЭП оптическая система представляется в эквивалентном виде (фиг. 1), состоящая из объекта 5 и отражающей поверхности 6 [см. там же стр. 26-28]. Так как ЛЛС функционирует по импульсу основного излучения, свойства когерентности которого «максимальны», то его распространение в зависимости от свойств изменения направления оптических потоков элементами 5 и 6 в структуре ОЭП представляются в виде прямолинейных траекторий распространения излучения передающего канала ЛЛС на входе, выходе и внутри ОЭП 8. На этапе работы 1 ОЭП пропускает все излучение, в том числе и ЛЛС. При обнаружении спонтанного излучения 3 оптический вход ОЭП делят симметрично за время tc<Δt<tO на две части: «пропускающую и поглощающую» подающий поток основного излучения ЛЛС, например, устанавливают перед объективом 5 поглощающую с двух сторон оптическое излучение пластину 7. Падающий поток основного излучения 4 ЛЛС на пластину 7 со стороны ЛЛС «поглощают». Учитывая законы отражения, отраженный поток основного излучения 4 ЛЛС от поверхности 6 меняет направление на противоположное и падает на пластину 7, где его также «поглощают». Это приведет к снижению уровня ЭПР и соответственно скрытию ОЭП от ЛЛС с сохранением его функциональных возможностей.
На фиг. 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства содержит: датчик параметров спонтанного изучения 9, включающий фотоприемный блок обнаружения и определения параметров спонтанного излучения 10, фотоприемный блок обнаружения и определения параметров фонового излучения 11 и блок анализа и вычисления 12; ОЭП 13, в состав которого дополнительно включены установленная на поворотном приводе 1/2 площади входа ОЭП поглощающая пластина 14 с блоком управления приводом 15.
Устройство работает следующим образом. Датчик параметров спонтанного излучения 9 принимает оптическое излучение и путем сравнения выходных сигналов фотоприемного блока обнаружения и определения параметров спонтанного излучения 10 и фотоприемного блока обнаружения и определения параметров фонового излучения 11 в блоке анализа и вычисления 12 определяет факт облучения ОЭП ЛЛС и вырабатывает сигнал в блок управления приводом 15. Блок управления приводом 15 передает сигнал на поворотный привод, который устанавливает поглощающую пластину 14 в нужное положение.
Таким образом, у заявляемого способа появляются свойства, заключающиеся в повышении эффективности скрытия ОЭП от ЛЛС за счет приема спонтанного излучения ЛЛС, обеспечивающего время для скрытия ОЭП путем симметричного деления оптического входа ОЭП на две части и поглощения с направления входа и выхода ОЭП падающего на одну часть основного оптического излучения передающего канала ЛЛС. Тем самым, предлагаемый авторами способ устраняет недостатки прототипа.
Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ скрытия ОЭП от ЛЛС, основанный на приеме оптического излучения ОЭП, измерении частотных, временных и энергетических параметров принимаемого оптического излучения, различении по значениям которых частотных, временных и энергетических параметров спонтанного излучения передающего канала ЛЛС, предшествующего основному, и определении момента времени прихода t0 основного излучения передающего канала ЛЛС, симметричном делении за время tc<Δt<tQ оптического входа ОЭП на две части, поглощении с направления входа и выхода ОЭП падающего на одну часть основного оптического излучения передающего канала ЛЛС, где tC - момент времени регистрации спонтанного излучения передающего канала ЛЛС.
Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые поглощающие оптическое излучение материалы.
Список используемой литературы
1. Пархоменко В.А., Рыбаков А.Н., Устинов Е.М. и др. Патент RU №2350992. Устройство маскировки оптико-электронных приборов от средств лазерной пеленгации. М.: РОСПАТЕНТ, 2009.
2. Малашин М.С., Каминский Р.П., Борисов Ю.Б. Основы проектирования лазерных локационных систем. М.: «Высшая школа», 1983, 207 с.
3. Первулюсов Ю. Б., Радионов С.А., Солдатов В.П. Под. Редакцией Якушенков Ю.Г. Проектирование оптико-электронных приборов. М.: «Логос», 2000, 180 с.
4. Козирацкий Ю.Л., Гревцев А.И., Донцов А.А., Иванцов А.В., Кулешов П.Е. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов. М.: «ЗАО «Издательство «Радиотехника», 2015, 456 с.
