RU2701833C2 - Способ очистки поверхностных вод от взвешенных веществ, нефтепродуктов, тяжелых металлов, органических веществ - Google Patents

Способ очистки поверхностных вод от взвешенных веществ, нефтепродуктов, тяжелых металлов, органических веществ Download PDF

Info

Publication number
RU2701833C2
RU2701833C2 RU2018103005A RU2018103005A RU2701833C2 RU 2701833 C2 RU2701833 C2 RU 2701833C2 RU 2018103005 A RU2018103005 A RU 2018103005A RU 2018103005 A RU2018103005 A RU 2018103005A RU 2701833 C2 RU2701833 C2 RU 2701833C2
Authority
RU
Russia
Prior art keywords
water
filtration
oil products
cleaning
electric field
Prior art date
Application number
RU2018103005A
Other languages
English (en)
Other versions
RU2018103005A (ru
RU2018103005A3 (ru
Inventor
Максим Владимирович Назаров
Original Assignee
Максим Владимирович Назаров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Максим Владимирович Назаров filed Critical Максим Владимирович Назаров
Priority to RU2018103005A priority Critical patent/RU2701833C2/ru
Publication of RU2018103005A publication Critical patent/RU2018103005A/ru
Publication of RU2018103005A3 publication Critical patent/RU2018103005A3/ru
Application granted granted Critical
Publication of RU2701833C2 publication Critical patent/RU2701833C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Изобретение относится к области очистки поверхностных стоков с территории автодорог. Способ включает подачу вод на очистку транспортирующими лотками, очистку от грубых твердых веществ, укрупнение эмульгированных частиц нефтепродуктов фильтрованием в коалесцирующей загрузке, извлечение тяжелых металлов фильтрованием в геохимических барьерах, глубокую очистку за счет использования естественных механизмов самоочищения в биопрудах с высшей водной растительностью и доочистку от нефтепродуктов фильтрованием в сорбенте, размещенном в электрическом поле. При этом очистку от твердых веществ и нефтепродуктов проводят в центробежном поле трехпродуктового гидроциклона и извлеченную водонефтяную эмульсию последовательно фильтруют в коалесцирующей загрузке и в углеводородном слое гидрофобно-коалесцирующего фильтра. Отделенные углеводороды направляют в накопитель, а очищенную воду возвращают в общий поток, смешивают и подают на очистку фильтрованием в геохимические барьеры с минеральной зернистой загрузкой из силицированного кальцита фракции 5-20 мм, находящейся в электрическом поле, созданном электрохимическими источниками тока, образованными электроотрицательными электродами из алюминия и электроположительными электродами из меди. Геохимические барьеры размещены в транспортирующих лотках в виде отдельных секций, расположенных последовательно. Затем воду подают в накопитель и на биологическую очистку в секционный биопруд с высшей водной растительностью. Воду аэрируют за счет излива, очищают от растворенных нефтепродуктов фильтрованием на гранулированном сорбенте из активированного угля АГ-3, находящемся в электрическом поле, созданном электроотрицательным электродом из алюминия и электроположительным электродом из меди, и подают в инфильтрационные пруды для пополнения запасов подземных вод. Способ обеспечивает регулирование расхода поверхностного стока, поступающего на биологические сооружения, переход на замкнутую систему водопользования, уменьшение материалоемкости водоочистного оборудования. 2 ил., 5 табл.

