RU2701209C1 - Способ получения последовательности идентичных фемтосекундных импульсов - Google Patents

Способ получения последовательности идентичных фемтосекундных импульсов Download PDF

Info

Publication number
RU2701209C1
RU2701209C1 RU2019103852A RU2019103852A RU2701209C1 RU 2701209 C1 RU2701209 C1 RU 2701209C1 RU 2019103852 A RU2019103852 A RU 2019103852A RU 2019103852 A RU2019103852 A RU 2019103852A RU 2701209 C1 RU2701209 C1 RU 2701209C1
Authority
RU
Russia
Prior art keywords
frequency
synthesizer
femtosecond laser
signal
phase
Prior art date
Application number
RU2019103852A
Other languages
English (en)
Inventor
Александр Капитонович Дмитриев
Надежда Ивановна Дмитриева
Николай Николаевич Головин
Евгений Васильевич Бакланов
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет"
Priority to RU2019103852A priority Critical patent/RU2701209C1/ru
Application granted granted Critical
Publication of RU2701209C1 publication Critical patent/RU2701209C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10053Phase control

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

Изобретение относится к области лазерной техники и касается способа получения последовательности идентичных фемтосекундных импульсов. Способ включает в себя разделение излучения лазера на две части, одна из которых поступает на фотодетектор, где выделяется сигнал с частотой повторения импульсов, который смешивается с сигналом синтезатора опорной частоты повторения импульсов и поступает на блок фазовой привязки частоты повторения импульсов лазера. Вторая часть излучения поступает на f-2f-интерферометр, откуда сигнал на частоте сдвига гребенки подается на вход блока фазовой привязки частоты сдвига. Сигнал с выхода задающего синтезатора поступает на вход синтезатора опорной частоты модулятора интенсивности, выходной сигнал которого поступает через фазовращатель на управляемый генератор импульсов, формирующий управляющий сигнал модулятора интенсивности, на оптический вход которого подается излучение лазера. При этом модулятор интенсивности проходит каждый k-й импульс, у которых разность фаз между огибающей и несущей будет постоянной. Технический результат заключается в получении последовательности идентичных импульсов с возможностью селекции заданной разности фаз между несущей и огибающей. 1 ил.

