RU2698838C1 - Головная часть космической ракеты-носителя и способ выведения космических аппаратов - Google Patents

Головная часть космической ракеты-носителя и способ выведения космических аппаратов Download PDF

Info

Publication number
RU2698838C1
RU2698838C1 RU2018115078A RU2018115078A RU2698838C1 RU 2698838 C1 RU2698838 C1 RU 2698838C1 RU 2018115078 A RU2018115078 A RU 2018115078A RU 2018115078 A RU2018115078 A RU 2018115078A RU 2698838 C1 RU2698838 C1 RU 2698838C1
Authority
RU
Russia
Prior art keywords
spacecraft
module
modules
remote control
orbit
Prior art date
Application number
RU2018115078A
Other languages
English (en)
Inventor
Юрий Семенович Соломонов
Андрей Николаевич Смазнов
Александр Юрьевич Первов
Николай Николаевич Горбунов
Константин Викторович Навагин
Юрий Семенович Васильев
Александр Сергеевич Солодов
Антон Александрович Сычев
Владимир Афанасиевич Шанаев
Александр Викторович Фомичев
Original Assignee
Акционерное общество "Корпорация "Московский институт теплотехники" (АО "Корпорация "МИТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Корпорация "Московский институт теплотехники" (АО "Корпорация "МИТ") filed Critical Акционерное общество "Корпорация "Московский институт теплотехники" (АО "Корпорация "МИТ")
Priority to RU2018115078A priority Critical patent/RU2698838C1/ru
Application granted granted Critical
Publication of RU2698838C1 publication Critical patent/RU2698838C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Группа изобретений относится к области ракетно-космической техники и может быть использована при проектно-конструкторской разработке высотных ступеней, предназначенных для выведения космических аппаратов - КА на околоземные орбиты. Технический результат - обеспечение возможности запуска нескольких однотипных или разнотипных КА с помощью одной ракеты-носителя – РН на собственные орбиты, увеличение площади наблюдения земной поверхности. Головная часть космической РН содержит два и более универсальных модуля с собственными двигательными установками – ДУ с четырьмя «толкающими» и четырьмя радиально расположенными управляющими соплами с рулевыми приводами для обеспечения возможности изменения углового положения модуля с КА. Система управления модуля выполнена унифицированной, электрически связанной с бортовой аппаратурой спутниковой навигации. При этом каждый модуль обеспечивает возможность набора дополнительной скорости по отношению к первоначальной скорости. Одни из модулей с КА обеспечены возможностью полета в одной плоскости орбиты, а другие - возможностью полета в плоскости орбиты, находящейся к базовой плоскости орбиты под расчетным углом. По способу при достижении спада давления в ДУ последней ступени ракеты-носителя до заданного уровня отстыковывают универсальные модули с космическим аппаратом. Включают ДУ этих модулей, обеспечивают набор заданной дополнительной скорости каждого модуля с КА по отношению к первоначальной скорости. При необходимости корректируют угол отклонения вектора тяги модуля и обеспечивают полет модуля КА в плоскости, находящейся под углом, который определяют по аналитическому выражению. За 20…30 с до момента отделения КА переключают ДУ модуля на пониженный режим тяги, величину которой снижают в 10…15 раз по сравнению с номинальным значением. Прекращают работу «толкающих» управляющих сопел. Задействуют радиально расположенные управляющие сопла. Обеспечивают управление угловым положением модуля с КА. Придают заданную ориентацию КА к моменту его отделения, обеспечивают нулевую тягу ДУ модуля и отделяют КА от модуля. 2 н. и 1 з.п. ф-лы, 4 ил.