Description

Изобретение относится к области очистки сильнозагрязненных поверхностных стоков с территории автодорог.
Известен способ очистки поверхностных сточных вод от взвешенных веществ и нефтепродуктов, при котором сточные воды с предварительно введенным флокулянтом с гидрофобизирующими свойствами подают на стадию осаждения песка и крупных частиц, тонкую механическую очистку от взвешенных веществ в слое загрузки из цилиндрических колец, засыпанных внавал, сорбцию свободных и эмульгированных нефтепродуктов, дополнительную сорбцию растворимых нефтепродуктов на сорбенте с прикрепленной микрофлорой и подачей кислорода воздуха. Подачу сточных вод на очистку автоматически изменяют пропорционально интенсивности дождя. Нижний предел автоматического регулирования подачи сточных вод составляет не менее 10% от номинального. Перед тонкой механической очисткой проводят дополнительную механическую очистку с помощью легкорегенерируемого мешочного фильтра с рейтингом фильтрации 10-100 мкм и площадью фильтрации, составляющей 0,1-0,25 от площади фильтрации на стадии основной очистки [Патент РФ №2610507 «Способ очистки поверхностных сточных вод от взвешенных веществ и нефтепродуктов», МПК C02F 9/08, C02F 1/32, C02F 1/28, опубл. 13.02.2017 г., бюл. №5].
Недостатком изобретения является невозможность очистки поверхностных вод от тяжелых металлов, присутствующих в высокой концентрации в поверхностных стоках с автодорог.
Наиболее близким к заявляемому объекту техническим решением является способ очистки поверхностных вод, при котором поверхностные воды подают на очистку лотками, очищают от грубых твердых веществ решетками, укрупняют эмульгированные частицы нефтепродуктов фильтрованием в гидрофобных зернистых материалах с использованием эффекта коалесценции, после чего воду очищают седиментацией от нефтепродуктов и тонких твердых веществ, извлекают тяжелые металлы фильтрованием в геохимических барьерах, проводят глубокую очистку за счет использования естественных биологических механизмов самоочищения в биопрудах с высшей водной растительностью и доочистку фильтрованием воды в гранулированном сорбенте, размешенном в электрическом поле [Патент РФ №88012, МПК C02F 3/00, C02F 3/32, опубл. 27.10.2009 г.].
Недостатком технического решения является высокая материалоемкость конструкций, реализующих способ очистки поверхностного стока, необходимость строительства протяженного коллектора отвода очищенных вод со сбросом вод в водные объекты, нерациональное использование протяженных лотков, транспортирующих поверхностный сток с дорожных покрытий до очистных сооружений.
Задачей изобретения является регулирование расхода поверхностного стока, поступающего на биологические сооружения, переход на замкнутую систему водопользования (без сброса воды в водные объекты), уменьшение материалоемкости водоочистного оборудования за счет применения интенсивных методов очистки воды, использование транспортирующих лотков в качестве систем предварительной очистки поверхностного стока.
Сущность способа заключается в следующем.
Способ включает подачу воды на очистку транспортирующими лотками, очистку от грубых твердых веществ, укрупнение эмульгированных частиц нефтепродуктов фильтрованием в коалесцирующей загрузке, извлечение тяжелых металлов фильтрованием в геохимических барьерах, глубокую очистку за счет использования естественных механизмов самоочищения в биопрудах с высшей водной растительностью и доочистку от нефтепродуктов фильтрованием в сорбенте, размещенном в электрическом поле, согласно изобретению очистку от твердых веществ и нефтепродуктов производят в центробежном поле трехпродуктового гидроциклона, извлеченную водонефтяную эмульсию последовательно фильтруют в коалесцирующей загрузке и углеводородном слое гидрофобно-коалесцирующего фильтра, отделяют углеводороды и направляют их в накопитель, а очищенную воду возвращают в общий поток, смешивают и подают на очистку фильтрованием в геохимические барьеры с минеральной зернистой загрузкой из силицированного кальцита фракции 5-20 мм, находящейся в электрическом поле, созданном электрохимическими источниками тока, образованными электроотрицательными электродами из алюминия и электроположительными электродами из меди, причем геохимические барьеры размещают в транспортирующих лотках в виде отдельных секций, расположенных последовательно, после которых воду подают в накопитель-усреднитель и на биологическую очистку в секционированный биопруд с высшей водной растительностью, воду аэрируют за счет излива из одной секции в другую, очищают от растворенных нефтепродуктов фильтрованием в гранулированном сорбенте, находящемся в электрическом поле, и подают в инфильтрационные пруды для пополнения запасов подземных вод.
На фиг. 1 представлена технологическая схема реализации изобретения, на фиг. 2 - сечение транспортирующего лотка.
На фиг. 1 показано сечение автомобильной дороги, включающее подушку 1, дорожную одежду 2, сборный лоток 3 для сбора поверхностных вод с дорожного полотна. Ливнеотвод 4 соединен со входом трехпродуктового гидроциклона 5, выход которого соединен с транспортирующим лотком 6 большой протяженности.
В полости транспортирующего лотка 6 размещен геохимический барьер 7 в виде отдельных одинаковых секций, расположенных дискретно. Геохимические барьеры заполнены минеральным зернистым фильтрующим материалом - силицированным кальцитом фракции 5-20 мм [Патент РФ №154393 «Геохимический барьер», МПК C02F 9/06, C02F 1/62, опубл. 20.08.2014 г., бюл. №23]. В фильтрующем материале 8 размещены электрохимические источники тока, образованные стержневыми электроотрицательными электродами 9 из алюминия и электроположительными электродами 10 из меди.