Description

Предлагаемое изобретение относится к области лазерной техники и может быть использовано для получения последовательности идентичных фемтосекундных импульсов с одинаковой разностью фаз между несущей и огибающей, что может быть использовано для повышения эффективности преобразования частоты в нелинейных оптических процессах, в частности, для получения аттосекундных импульсов.
Известен способ получения последовательности идентичных фемтосекундных импульсов (Holzwarth R., Udem Th.,
Figure 00000001
, Knight J.C., Wadsworth W.J., Russell P.St.J., Phys.Rev. Lett. 2000, 85, 2264), являющийся аналогом предлагаемого изобретения, при котором к низкочастотной моде фемтосекундного лазера привязывается частота лазера-гетеродина, вторая гармоника которого привязывается к высокочастотной моде фемтосекундного лазера.
Однако для реализации такой схемы необходимо, чтобы частота лазера-гетеродина лежала в низкочастотной области спектра излучения фемтосекундного лазера, а его вторая гармоника попадала в высокочастотную часть спектра.
Кроме того, известен способ получения последовательности идентичных фемтосекундных импульсов (David J. Jones, Scott A. Diddams, Jinendra K. Ranka, Andrew Stentz, Robert S. Windeler, John L. Hall, Steven T. Cundiff., Science, Vol. 288, pp. 635-639, 2000), являющийся прототипом предлагаемого изобретения и заключающийся в фазовой привязке к стандарту как частоты повторения импульсов ω, так и сдвига гребенки частот Δ, так что спектр излучения фемтосекундного лазера представляет набор частот:
Figure 00000002
где m - целые положительные числа.
Устройство, реализующее описанный в прототипе способ получения стабильной последовательности фемтосекундных импульсов, содержит фемтосекундный лазер, задающий синтезатор, микроструктурированное оптическое волокно, синтезатор опорной частоты повторения импульсов фемтосекундного лазера, фотодетектор, блок фазовой привязки частоты повторения импульсов фемтосекундного лазера, делительные зеркала, дихроичное зеркало, f-2f-интерферометр, акустооптический модулятор, блок фазовой привязки сдвига частотной гребенки излучения фемтосекундного лазера. Излучение фемтосекундного лазера делится зеркалом на две части. Одна часть поступает на фотодетектор, где выделяется сигнал с частотой повторения импульсов ω. Этот сигнал смешивается с сигналом синтезатора опорной частоты повторения импульсов фемтосекундного лазера, стабилизированного по задающему синтезатору, и поступает на блок фазовой привязки частоты повторения импульсов фемтосекундного лазера. Вторая часть излучения вводится в микроструктурированное волокно для того чтобы уширить спектр излучения до ширины более чем октава. Далее излучение с уширенным спектром поступает на f-2f-интерферометр, в коротковолновое плечо которого включен акустооптический модулятор, работающий на частоте ƒАОМ=7/8ω. Выходной сигнал f-2f-интерферометра с частотой, равной ±(Δ-ƒАОМ) поступает на управляемый генератор блок фазовой привязки сдвига частотной гребенки излучения фемтосекундного лазера. Сигнал ошибки, генерируемый управляемым генератором имеет частоту, равную (m/16)ω (m - целое число), позволяет менять фазу несущей относительно огибающей фемтосекундных импульсов с шагом π/8.
Однако, в указанном способе реализуется режим генерации последовательности идентичных импульсов с произвольным значением разности фаз между огибающей и несущей.
Задачей (техническим результатом) предлагаемого изобретения является получение последовательности идентичных импульсов с возможностью селекции заданной разности фаз между несущей и огибающей.
Поставленная задача достигается тем, что излучение фемтосекундного лазера делится зеркалом на две части, одна из которых поступает на фотодетектор, где выделяется сигнал с частотой повторения импульсов ω, который смешивается с сигналом синтезатора опорной частоты повторения импульсов фемтосекундного лазера, стабилизированного по задающему синтезатору, и поступает на блок фазовой привязки частоты повторения импульсов фемтосекундного лазера, а вторая часть излучения вводится в микроструктурированное волокно, далее излучение поступает на f-2f-интерферометр, откуда выделяемый сигнал на частоте сдвига гребенки фемтосекундного лазера подается на один из входов блока фазовой привязки частоты сдвига, отличающемся тем, что в схему включены синтезатор опорной частоты модулятора интенсивности, фазовращатель, управляемый генератор импульсов и модулятор интенсивности, так что сигнал с одного из выходов задающего синтезатора поступает на вход синтезатора опорной частоты модулятора интенсивности, выходной сигнал которого поступает через фазовращатель на управляемый генератор импульсов, формирующий управляющий сигнал модулятора интенсивности, на оптический вход которого подается излучение фемтосекундного лазера, при этом частоты синтезаторов частоты повторения импульсов фемтосекундного лазера со, опорной частоты сдвига гребенки Δ и опорной частоты модулятора интенсивности F0 синхронизованы между собой, а сдвиг гребенки частот Δ и частота повторения импульсов фемтосекундного лазера ω связаны соотношением:
Figure 00000003
где k и q целые числа, а излучение фемтосекундного лазера проходит через модулятор интенсивности, частота которого задается управляемым генератором импульсов на частоте
Figure 00000004
