RU2701253C1 - Способ и устройство для бурения нефтегазовых скважин - Google Patents
Способ и устройство для бурения нефтегазовых скважин Download PDFInfo
- Publication number
- RU2701253C1 RU2701253C1 RU2019104476A RU2019104476A RU2701253C1 RU 2701253 C1 RU2701253 C1 RU 2701253C1 RU 2019104476 A RU2019104476 A RU 2019104476A RU 2019104476 A RU2019104476 A RU 2019104476A RU 2701253 C1 RU2701253 C1 RU 2701253C1
- Authority
- RU
- Russia
- Prior art keywords
- drill
- laser
- lens
- drilling
- gas wells
- Prior art date
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000001816 cooling Methods 0.000 claims abstract description 32
- 239000013307 optical fiber Substances 0.000 claims abstract description 19
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 238000005086 pumping Methods 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 9
- 238000005755 formation reaction Methods 0.000 description 7
- 238000011065 in-situ storage Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000007792 gaseous phase Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 206010039509 Scab Diseases 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- -1 shale Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/14—Drilling by use of heat, e.g. flame drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/14—Drilling by use of heat, e.g. flame drilling
- E21B7/15—Drilling by use of heat, e.g. flame drilling of electrically generated heat
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Laser Beam Processing (AREA)
- Earth Drilling (AREA)
Abstract
Группа изобретений относится к нефтегазодобывающей промышленности и предназначена для бурения скважин. Для осуществления способа спускают на средстве спуска лазерный бур в скважину по колонне бурильных труб. На лазерную головку подают импульсы лазерного луча от блока накачки. Бурение осуществляют дискретно после установки в колонну бурильных труб очередной бурильной трубы. В качестве средства спуска лазерного бура применяют колтюбинг. После выполнения очередного этапа бурения охлаждают забой, лазерную головку и колонну бурильных труб. Устанавливают следующую бурильную трубу и спускают колонну бурильных труб на длину установленной бурильной трубы. При этом устройство бурения нефтегазовых скважин содержит средство спуска лазерного бура в скважину в район продуктивного пласта. Лазерный бур содержит лазерную головку с объективом. Внутри колтюбинга с зазором проложено оптическое волокно. Блок накачки выполнен на поверхности. Лазерная головка и объектив выполнены охлаждаемыми за счет применения системы внутреннего охлаждения, системы защиты объектива и завесного охлаждения корпуса лазерного бура. Достигается технических результат – повышение мощности и надежности устройства. 2 н. и 6 з.п. ф-лы, 8 ил.
Description
Группа изобретений относится к нефтегазодобывающей промышленности, конкретно - к средствам бурения скважин.
Известен способ увеличения степени извлечения нефти или других ископаемых жидкостей из нефтяных пластов в земле или на море (SU, патент РФ 1838594 A3, кл. Е21В, 43/24, 43/25, 1993, Бюл. №32). В качестве устройства передачи энергии для последующего воздействия на нефтяной пласт используются электроды в двух соседних скважинах и ртуть, которой скважины предварительно заполняются до уровня залегания нефтяного пласта. Затем в нефтяном пласте создаются вибрации с помощью вибраторов с частотой, наиболее близкой к резонансной частоте пласта. Для этого производят вибрирование ртути с помощью вставленных в нее вибраторов и одновременно осуществляют электрическую стимуляцию процесса вибрации посредством приложения переменного электрического напряжения к электродам, расположенным в соседних скважинах. Резонансные вибрации в указанном месторождении будут распространяться наружу и выталкивать нефть из месторождения. Энергия вибраций будет также создавать тепло в месторождении в виде тепла трения между месторождением и находящейся в нем нефтью, и это будет создавать увеличение давления за счет испарения некоторой части нефти и воды.
К недостаткам данного способа можно отнести следующие:
- использование ртути в качестве жидких электродов очень опасно из-за ядовитых испарений и экологического загрязнения окружающей среды и подземных вод;
- необходимы большие площади соприкосновения вибрирующих поверхностей с нефтяным пластом, чтобы резонансные вибрации в месторождении распространялись наружу и выталкивали нефть и очень большие расходы энергии, что потребует больших финансовых затрат;
- эффективность извлечения нефти из месторождения данным способом будет незначительной.