Транспортирующий лоток 6 с размещенными в нем геохимическими барьерами 7 соединен с накопителем-усреднителем 11, который соединен трубопроводом с биологическим трехсекционным прудом 12 с высшей водной растительностью. Пруд 12 соединен с сорбционным фильтром 13, в котором сорбент находится в электрическом поле, созданном электрохимическим источником тока, образованным горизонтальным сетчатым электроотрицательным электродом 14 из алюминия и электроположительным электродом 15 из меди. Выход сорбционного фильтра 13 соединен со входом инфильтрационного бассейна 16.
Верхний патрубок трехпродуктового гидроциклона 5 соединен с гидрофобно-коалесцирующим фильтром 17, верхний патрубок которого соединен с накопителем нефтепродуктов 18, а нижний - с транспортирующим лотком 6. Нижний патрубок гидроциклона 5 соединен со шламовой площадкой 19.
На фиг. 2 показано сечение транспортирующего лотка 6.
Способ очистки поверхностных вод реализуется следующим образом.
Поверхностный сток с автодорог относится к слабоизученным объектам, что позволяет внедрять примитивные решения по их очистке. Важным шагом в нормировании качества поверхностных вод явились значения концентраций загрязняющих веществ в поверхностных водах магистральных улиц [СП 32.13330.2012. Канализация. Наружные сети и сооружения. Утв. 29.12.2011. №635/11, табл. 16]: в ливневой и талой воде содержание взвешенных веществ составляет 1000 и 3000 мг/л; БПК5 - 60 и 85 мг О2/л; нефтепродуктов - 20 и 25 мг/л, соответственно.
Известны результаты мониторинга ливневых вод, отобранных с автодорог селитебных территорий. Мониторинг проводился в течение 10 лет структурным подразделением Минэкологии Республики Башкортостан [Сафарова В.И., Шайдулина Г.Ф., Хатмуллина P.M., Фатьянова Е.В., Магасумова А.Т. Управление качеством водных объектов в Республике Башкортостан. // Межведомственный сборник материалов, посвященных дню водных ресрсов, - Уфа: Информреклама. 2011. - С. 149-153]. Результаты контроля показали, что в ливневых водах концентрация железа достигала 1990 ПДК, меди - 460 ПДК, цинка - 269 ПДК, марганца - 575 ПДК, кадмия -150 ПДК, свинца - 150 ПДК, бенз(а)пирена - 211 ПДК, фенола - 83 ПДК, нефтепродуктов - 1696 ПДК.
Из этого следует, что технология очистки поверхностных вод должна быть многоступенчатой, включать механические методы для извлечения диспергированных веществ, физико-химические и электрохимические методы для извлечения металлов, биологические методы для глубокой доочистки.
Поверхностные воды с дорожной одежды 2 стекают по уклону в сборный лоток 3, по которому транспортируются до ближайшего ливнеотвода 4.
По ливнеотводу 4 вода поступает в трехпродуктовый гидроциклон 5 тангенциально, вследствие чего образуется вращательное движение. Под действием центробежных сил твердые взвешенные вещества отбрасываются к периферии гидроциклона 5, сползают вниз, удаляются из нижнего патрубка на шламовую площадку 19. Легкие вещества (нефтепродукты) концентрируются вблизи оси гидроциклона 5 и отводятся через верхний патрубок в гидрофобно-коалесцирующий фильтр 17 [Патент РФ №148103, МПК C02F 1/40, C02F 1/463, опубл. 27.11.2014 г.], в котором происходит отделение нефтепродуктов от воды за счет коалесценции на зернистом материале и фильтрование воды в углеводородном слое. Извлеченные нефтепродукты отводятся в накопитель 18, а вода поступает в транспортирующий лоток 6, где смешивается с общим потоком очищаемой воды, поступающей в геохимический барьер 7.
Геохимический барьер - это емкостное сооружение, заполненное зернистым фильтрующим материалом. В качестве емкостного сооружения в способе использован транспортирующий лоток 6, сечение которого показано на фиг. 2. Полость лотка 6 заполняют дробленым силицированным кальцитом 8 фракции 5-20 мм. Фильтрующий материал зафиксирован с двух сторон сетками, образуя геохимический барьер 7. Оптимальная длина геохимического барьера - 20 м. Протяженность транспортирующего лотка 6 достигает 1000 м, поэтому в нем может быть размещено два и более геохимических барьера 7.
В процессе движения воды по транспортирующему лотку 6 происходит ее обогащение кислородом воздуха. В геохимическом барьере 7 на поверхности фильтрующей загрузки, обладающей каталитической активностью, происходит образование оксидов и гидроксидов металлов. Гидроксиды металлов в нейтральной среде и слабощелочной среде нерастворимы, выпадают в осадок. По мере движения воды по транспортирующему лотку 6 происходит очистка воды от металлов с эффектом 90-99%. Образовавшийся мелкодисперсный осадок сползает по уклону лотка до ближайшего приямка, удаляется.
Для увеличения эффекта очистки воды от металлов в геохимических барьерах 7 размещены электроотрицательные электроды 9 и электроположительные электроды 10, образующие электрохимические источники тока. Электроды 9 и 10 создают электрическое поле в фильтрующей загрузке, под действием которого происходит поляризация зерен загрузки и образование связанного заряда, с помощью которого проводят электростатическое осаждение ионов металлов и диспергированных частиц.