так, что через модулятор интенсивности проходит каждый k-ый импульс, у которых разность фаз между огибающей и несущей будет постоянной, а сдвиг вновь созданной гребенки с частотой повторения F=F0 будет равен нулю, так что спектр излучения на выходе модулятора представляет набор частот
Figure 00000005
где р - целое положительное число, а из всех возможных последовательностей идентичных импульсов селектируются последовательности с дискретностью сдвига фазы несущей относительно огибающей, равной 2π/k.
На чертеже приведена функциональная схема устройства, реализующего предлагаемый способ.
Устройство содержит: 1 - фемтосекундный лазер; 2 - задающий синтезатор; 3 - синтезатор опорной частоты повторения импульсов фемтосекундного лазера ω0; 4 - синтезатор опорной частоты сдвига гребенки Δ0; 5 - синтезатор опорной частоты модулятора интенсивности F0; 6, 7 - делительные зеркала; 8 - ƒ-2ƒ-интерферометр; 9 - блок фазовой привязки сдвига частотной гребенки излучения фемтосекундного лазера; 10 - фотодетектор; 11 - блок фазовой привязки частоты повторения импульсов фемтосекундного лазера; 12 - фазовращатель; 13 - управляемый генератор импульсов, 14 - модулятор интенсивности и 15 - микроструктурированное волокно.
Фемтосекундный лазер 1 по оптическому каналу связан с делительным зеркалом 6, а кабельной связью - с блоком фазовой привязки сдвига частотной гребенки излучения фемтосекундного лазера 9 и блоком фазовой привязки частоты повторения импульсов фемтосекундного лазера 11; задающий синтезатор 2 имеет кабельную связь с синтезатором опорной частоты повторения импульсов фемтосекундного лазера 3, с синтезатором опорной частоты сдвига гребенки 4 и с синтезатором опорной частоты модулятора интенсивности 5; синтезатор опорной частоты повторения импульсов фемтосекундного лазера 3 имеет кабельную связь с задающим синтезатором 2 и блоком фазовой привязки частоты повторения импульсов фемтосекундного лазера 11 синтезатор опорной частоты сдвига гребенки 4 имеет кабельную связь с задающим синтезатором 2 и блоком фазовой привязки сдвига частотной гребенки излучения фемтосекундного лазера 9; синтезатор опорной частоты модулятора интенсивности 5 имеет кабельную связь с задающим синтезатором 2 и фазовращателем 12; делительное зеркало 6 по оптическому каналу связано с фемтосекундным лазером 1, с делительным зеркалом 7 и фотоприемником 10; делительное зеркало 7 по оптическому каналу связано с делительным зеркалом 6, с микроструктурированным волокном 15 и с модулятором интенсивности 14, микроструктурированное волокно по оптическому каналу связано с ƒ-2ƒ интерферометром, связанным кабельной связью с блоком фазовой привязки сдвига частотной гребенки излучения фемтосекундного лазера 9, который также имеет кабельную связь с фемтосекундным лазером 1 и с синтезатором опорной частоты сдвига гребенки 4; фотоприемник 10 по оптическому каналу связан с делительным зеркалом 6, а кабельной связью - с фемтосекундным лазером 1; блок фазовой привязки частоты повторения импульсов фемтосекундного лазера 11 имеет кабельную связь с фемтосекундным лазером 1, а также с синтезатором опорной частоты повторения импульсов фемтосекундного лазера 3 и с фотоприемником 10; фазовращатель 12 имеет кабельную связь с синтезатором опорной частоты модулятора интенсивности 5 и с управляемым генератором импульсов 13, который имеет кабельную связь с модулятором интенсивности 14, связанным по оптическому каналу с делительным зеркалом 7.
Способ осуществляется следующим образом. Излучение фемтосекундного лазера 1 поступает от делительного зеркала 6 на фотодетектор 10, где выделяется сигнал на частоте повторения импульсов со, который далее подается на блок фазовой привязки частоты 11, куда поступает также сигнал на частоте со0 от синтезатора 3, для которого в качестве опорной используется частота с задающего синтезатора 2. Блок фазовой привязки частоты 11 стабилизирует частоту повторения импульсов, так что ω=ω0. Излучение фемтосекундного лазера, прошедшее через делительное зеркало 6, падает на делительное зеркало 7, отражаясь от которого поступает на ƒ-2ƒ интерферометр 8, откуда выделяемый сигнал на частоте сдвига гребенки фемтосекундного лазера Δ подается на один из входов блока фазовой привязки частоты 9, а на другой вход поступает сигнал на частоте Δ0 от синтезатора частоты 4, опорный сигнал для которого поступает от задающего синтезатора 2. Таким образом, осуществляется фазовая привязка частотного сдвига Δ к частоте Δ0, так что Δ=Δ0.
Синтезатор 5 с опорной частотой, задаваемой с задающим синтезатором 2, вырабатывает сигнал на частоте F0, который удовлетворяет условиям, представленным в выражениях (1) и (2). Этот сигнал через фазовращатель 12 подается на управляемый генератор импульсов 13 и далее на модулятор интенсивности 14, излучение фемтосекундного лазера на который поступает через делительное зеркало 7. Фазовращатель 12 устанавливает сдвиг фазы несущей относительно огибающей, так что из всех возможных последовательностей идентичных импульсов можно селектировать различные последовательности с дискретностью сдвига фазы несущей относительно огибающей, равной 2π/k.
Техническим результатом предлагаемого изобретения является получение последовательности идентичных импульсов с возможностью селекции заданной разности фаз между несущей и огибающей.