Известен также способ увеличения извлечения нефти, газа и других полезных ископаемых из земных недр, вскрытия и контроля пластов месторождений (RU, патент 2104393 С1, МПК Е21В 43 24, 43/25, опубл. 1998.), Согласно этому изобретению на заданных участках скважин вскрывают продуктивные пласты путем разрезки или перфорирования материала обсадных колонн скважин мощным лазерным излучением с дальнейшим испарением через эти прорези твердых и жидких фаз веществ, входящих в состав пластов и вмещающих их горных пород, в качестве устройства для передачи энергии используют оптоволоконные кабели с рабочими головками на их концевых частях, излучающих световую энергию, подключают к оптическим волокнам (световодам) оптоволоконных кабелей мощные лазеры на поверхности и создают в пластах области с заданной высокой температурой и высоким внутрипластовым давлением для увеличения степени извлечения нефти и газа и перемещают эти области во внутрипластовых пространствах путем перемещения излучающих концевых частей оптоволоконных кабелей с рабочими головками по скважинам, процесс обработки пластов месторождений мощным лазерным излучением повторяют многократно через необходимые временные интервалы с одновременным излучением в нескольких взаимно смещенных на определенный угол по отношению к друг другу секторах с расхождением лучей в каждом секторе на определенный угол, одновременно осуществляют по специальным оптоволокнам бесконтактный и дистанционный контроль создаваемых в пластах значений температур, давлений, размеров и форм образованных в пластах и породах полостей, их смыкание, получают информацию о составе испаряемых веществ пластов и пород.
К недостаткам способа можно отнести следующие:
- невозможно осуществлять комплексную разработку месторождений и использовать мощное лазерное излучение не только для обработки внутрипластовых пространств и увеличения добычи нефти и газа, но и бурить с его использованием скважины с поверхности, вскрывающие нефтегазовые, сланцевые, угольные и другие пласты с полезными ископаемыми;
- низкая эффективность и производительность обработок внутрипластовых пространств мощным лазерным излучением и повышения внутрипластовых давлений и температур через отверстия перфорации и прорези в обсадных металлических трубах, которыми закреплены добывающие скважины, из-за небольших площадей обработки излучением внутрипластовых пространств;
- невозможность существенного расширения диаметров закрепленных трубами скважин во внутрипластовых пространствах для увеличения площадей притоков и улучшения фильтрации из пластов нефти и газов в скважины;
- повышаются затраты на добычу нефти и газов, сопровождающиеся значительными потерями времени для введения скважин в работу по добыче, в связи с необходимостью привлечения других вспомогательных способов для раскачки скважин и очистки призабойных пространств пластов от глубоко проникших буровых и цементных растворов с образованием непроницаемых корок в пластах после бурения скважин с использованием обсадных труб.
Известны способ и устройство для бурения скважин по патенту РФ на изобретение №2509882, МПК Е21В 47/00, опубл. 20.03.2014 г., прототип способа и устройства..
Этот способ включает спуск на средстве спуска в скважину по колоне бурильных труб, состоящую из бурильных труб лазерной головки с объективом и подачу на нее импульсов лазерного луча от блока накачки, расположенного на поверхности
Это устройство содержит средство спуска в скважину в район продуктивного пласта лазерного бура с лазерным излучателем и с объективом
Недостатки этих способа и устройства низкая надежность из-за недостаточно эффективной системы охлаждения лазерного излучателя и объектива и малая мощность лазерного излучателя.
Задачи создания группы изобретений: повышение мощности устройства и повышение надежности устройства за счет эффективного его охлаждения,
Достигнутые технические результаты:
- повышение мощности устройства,
- повышение надежности устройства,
Решение указанных задач достигнуто в способе бурения нефтегазовых скважин, включающем спуск на средстве спуска лазерного бура в скважину по колоне бурильных труб, состоящей из бурильных труб, лазерной головки с объективом и подачу на нее импульсов лазерного луча от блока накачки, расположенного на поверхности, тем, что бурение осуществляют дискретно после установки в колонну бурильных труб очередной бурильной трубы, в качестве средства спуска лазерного бура применен колтюбинг, внутри которого с зазором проложено оптическое волокно, объектив выполнен охлаждаемыми за счет применения систем внутреннего и внешнего охлаждения, после выполнения очередного этапа бурения охлаждают забой, лазерную головку и колонну бурильных труб и устанавливают следующую бурильную трубу и спускают колонну бурильных труб на длину установленной бурильной трубы.