Claims (1)
- Способ скрытия оптико-электронных приборов от лазерных локационных средств, основанный на приеме оптического излучения оптико-электронным прибором, отличающийся тем, что измеряют частотные, временные и энергетические параметры принимаемого оптического излучения, по значениям которых различают частотные, временные и энергетические параметры спонтанного излучения передающего канала лазерного локационного средства, предшествующего основному, и определяют момент времени прихода tO основного излучения передающего канала лазерного локационного средства, за время tC<Δt<tO делят симметрично оптический вход оптико-электронного прибора на две части, поглощают с направления входа и выхода оптико-электронного прибора падающее на одну часть основное оптическое излучение передающего канала лазерного локационного средства, где tC - момент времени регистрации спонтанного излучения передающего канала лазерного локационного средства.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018144048A RU2703921C1 (ru) | 2018-12-12 | 2018-12-12 | Способ скрытия оптико-электронных приборов от лазерных локационных средств |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018144048A RU2703921C1 (ru) | 2018-12-12 | 2018-12-12 | Способ скрытия оптико-электронных приборов от лазерных локационных средств |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2703921C1 true RU2703921C1 (ru) | 2019-10-22 |
Family
ID=68318252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018144048A RU2703921C1 (ru) | 2018-12-12 | 2018-12-12 | Способ скрытия оптико-электронных приборов от лазерных локационных средств |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2703921C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2748459C1 (ru) * | 2020-09-03 | 2021-05-25 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ скрытия оптико-электронных средств от лазерных локационных систем |
RU2751644C1 (ru) * | 2020-09-03 | 2021-07-15 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ скрытия оптико-электронных средств от лазерных локационных систем |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3992628A (en) * | 1972-07-17 | 1976-11-16 | The United States Of America As Represented By The Secretary Of The Navy | Countermeasure system for laser radiation |
RU2350992C2 (ru) * | 2005-02-14 | 2009-03-27 | Пензенский Артиллерийский Инженерный Институт | Устройство маскировки оптико-электронных приборов от средств лазерной пеленгации противника |
RU2549585C1 (ru) * | 2014-07-03 | 2015-04-27 | Открытое акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (ОАО "НИИ ОЭП") | Способ противодействия оптико-электронным системам с лазерным наведением и устройство для его осуществления |
-
2018
- 2018-12-12 RU RU2018144048A patent/RU2703921C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3992628A (en) * | 1972-07-17 | 1976-11-16 | The United States Of America As Represented By The Secretary Of The Navy | Countermeasure system for laser radiation |
RU2350992C2 (ru) * | 2005-02-14 | 2009-03-27 | Пензенский Артиллерийский Инженерный Институт | Устройство маскировки оптико-электронных приборов от средств лазерной пеленгации противника |
RU2549585C1 (ru) * | 2014-07-03 | 2015-04-27 | Открытое акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (ОАО "НИИ ОЭП") | Способ противодействия оптико-электронным системам с лазерным наведением и устройство для его осуществления |
Non-Patent Citations (1)
Title |
---|
И.И. Васильченко и др. "О противодействии лазерным системам наведения противотанкового оружия и боеприпасов" Радіоелектронні і комп’ютерні системи, 2013, N 2 (61). * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2748459C1 (ru) * | 2020-09-03 | 2021-05-25 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ скрытия оптико-электронных средств от лазерных локационных систем |
RU2751644C1 (ru) * | 2020-09-03 | 2021-07-15 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ скрытия оптико-электронных средств от лазерных локационных систем |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | 3D pulsed chaos lidar system | |
RU2442107C2 (ru) | Устройство для оптического измерения расстояний | |
JP5138854B2 (ja) | 光学距離測定 | |
Morvan et al. | Building blocks for a two-frequency laser lidar-radar: a preliminary study | |
CN108828616B (zh) | 可实现单脉冲测距的光子计数激光雷达及恒虚警控制方法 | |
RU2703921C1 (ru) | Способ скрытия оптико-электронных приборов от лазерных локационных средств | |
Oh et al. | Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system | |
CN112904351B (zh) | 一种基于量子纠缠光关联特性的单源定位方法 | |
CN114509780B (zh) | 一种测距激发式水下动态目标长距离选通偏振成像装置及方法 | |
CN103576162A (zh) | 激光雷达装置及利用该装置测量目标物距离的方法 | |
Mullen et al. | Optical modulation techniques for underwater detection, ranging and imaging | |
CN116381643B (zh) | 一种防欺骗量子激光雷达及处理方法 | |
Laux et al. | Underwater laser range finder | |
CN105182351A (zh) | 基于量子偏振的多维信息探测装置及多维信息探测方法 | |
CN110716207A (zh) | 一种基于单光子调制频谱测量的激光测距系统 | |
Du et al. | Laser detection of remote targets applying chaotic pulse position modulation | |
Lee et al. | Hybrid technique for enhanced optical ranging in turbid water environments | |
Mrozowski et al. | Demonstration of quantum-enhanced rangefinding robust against classical jamming | |
RU2655006C1 (ru) | Приемник импульсных лазерных сигналов | |
Cochenour et al. | A modulated pulse laser for underwater detection, ranging, imaging, and communications | |
Cheng et al. | Improved time-of-flight range acquisition technique in underwater lidar experiments | |
RU2698513C2 (ru) | Способ снижения эффективной площади рассеивания оптико-электронного прибора | |
CN113447232A (zh) | 一种时间相关单光子计数的尾流探测装置及其运行方法 | |
Fink et al. | Full-waveform modeling for time-of-flight measurements based on arrival time of photons | |
Niclass et al. | 3D Imaging based on single photon detectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20201213 |