Предварительно очищенная от взвешенных веществ, нефтепродуктов и металлов вода поступает в накопитель-усреднитель 11, усредняющий расход воды, подаваемой на биологическую очистку, чувствительную к колебаниям расхода. В качестве биологических сооружений использован естественный процесс самоочищения в биологическом трехсекционном пруде 12 с высшей водной растительностью (камыш, рогоз, элодея). В биологическом пруде происходит поглощение азота и фосфора, уменьшение показателя БПК. Водная растительность очищает воду от металлов и солей жесткости.
Для обогащения воды кислородом воздуха предусмотрен излив воды между секциями биопруда, что интенсифицирует процесс глубокой очистки.
Однако, в поверхностных стоках содержатся растворенные нефтепродукты. Их извлекают динамической сорбцией фильтрованием в сорбционном фильтре 13, загруженном активированным углем, например, АГ-3. Для увеличения эффекта очистки воды сорбцией сорбент размещают в электрическом поле, образованном электроотрицательным электродом 14 и электроположительным электродом 15 [Патент РФ №2422187, МПК B01D 25/00, опубл. 27.06.2011 г., бюл. №18].
С целью кардинального изменения подхода к защите водных объектов от загрязнений в Российской Федерации законодательно запрещен сброс очищенных и неочищенных сточных вод в водные объекты во II и III поясе санитарной охраны, что привело к необходимости проектирования и строительства многокилометровых сбросных коллекторов.
В предлагаемом способе очищенная поверхностная вода подается в инфильтрационный бассейн 16, дно которого выполнено водопроницаемым, при этом происходит пополнение запасов подземных вод за счет естественной инфильтрации.
Техническим результатом является пополнение запаса подземных вод, замкнутое водопользование, использование транспортирующих лотков в качестве водоочистных устройств, уменьшение обводненности нефтепродуктов.
Пример 1. Проводили опыты по очистке модельной воды геохимическим барьером длиной 20 м с электрохимическими источниками тока и без них при скорости фильтрования от 10 до 50 м/ч. Результаты приведены в таблице 1.
В воду дозировали металлы и ароматические нефтепродукты - бензол. Бензол отличается высокой растворимостью в воде. В числителе указаны концентрации в фильтрате при очистке воды в геохимическом барьере без электрического поля, в знаменателе - с электрическим полем.
Figure 00000001
Из результатов следует, что эффект очистки воды в геохимическом барьере с электрическим полем во всех случаях лучше, чем без поля.
При скорости фильтрования до 20 м/ч происходит очистка от загрязняющих веществ до ПДКрх. При скорости фильтрования 50 м/ч эффект очистки воды геохимическим барьером с электрическим полем составил 90% для Fe, 91% для Mn, 99% для Cu, 96% для бензола.
Пример 2. Проводили опыты по очистке модельной воды геохимическим барьером длиной 40 м с электрохимическими источниками тока при скорости фильтрования от 10 до 50 м/ч. Концентрация загрязняющих веществ в фильтрате при очистке воды в геохимических барьерах длиной 20 м и 40 м приведена в таблице 2.
Figure 00000002
Из результатов следует, что увеличение длины геохимического барьера с 20 м до 40 м приводит к увеличению эффекта очистки воды от исследованных загрязняющих веществ. При скорости фильтрования 50 м/ч достигнуты значения ПДКрх по всем веществам, кроме Cu. Т.о., геохимический барьер длиной 40 м можно рассматривать как два геохимических барьера длиной по 20 м, расположенных последовательно. Два геохимических барьера целесообразно размещать на некотором расстоянии друг от друга, например, на расстоянии, равном длине геохимического барьера, т.е. 20 м. В этом случае вода, протекая по лотку между двумя геохимическими барьерами, насыщается кислородом воздуха, который существенно влияет на эффективность извлечения металлов.
Дополнительные примеры реализации способа
Проводили опыты по очистке модельной воды, содержащей взвешенные вещества, нефтепродукты и тяжелые металлы по прототипу (Пример 3) и изобретению (Пример 4). Концентрации загрязняющих веществ определяли после каждой ступени очистки. Расход воды в двух опытах поддерживали одинаковым. Скорость фильтрования в геохимическом барьере составляла 10 м/ч.
Figure 00000003
Figure 00000004
На основании результатов, приведенных в таблице 4, следует, что применение изобретения позволяет получить воду по качеству, соответствующему предельно допустимым концентрациям водоемов рабохозяйственного назначения, однако самым важным является, то что очищенную воду по изобретению возможно за счет инфильтрации использовать для подпитки источников водоснабжения, что актуально в условиях дефицита питьевых вод.
В Российской Федерации принята стратегическая программа «Чистая среда», которая предназначена для ликвидации накопленного ущерба и сокращения объема производственных отходов. В случае очистки любых нефтесодержащих (в том числе ливневых) вод происходит извлечение обводненных нефтепродуктов, которые относятся к трудно утилизируемым отходам. В изобретении предусмотрено отделение нефтепродуктов трехпродуктовым гидроциклоном 5 и их обезвоживание гидрофобно-коалесцирующим фильтром 17. В процессе опытов по очистке воды (Пример 3 и 4) отбирали пробы нефтепродуктов, извлеченных по прототипу и по изобретению, определяли обводненность нефтепродуктов. Результаты приведены в таблице 5.
Figure 00000005
Из таблицы 5 следует, что по изобретению отделяются нефтепродукты с влажностью порядка 2-3%, что позволяет их утилизировать как печное топливо без дополнительной подготовки, по прототипу требуется применить дополнительное сооружение для обезвоживания нефтепродуктов.