Решение указанных задач достигнуто в устройстве бурения нефтегазовых скважин, содержащем средство спуска лазерного бура в скважину в район продуктивного пласта содержащего лазерную головку с объективом, тем, что в качестве средства спуска лазерного бура применен колтюбинг, внутри которого с зазором проложено оптическое волокно, а блок накачки выполнен на поверхности, при этом лазерная головка и объектив выполнены охлаждаемыми за счет применения системы внутреннего охлаждения, системы защиты объектива и завесного охлаждения корпуса лазерного бура.
Система внутреннего охлаждения может быть выполнена в виде насоса, установленного на поверхности, выход из которого напорным трубопроводом соединен через первый клапан с кольцевым зазором между колтюбином и оптическим волокном и вторым - с внутренней полостью колонны бурильных труб, при этом внутренняя полость колонны бурильных труб через второй клапан соединена с приемной емкостью.
Система защиты объектива может содержать торцовой кольцевой щит, установленный с зазором на нижнем торце корпуса концентрично объективу, отверстия охлаждения в корпусе выходят в зазор охлаждения торца.
Система завесного охлаждения корпуса лазерного бура может содержать кольцевой щит, отверстия завесы в корпусе и зазор между корпусом и кольцевым щитом.
Отверстия завесы могут быть выполнены радиальными.
Отверстия завесы могут быть выполнены тангенциально.
Отверстия завесы могут быть выполнены под углом к оси лазерного бура.
Сущность изобретения поясняется на чертежах фиг. 1-8, где:
- на фиг. 1 приведена схема бурения лазером,
- на фиг. 2 приведен лазерный бур,
- на фиг. 3 приведен вид А на фиг. 2,
- на фиг. 4 приведен основной вид системы завесного охлаждения корпуса лазерного бура, вид В,
- на фиг. 5 приведен вид С, первый вариант,
- на фиг. 6 приведен вид С, второй вариант,
- на фиг. 7 приведен основной вид схемы защиты объектива,
- на фиг. 8 приведен вид С, третий вариант.
Обозначения, принятые в описании:
скважина 1,
колонна бурильных труб 2,
поверхность 3,
грунт 4,
забой 5,
бурильная труба 6.
муфта 7,
район продуктивного пласта 8,
внутренняя полость 9,
лазерный бур 10,
корпус 11,
центратор 12,
полость 13,
лазерная головка 14,
объектив 15,
средство спуска лазерного бура 16,
колтюбинг 17,
оптическое волокно 18,
кольцевой зазор 19.
катушка 20,
блок накачки 21,
измеритель длины колтюбинга 22,
первый напорный трубопровод 23,
первый клапан 24,
насос 25,
внешний кольцевой зазор 26,
второй напорный трубопровод 27,
второй клапан 28,
отводящий трубопровод 29,
отсечной клапан 30,
приемная емкость 31,
трубопровод сброса газообразной фазы 32,
блок управления 33,
электрические провода 34,
электрические связи 35,
нижний торец 36,
верхний торец 37,
патрубок 38,
уплотнительный узел 39,
нижний кольцевой щит 40,
зазор охлаждения 41,
отверстия для охлаждения 42,
кольцевой щит 43,
отверстия завесы 44,
зазор 45,
сварочный шов 46.
Предложенное устройство (фиг. 1) предназначено для бурения скважины 1. Оно содержит колонну бурильных труб (КБТ) 2, проходящую внутри скважины 1 между поверхностью 3 грунта 4 и забоем 5. Колонна бурильных труб 2 состоит из бурильных труб 6, соединенных муфтами 7. Скважина 1 может быть горизонтальной.
Задача создания предложенных устройства и способа: выполнить бурение до района продуктивного пласта 8.
Для этого во внутренней полости 9 колонны бурильных труб 2 установлен лазерный бур 10. Лазерный бур 10 содержит корпус 11 с центратором 12 и полостью 13, в которой установлен лазерный излучатель 14 с объективом 15. К лазерному буру 10 присоединено средство спуска лазерного бура 16 в скважину 1.
В качестве средства спуска лазерного бура 16 применен колтюбинг 17 с оптическим волокном 18, проложенным внутри него с кольцевым зазором 19. Колтюбинг 17 предварительно намотан на катушку 20.
К оптическому волокну 18 на поверхности 3 присоединен блок накачки 21.
На колтюбинге 17 установлен измеритель длины колтюбинга 22. К зазору 19 подсоединен первый напорный трубопровод 23 с первым клапаном 24, другой конец которого соединен с выходом из насоса 25. Привод насоса не показан.