Description

Предлагаемое изобретение относится к области ракетно-космической техники и может быть использовано при проектно-конструкторской разработке высотных ступеней, предназначенных для выведения космических аппаратов (КА) на околоземные орбиты.
В патенте «Ракета космического назначения RU 2025645 c1, 1994 г.» представлено описание конструкции высотной ступени, а в известной публикации: НТЦ «Комплекс-МИТ», Ю.С. Соломонов, А.П. Сухадольский и др. «Космические ракетные комплексы с твердотопливными ракетами «Старт» и «Старт-1», Москва, Универсум, 2000 г, представлено описание схемы выведения (КА) на околоземные орбиты космической ракетой-носителем (КРН).
КРН представляет собой четырехступенчатую твердотопливную ракету, способную осуществить выведение малогабаритных КА на околоземные орбиты.
Для удобства изложения материала высотную ступень с КА будем называть головной частью (ГЧ) КРН (что соответствует первоначальному названию).
Главной конструктивной особенностью КРН является наличие на ней ГЧ, содержащей головной блок с КА и ступенью выведения. ГЧ КРН, содержащая головной блок с КА и ступень выведения, принята авторами за прототип.
Была предложена ГЧ космической ракеты-носителя (РН), содержащая отсек с двигательной установкой (ДУ), соединенной с обтекателем, внутри которого на платформе посредством адаптера установлена полезная нагрузка, а во внутренней полости платформы подвешен герметичный приборный отсек с системой управления РН и аппаратурой системы измерения РН.
Способ выведения осуществляется следующим образом. После окончания основного участка работы ДУ последней ступени КРН задействуется ДУ ступени выведения, работающая с постоянной тягой до полного выгорания топлива, после чего включается газореактивная система ориентации, установленная в районе сопла ДУ последней ступени. После завершения ориентации последней ступени КА отделяется и продолжает полет по заданной орбите.
Как показал анализ материалов прототипа, ГЧ КРН имеет некоторые недостатки, связанные с конструктивно-компоновочной схемой:
1. В связи с ограниченными энергетическими возможностями ДУ ДС (масса топлива ДУ ГЧ составляет примерно 4…5% от общей массы ГЧ КРН) после окончания работы ДУ последней ступени КРН на участке работы ДУ ГЧ приращение скорости незначительно (1…1,5%), что не позволяет варьировать параметры орбиты (высоту, наклонение и др.). Это положение сохраняется для случая, когда предстоит запустить не один, а несколько малогабаритных КА, т.к. каждый из них будет иметь одну и ту же конечную скорость;
и схемой функционирования прототипа в полете:
1. В случае если КА относится к типу спутников, исследующих земную поверхность, то один КА сможет обеспечить ограниченную зону наблюдения земной поверхности;
2. Для того, чтобы запустить на орбиту несколько разнотипных КА, т.е. имеющие различные целевые назначения, при заданной массе им высоте запуска, потребуется соответствующее количество КРН, что приведет к увеличению финансовых затрат.
Задачей изобретения является обеспечение возможности запуска нескольких однотипных или разнотипных КА с помощью одной ракеты-носителя на собственные орбиты. В нем решаются также технические задачи по созданию более рациональной компоновки ГЧ КРН, повышению ее энергетических возможностей, позволяющих улучшить параметры орбиты (высоту, наклонение и др.), увеличить площадь наблюдения земной поверхности.
Решение поставленной задачи достигается тем, что известная головная часть космической ракеты-носителя (РН), содержащая отсек с двигательной установкой, соединенной с обтекателем, внутри которого на платформе посредством адаптера установлена полезная нагрузка, а во внутренней полости платформы подвешен герметичный приборный отсек с системой управления ракеты-носителя и аппаратурой системы измерения ракеты-носителя, отличается тем, что полезная нагрузка содержит два и более универсальных модуля с собственными двигательными установками (ДУ) с четырьмя «толкающими» и четырьмя радиально расположенными управляющими соплами с рулевыми приводами, с системой управления, электрически связанной с бортовой аппаратурой спутниковой навигации (БАСН), антенны которой установлены по базам I и III и системой измерения и контроля, кроме того, ракета-носитель снабжена собственным БАСН, кроме того, универсальные модули закреплены на центральном основании с помощью пирозамковых устройств.
Устройство поясняется чертежами:
- Фиг. 1 - общий вид ступени выведения КА,
- Фиг. 2, 3 - фрагменты компоновки ступени,
- Фиг. 4 - схема разведения 2-х КА, выводимых одной РН.