Claims (1)

  1. Способ очистки поверхностных вод от взвешенных веществ, нефтепродуктов, тяжелых металлов, включающий подачу вод на очистку транспортирующими лотками, очистку от грубых твердых веществ, укрупнение эмульгированных частиц нефтепродуктов фильтрованием в коалесцирующей загрузке, извлечение тяжелых металлов фильтрованием в геохимических барьерах, глубокую очистку за счет использования естественных механизмов самоочищения в биопрудах с высшей водной растительностью и доочистку от нефтепродуктов фильтрованием в сорбенте, размещенном в электрическом поле, отличающийся тем, что очистку от твердых веществ и нефтепродуктов производят в центробежном поле трехпродуктового гидроциклона, извлеченную водонефтяную эмульсию последовательно фильтруют в коалесцирующей загрузке и в углеводородном слое гидрофобно-коалесцирующего фильтра, отделяют углеводороды и направляют их в накопитель, а очищенную воду возвращают в общий поток, смешивают и подают на очистку фильтрованием в геохимические барьеры с минеральной зернистой загрузкой из силицированного кальцита фракции 5-20 мм, находящейся в электрическом поле, созданном электрохимическими источниками тока, образованными электроотрицательными электродами из алюминия и электроположительными электродами из меди, причем геохимические барьеры размещены в транспортирующих лотках в виде отдельных секций, расположенных последовательно, после которых воду подают в накопитель-усреднитель и на биологическую очистку в секционный биопруд с высшей водной растительностью, воду аэрируют за счет излива, очищают от растворенных нефтепродуктов фильтрованием в гранулированном сорбенте из активированного угля АГ-3, находящемся в электрическом поле, созданном электроотрицательным электродом из алюминия и электроположительным электродом из меди, и подают в инфильтрационные пруды для пополнения запасов подземных вод.
RU2018103005A 2018-01-25 2018-01-25 Способ очистки поверхностных вод от взвешенных веществ, нефтепродуктов, тяжелых металлов, органических веществ RU2701833C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018103005A RU2701833C2 (ru) 2018-01-25 2018-01-25 Способ очистки поверхностных вод от взвешенных веществ, нефтепродуктов, тяжелых металлов, органических веществ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018103005A RU2701833C2 (ru) 2018-01-25 2018-01-25 Способ очистки поверхностных вод от взвешенных веществ, нефтепродуктов, тяжелых металлов, органических веществ