К внешнему кольцевому зазору 26 (между колонной бурильных труб 2 и колтюбингом 17) присоединен выход второго напорного трубопровода 27 с вторым клапаном 28.
Также к внешнему кольцевому зазору 26 присоединен вход отводящего трубопровода 29, содержащий отсечной капан 30, выход которого соединен с приемной емкостью 31. К приемной емкости 31 присоединен трубопровод сброса газообразной фазы 32.
Устройство оборудовано блоком управления 33, к которому присоединены электрические провода 34 и линии связи 35. Электрические провода 34 присоединены и к блоку накачки 21.
Более детально конструкция лазерного бура 10 приведена на фиг. 2.
Лазерный бур 10 (фиг. 2) содержит корпус 11 с центратором 12. Внутри выполнена полость 13. На нижнем торце выполнен лазерный излучатель 14 с объективом 15. Объектив 15 выполнен на нижнем торце 36 корпуса 11.
Корпус 11 имеет верхний торец 37.
К верхнему торцу 37 присоединен патрубок 38, к которому присоединено средство спуска лазерного бура 16 в скважину 1. Средство спуска лазерного бура 16 содержит уплотнительный узел 39, который может быть выполнен в виде конусной гайки и предназначен для фиксации и уплотнения колтюбинга 18 в корпусе 11.
Для защиты от перегрева лазерной головки 14 предусмотрено три системы охлаждения: система внутреннего охлаждения, система завесного охлаждения корпуса 11 и система защиты объектива 15.
Система защиты объектива 15 содержит нижний кольцевой щит 40, установленный около нижнего торца 36 корпуса 11 концентрично объективу 15 и с зазором 41. Радиальные отверстия 42 в корпусе 11 выходят в зазор охлаждения 41 для подачи охлаждающей воды для защиты объектива 15 от перегрева и от брызг расплавленного грунта.
На фиг. 3…6 и 8 приведена конструкция завесного охлаждения корпуса 11 лазерного бура 10. Система завесного охлаждения корпуса 11 содержит кольцевой щит 43, отверстия завесы 44 в корпусе 11 и зазор 45 между корпусом 11 и кольцевым щитом 43, прикрепленным к корпусу 11 сварочным швом 46 (фиг. 4).
Устройство работает следующим образом
На буровую привозят комплект оборудования (фиг. 1) в том числе лазерный бур 10, катушку 20 с колтюбингом 17 и с оптическим волокном 18. Подсоединяют средство спуска лазерного бура 16 в скважину 1 к лазерному буру 10. Опускают лазерный бур 10 до района продуктивного пласта 8.
Включают насос 25 и воду по первому напорному трубопроводу 23 через первый клапан 24 подают кольцевой зазор 19 между колтюбингом 17 и оптическим волокном 18. Далее воду подают в полость 13 корпуса 11 лазерного бура 10 (фиг. 2). Из полости 13 вода выходит через радиальные отверстия 42 в зазор охлаждения 41 под нижним кольцевым щитом (щитами) 40, образуя завесу охлаждения для защиты объектива 15 (фиг. 2 и 3). Таким образом, вода охлаждает оптическое волокно 18, лазерную головку 14 и объектив 15.
Лазерное излучение генерирует блок накачки 21, от которого луч лазера передается по оптическому волокну 18 к лазерному излучателю 14. Лазерный луч прорезает отверстия в грунте 4 в области забоя 5 (фиг. 1). При этом испарившаяся вода, которая используется для охлаждения объектива 15 по забою 5 выходит по отводящему трубопроводу 29, имеющему отсечной клапан 30, в приемную емкость 31. Газообразная фаза отводится через трубопровод сброса газообразной фазы 32 в атмосферу.
После того, как только измеритель длины колтюбинга 22 покажет, что лазерный бур 10 опустился на расстояние, соответствующее длине одной бурильной трубы 6 отключают блок накачки 21 и прекращают подачу лазерного луча по оптическому волокну 18 к лазерному буру 10.
Потом открывают второй клапан 28 и воду подают в скважину 1 снаружи колонны бурильных труб 2. Образовавшийся пар выходит по отводящему трубопроводу 29 через открытый отсечной клапан 30 и через трубопровод сброса газообразной фазы 32 в атмосферу. Когда приемная емкость 31 начнет заполняться жидкой фракцией процесс охлаждения забоя 5 прекращают и закрывают сначала второй клапан 28, потом отсечной клапан 30.