Claims (7)

  1. Способ получения последовательности идентичных фемтосекундных импульсов, заключающийся в том, что излучение фемтосекундного лазера делится зеркалом на две части, одна из которых поступает на фотодетектор, где выделяется сигнал с частотой повторения импульсов ω, который смешивается с сигналом синтезатора опорной частоты повторения импульсов фемтосекундного лазера, стабилизированного по задающему синтезатору, и поступает на блок фазовой привязки частоты повторения импульсов фемтосекундного лазера, а вторая часть излучения вводится в микроструктурированное волокно, далее излучение поступает на f-2f-интерферометр, откуда выделяемый сигнал на частоте сдвига гребенки фемтосекундного лазера подается на один из входов блока фазовой привязки частоты сдвига, отличающийся тем, что в схему включены синтезатор опорной частоты модулятора интенсивности, фазовращатель, управляемый генератор импульсов и модулятор интенсивности, так что сигнал с одного из выходов задающего синтезатора поступает на вход синтезатора опорной частоты модулятора интенсивности, выходной сигнал которого поступает через фазовращатель на управляемый генератор импульсов, формирующий управляющий сигнал модулятора интенсивности, на оптический вход которого подается излучение фемтосекундного лазера, при этом частоты синтезаторов частоты повторения импульсов фемтосекундного лазера ω, опорной частоты сдвига гребенки Δ и опорной частоты модулятора интенсивности F0 синхронизованы между собой, а сдвиг гребенки частот Δ и частота повторения импульсов фемтосекундного лазера ω связаны соотношением:
  2. ω/Δ=k/q,
  3. где k и q - целые числа, а излучение фемтосекундного лазера проходит через модулятор интенсивности, частота которого задается управляемым генератором импульсов на частоте
  4. F0=ω/k
  5. так, что через модулятор интенсивности проходит каждый k-й импульс, у которых разность фаз между огибающей и несущей будет постоянной, а сдвиг вновь созданной гребенки с частотой повторения F=F0 будет равен нулю, так что спектр излучения на выходе модулятора представляет набор частот
  6. νp=pF0,
  7. где р - целое положительное число, а из всех возможных последовательностей идентичных импульсов селектируются последовательности с дискретностью сдвига фазы несущей относительно огибающей, равной 2π/k.
RU2019103852A 2019-02-12 2019-02-12 Способ получения последовательности идентичных фемтосекундных импульсов RU2701209C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019103852A RU2701209C1 (ru) 2019-02-12 2019-02-12 Способ получения последовательности идентичных фемтосекундных импульсов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019103852A RU2701209C1 (ru) 2019-02-12 2019-02-12 Способ получения последовательности идентичных фемтосекундных импульсов

Publications (1)

Publication Number Publication Date
RU2701209C1 true RU2701209C1 (ru) 2019-09-25

Family

ID=68063527

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019103852A RU2701209C1 (ru) 2019-02-12 2019-02-12 Способ получения последовательности идентичных фемтосекундных импульсов

Country Status (1)