Publications (3)

Publication Number Publication Date
RU2018103005A RU2018103005A (ru) 2019-07-25
RU2018103005A3 RU2018103005A3 (ru) 2019-07-25
RU2701833C2 true RU2701833C2 (ru) 2019-10-01

Family

ID=67513095

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018103005A RU2701833C2 (ru) 2018-01-25 2018-01-25 Способ очистки поверхностных вод от взвешенных веществ, нефтепродуктов, тяжелых металлов, органических веществ

Country Status (1)

Country Link
RU (1) RU2701833C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712692C1 (ru) * 2019-08-12 2020-01-30 Максим Владимирович Назаров Способ очистки грунтовых вод от тяжелых металлов и нефтепродуктов

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849198A (en) * 1997-08-09 1998-12-15 Sharpless; Robert Grate suspended storm drain filter with oil absorbing media
RU2156740C1 (ru) * 1999-01-05 2000-09-27 НПФ "Экотех" Способ очистки нефтесодержащих сточных вод
RU2264993C1 (ru) * 2004-04-27 2005-11-27 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный нефтяной технический университет (ГОУ ВПО УГНТУ) Способ очистки нефтесодержащих сточных вод
KR100848042B1 (ko) * 2007-02-14 2008-07-23 한국과학기술연구원 초기 강우 유출수 처리장치 및 이를 이용한 초기 강우유출수 처리방법
RU88012U1 (ru) * 2009-05-20 2009-10-27 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Комплексное сооружение для биологической очистки сточных вод
RU95657U1 (ru) * 2010-01-25 2010-07-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Сооружение для очистки нефтесодержащих вод
US9663936B2 (en) * 2011-09-15 2017-05-30 Storm Drain Technologies, Llc Apparatus, methods, and system for treatment of stormwater and waste fluids