Вынимают лазерный бур 10 на поверхность 3. При необходимости делают его профилактику. К колонне бурильных труб 2 присоединяют очередную бурильную трубу 6 и всю колонну бурильных труб 2 опускают на длину одной бурильной трубы 6.
Цикл бурения лучом лазера повторяют, при этом глубина пробуренной скважины увеличивается на длину бурильной трубы 6.
Расположение блока накачки 21 на поверхности 3 (фиг. 1) позволит сделать его любой мощности, которую может передать оптическое волокно 18.
Применение трех систем охлаждение и периодическая профилактика лазерного бура после каждого «рейса» повысит надежность устройства лазерного бурения.
Применение группы изобретений позволило:
- повысить мощность устройства за счет расположения блока накачки на поверхности,
- повысить надежность устройства за счет снижения рабочих температур всех систем и узлов устройства путем применения трех систем охлаждения и периодической профилактики оборудования.
Claims (8)
1. Способ бурения нефтегазовых скважин, включающий спуск на средстве спуска лазерного бура в скважину по колоне бурильных труб, состоящей из бурильных труб, лазерной головки с объективом и подачу на нее импульсов лазерного луча от блока накачки, расположенного на поверхности, отличающийся тем, что бурение осуществляют дискретно после установки в колонну бурильных труб очередной бурильной трубы, в качестве средства спуска лазерного бура применен колтюбинг, внутри которого с зазором проложено оптическое волокно, объектив выполнен охлаждаемыми за счет применения систем внутреннего и внешнего охлаждения, после выполнения очередного этапа бурения охлаждают забой, лазерную головку и колонну бурильных труб и устанавливают следующую бурильную трубу и спускают колонну бурильных труб на длину установленной бурильной трубы.
2. Устройство бурения нефтегазовых скважин, содержащее средство спуска лазерного бура в скважину в район продуктивного пласта, содержащего лазерную головку с объективом, отличающееся тем, что в качестве средства спуска лазерного бура применен колтюбинг, внутри которого с зазором проложено оптическое волокно, а блок накачки выполнен на поверхности, при этом лазерная головка и объектив выполнены охлаждаемыми за счет применения системы внутреннего охлаждения, системы защиты объектива и завесного охлаждения корпуса лазерного бура.
3. Устройство бурения нефтегазовых скважин по п. 2, отличающееся тем, что система внутреннего охлаждения выполнена в виде насоса, установленного на поверхности, выход из которого напорным трубопроводом соединен через первый клапан с кольцевым зазором между колтюбином и оптическим волокном и вторым - с внутренней полостью колонны бурильных труб, при этом внутренняя полость колонны бурильных труб через второй клапан соединена с приемной емкостью.
4. Устройство бурения нефтегазовых скважин по п. 3, отличающееся тем, что система защиты объектива содержит торцовой кольцевой щит, установленный с зазором на нижнем торце корпуса концентрично объективу, отверстия охлаждения в корпусе выходят в зазор охлаждения торца.
5. Устройство бурения нефтегазовых скважин по п. 3, отличающееся тем, что система завесного охлаждения корпуса лазерного бура содержит кольцевой щит, отверстия завесы в корпусе и зазор между корпусом и кольцевым щитом.
6. Устройство бурения нефтегазовых скважин по п. 5, отличающееся тем, что отверстия завесы выполнены радиальными.
7. Устройство бурения нефтегазовых скважин по п. 5, отличающееся тем, что отверстия завесы выполнены тангенциально.