Country Link
RU (1) RU2701209C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2760624C1 (ru) * 2020-12-07 2021-11-29 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» Способ получения последовательности идентичных фемтосекундных импульсов для излучения с произвольной шириной спектра

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155712A1 (en) * 2008-06-27 2009-12-30 Institut National D'optique Digital laser pulse shaping module and system
US8416819B2 (en) * 2008-12-02 2013-04-09 Femtolasers Produktions Gmbh Method and device for generating a self-referenced optical frequency comb

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155712A1 (en) * 2008-06-27 2009-12-30 Institut National D'optique Digital laser pulse shaping module and system
US8416819B2 (en) * 2008-12-02 2013-04-09 Femtolasers Produktions Gmbh Method and device for generating a self-referenced optical frequency comb

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
David J. Jones и др. "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis", SCIENCE, т. 288, вып. 5466, 2000 г., стр. 635-639. *
David J. Jones и др. "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis", SCIENCE, т. 288, вып. 5466, 2000 г., стр. 635-639. Е.В. Бакланов и др. "Фемтосекундный стандарт частоты с внешним высокодобротным интерферометром", ОПТИКА И СПЕКТРОСКОПИЯ, т. 121, No 6, 2016 г., стр. 1001-1004. *
Е.В. Бакланов и др. "Фемтосекундный стандарт частоты с внешним высокодобротным интерферометром", ОПТИКА И СПЕКТРОСКОПИЯ, т. 121, No 6, 2016 г., стр. 1001-1004. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2760624C1 (ru) * 2020-12-07 2021-11-29 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» Способ получения последовательности идентичных фемтосекундных импульсов для излучения с произвольной шириной спектра

Similar Documents

Publication Publication Date Title
Hänsch A proposed sub-femtosecond pulse synthesizer using separate phase-locked laser oscillators
TW567653B (en) Agile RF-lightwave waveform synthesis and an optical multi-tone amplitude modulator
US20180048113A1 (en) Systems and methods for low noise frequency multiplication, division, and synchronization
CN110168822B (zh) 具有载波包络偏移频率检测的光学频率梳发生器
US5574588A (en) Phase lock loop circuit using optical correlation detection
US6724788B1 (en) Method and device for generating radiation with stabilized frequency
US7123402B1 (en) Cloning optical-frequency comb sources
JP6714270B2 (ja) 光周波数コム発生装置
RU2701209C1 (ru) Способ получения последовательности идентичных фемтосекундных импульсов
JP2003167281A (ja) 光クロック位相同期ループ回路
US6285691B1 (en) Laser light generating method and apparatus
Plascak et al. Tunable broadband electro-optic comb generation using an optically filtered optoelectronic oscillator
JP6204255B2 (ja) 波長変換素子および光周波数コム発生装置
JP7061620B2 (ja) テラヘルツレーザー源及びテラヘルツ放射を放出するための方法
RU2760624C1 (ru) Способ получения последовательности идентичных фемтосекундных импульсов для излучения с произвольной шириной спектра
JP3803748B2 (ja) 光学的ミリ波あるいはサブミリ波の発生装置
JP5055791B2 (ja) 光パルス発生装置
Roiz et al. Efficient carrier-envelope phase tunable mid-infrared frequency combs based on CW-seeded optical parametric generation
Shirpurkar et al. Optical frequency division & pulse synchronization using a photonic-crystal microcomb injected chip-scale mode-locked laser
CN113206431B (zh) 基于光学频率重组上转换产生深紫外激光的装置
Chermoshentsev et al. Self-injection locking of two Fabry-Pérot laser diodes to a single integrated microresonator
Plascak et al. Electro-optic comb generation from noise with a photonically filtered optoelectronic oscillator
JP2019128399A (ja) 光周波数コム安定化装置
Golovin et al. Femtosecond Radiation Without a Shift of the Frequency Comb with a Fixed Carrier Envelope Offset Phase
Smetanin et al. Multiwavelength Generation of Stokes Radiation Components with a Small Wavelength Spacing under Stimulated Raman Scattering in a SrMoO4 Crystal