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849198A (en) * 1997-08-09 1998-12-15 Sharpless; Robert Grate suspended storm drain filter with oil absorbing media
RU2156740C1 (ru) * 1999-01-05 2000-09-27 НПФ "Экотех" Способ очистки нефтесодержащих сточных вод
RU2264993C1 (ru) * 2004-04-27 2005-11-27 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный нефтяной технический университет (ГОУ ВПО УГНТУ) Способ очистки нефтесодержащих сточных вод
KR100848042B1 (ko) * 2007-02-14 2008-07-23 한국과학기술연구원 초기 강우 유출수 처리장치 및 이를 이용한 초기 강우유출수 처리방법
RU88012U1 (ru) * 2009-05-20 2009-10-27 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Комплексное сооружение для биологической очистки сточных вод
RU95657U1 (ru) * 2010-01-25 2010-07-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Сооружение для очистки нефтесодержащих вод
US9663936B2 (en) * 2011-09-15 2017-05-30 Storm Drain Technologies, Llc Apparatus, methods, and system for treatment of stormwater and waste fluids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712692C1 (ru) * 2019-08-12 2020-01-30 Максим Владимирович Назаров Способ очистки грунтовых вод от тяжелых металлов и нефтепродуктов

Also Published As

Publication number Publication date
RU2018103005A (ru) 2019-07-25
RU2018103005A3 (ru) 2019-07-25

Similar Documents

Publication Publication Date Title
US7820053B2 (en) Magnetic separation and seeding to improve ballasted clarification of water
KR100634464B1 (ko) 초기 강우 정화처리 장치
US11261595B2 (en) Hydrodynamic separator for stormwater treatment
KR100905693B1 (ko) 초기 우수 처리 장치
KR100904177B1 (ko) 초기우수에 의한 오염을 정화시키는 장치 및 방법
KR100987316B1 (ko) 유수분리 및 상향여과 복합방식의 비점 오염물질 처리장치 및 정화 방법
KR100605267B1 (ko) 우수처리장치
KR100897258B1 (ko) 우수에 포함된 비점오염물 처리 장치
KR100752787B1 (ko) 초기우수 처리시설
US5228983A (en) Particle separator
KR100621193B1 (ko) 오염수정화장치 및 오염수정화장치의 오염수정화방법
RU2701833C2 (ru) Способ очистки поверхностных вод от взвешенных веществ, нефтепродуктов, тяжелых металлов, органических веществ
KR100981290B1 (ko) 비점오염원 처리시스템 및 이를 이용한 비점오염원처리방법
KR101239227B1 (ko) 비점오염 저감장치
RU2489362C2 (ru) Устройство для очистки ливнесточных вод
CN209226779U (zh) 一种处理炼油废水的复合人工湿地结构
KR100964596B1 (ko) 다층여재형 우수 정화처리 장치
KR200378313Y1 (ko) 도로 배수 시설에서의 오염물질 처리 장치
KR101106390B1 (ko) 볼텍스 트랩 장치
KR100869158B1 (ko) 초기 우수의 비점오염물 정화장치 및 그 방법
RU2264993C1 (ru) Способ очистки нефтесодержащих сточных вод
JP2020505228A (ja) パッシブ重力フィルタセル及びその使用方法
KR101532191B1 (ko) 비점오염저감을 위한 역세척 기능이 가능한 여과블록 시스템 및 그의 시공방법
RU82211U1 (ru) Установка очистки ливневых стоков "дамба"
KR101069776B1 (ko) 원통형상 나선형체 부유 초고분자 폴리에틸렌 필터

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200126