8. Устройство бурения нефтегазовых скважин по п. 5, отличающееся тем, что отверстия завесы выполнены под углом к оси лазерного бура.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019104476A RU2701253C1 (ru) | 2019-02-18 | 2019-02-18 | Способ и устройство для бурения нефтегазовых скважин |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019104476A RU2701253C1 (ru) | 2019-02-18 | 2019-02-18 | Способ и устройство для бурения нефтегазовых скважин |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2701253C1 true RU2701253C1 (ru) | 2019-09-25 |
Family
ID=68063176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019104476A RU2701253C1 (ru) | 2019-02-18 | 2019-02-18 | Способ и устройство для бурения нефтегазовых скважин |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2701253C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110905413A (zh) * | 2019-12-11 | 2020-03-24 | 西南石油大学 | 一种泥浆钻井环境下的激光-机械联合破岩系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2104393C1 (ru) * | 1996-06-27 | 1998-02-10 | Александр Петрович Линецкий | Способ увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр, вскрытия и контроля пластов месторождений |
RU2509882C1 (ru) * | 2012-09-04 | 2014-03-20 | Александр Петрович Линецкий | Способ разработки месторождений нефтей и газов с использованием мощного лазерного излучения для их наиболее полного извлечения |
RU2522016C2 (ru) * | 2008-08-20 | 2014-07-10 | Форо Энерджи Инк. | Способ и система для проходки ствола скважины с использованием лазера большой мощности |
RU2523901C1 (ru) * | 2013-03-04 | 2014-07-27 | Общество с ограниченной ответственностью "Научно-производственное предприятие Волоконно-Оптического и Лазерного Оборудования" | Устройство лазерно-механического бурения кремнеземсодержащих материалов |
US9677338B2 (en) * | 2010-07-08 | 2017-06-13 | Faculdades Católicas, Associacão Sem Fins Lucrativos, Mantenedora Da Pontifícia Universidade Católica Do Rio De Janeiro-Puc-Rio | Device for laser drilling |
-
2019
- 2019-02-18 RU RU2019104476A patent/RU2701253C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2104393C1 (ru) * | 1996-06-27 | 1998-02-10 | Александр Петрович Линецкий | Способ увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр, вскрытия и контроля пластов месторождений |
RU2522016C2 (ru) * | 2008-08-20 | 2014-07-10 | Форо Энерджи Инк. | Способ и система для проходки ствола скважины с использованием лазера большой мощности |
US9284783B1 (en) * | 2008-08-20 | 2016-03-15 | Foro Energy, Inc. | High power laser energy distribution patterns, apparatus and methods for creating wells |
US9677338B2 (en) * | 2010-07-08 | 2017-06-13 | Faculdades Católicas, Associacão Sem Fins Lucrativos, Mantenedora Da Pontifícia Universidade Católica Do Rio De Janeiro-Puc-Rio | Device for laser drilling |
RU2509882C1 (ru) * | 2012-09-04 | 2014-03-20 | Александр Петрович Линецкий | Способ разработки месторождений нефтей и газов с использованием мощного лазерного излучения для их наиболее полного извлечения |
RU2523901C1 (ru) * | 2013-03-04 | 2014-07-27 | Общество с ограниченной ответственностью "Научно-производственное предприятие Волоконно-Оптического и Лазерного Оборудования" | Устройство лазерно-механического бурения кремнеземсодержащих материалов |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110905413A (zh) * | 2019-12-11 | 2020-03-24 | 西南石油大学 | 一种泥浆钻井环境下的激光-机械联合破岩系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240263523A1 (en) | High power laser perforating and laser fracturing tools and methods of use | |
US20200232309A1 (en) | High power laser hydraulic fracturing, stimulation, tools systems and methods | |
JP3506696B1 (ja) | 地下賦存炭化水素ガス資源収集装置および収集方法 | |
US6851488B2 (en) | Laser liner creation apparatus and method | |
EP3227518B1 (en) | High power laser-fluid guided beam for open hole oriented fracturing | |
US9677339B2 (en) | Method for developing oil and gas fields using high-power laser radiation for more complete oil and gas extraction | |
CA3016225C (en) | Device and method for perforation of a downhole formation | |
US6880646B2 (en) | Laser wellbore completion apparatus and method | |
RU2104393C1 (ru) | Способ увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр, вскрытия и контроля пластов месторождений | |
US20140246191A1 (en) | System and method for increasing production capacity of oil, gas and water wells | |
US20040256103A1 (en) | Fiber optics laser perforation tool | |
US9903171B2 (en) | Method for developing oil and gas fields using high-power laser radiation for more complete oil and gas extraction | |
US7063144B2 (en) | Acoustic well recovery method and device | |
RU2701253C1 (ru) | Способ и устройство для бурения нефтегазовых скважин | |
RU2312980C1 (ru) | Способ повышения нефтеотдачи и устройство для его осуществления | |
CA2963459A1 (en) | The method of thermal reservoir stimulation | |
US20190242206A1 (en) | Method and Apparatus for Completing Wells | |
US11767738B1 (en) | Use of pressure wave resonators in downhole operations | |
EA040106B1 (ru) | Устройство и способ для перфорирования скважинной формации |