Головная часть содержит обтекатель (1), два или три КА (2), каждый из которых снабжен универсальным модулем, состоящим из последовательно расположенных адаптера (3), герметичного приборного отсека (ГПО) с бесплатформенной системой управления (СУ) (4), электрически связанной с бортовой аппаратурой спутниковой навигации (БАСН) (5), отсека (6) с ДУ глубокого регулирования (7), снабженной четырьмя управляющими «толкающими» соплами (8) и четырьмя радиальными соплами (9) и рулевым приводом, аппаратуры системы измерений (СИ), расположенной на внешней поверхности отсека АО (10), КА с универсальными модулями, установленным на центральном основании (11) с помощью пирозамков (12), хвостовая часть (13) которого крепится к отсеку РН, на этой хвостовой части установлена БАСН РН (14)
Данное устройство реализует заявленный способ выведения КА за счет того, что в известном способе, при котором при достижении спада давления в ДУ последней ступени ракеты-носителя (РН) до уровня, близкого к нулю, задействуют ДУ модуля, в процессе работы которой система управления модуля определяет потребное время работы ДУ, обеспечивают приращение кажущейся скорости до первой космической, при достижении спада давления в ДУ до уровня, близкого к нулю, задействуют газореактивную систему ориентации (ГРСО), с помощью которой достигают заданной ориентации КА к моменту его отделения, отделяют КА от последней ступени РН, отличающимся тем, что, при достижении спада давления в ДУ последней ступени РН до уровня, равного 1…2 кг/см2 отстыковывают универсальные модули с КА, включают ДУ этих модулей, обеспечивают набор дополнительной скорости каждого модуля с КА примерно 3,5…4 процента по отношению к первоначальной скорости, при необходимости корректируют угол отклонения вектора тяги модуля и обеспечивают полет так, что модуль КА-1 продолжает полет в плоскости орбиты (15), модуль КА-2 в плоскости орбиты (16), находящихся к базовой плоскости орбиты (17) под углами dFi и -dFi соответственно, при этом точками пересечения указанных плоскостей орбит с плоскостью экватора (18) являются точки (19) и (20) соответственно. Угол dFi определяется по формуле:
Figure 00000001
за 20…30 секунд до момента отделения КА переключают ДУ модуля на пониженный режим тяги, величина которой снижается в 10…15 раз по сравнению с номинальным значением, прекращают работу «толкающих» управляющих сопел, задействуют радиально расположенные управляющие сопла, обеспечивают управление угловым положением модуля с КА, придают заданную ориентацию КА к моменту его отделения, обеспечивают нулевую тягу ДУ модуля, отделяют КА от модуля, где:
dVДУ - запас характеристической скорости ДУ одного модуля с КА (определяется по формуле Циолковского);
V1 - скорость движения КА по базовой орбите.
Анализ показывает, что величина такого угла составляет 2…2,5 градусов. Если в состав ступени выведения входят два модуля с КА, то суммарный угол между плоскостями орбит за счет маневра в противоположных направлениях составит 4…5 градусов. На поверхности Земли наибольшее расстояние, при этом, составит 470…500 км. Таким образом, можно существенно увеличить площадь обзора (обслуживания) земной поверхности по сравнению с одиночным КА, при запуске одной и той же РН.
Таким образом, предлагаемое изобретение, в котором ГЧ содержит два и более универсальных модуля с собственными двигательными установками с четырьмя «толкающими» и четырьмя радиально расположенными управляющими соплами с рулевыми приводами с системой управления, электрически связанной с бортовой аппаратурой спутниковой навигации, с системой измерения и контроля, при этом РН снабжена собственной БАСН, позволяет решить поставленную задачу, как в части конструкции, так и в части способа и является дальнейшим развитием возможностей существующих КРН, позволяющих с использованием одной ракеты-носителя произвести запуск нескольких малогабаритных КА на собственные околоземные орбиты, что приводит к существенному сокращению финансовых затрат.

Claims (7)

1. Головная часть космической ракеты-носителя, содержащая отсек с твердотопливной установкой, соединенной с обтекателем, внутри которого на платформе посредством адаптера установлена полезная нагрузка, а во внутренней полости платформы подвешен герметичный приборный отсек с системой управления ракеты-носителя и аппаратурой системы измерения ракеты-носителя, отличающаяся тем, что полезная нагрузка содержит два и более универсальных модуля с твердотопливными двигательными установками - ДУ с четырьмя толкающими и четырьмя радиально расположенными управляющими соплами с рулевыми приводами для обеспечения возможности изменения углового положения модуля с космическим аппаратом - КА. система управления модуля выполнена унифицированной, электрически связанной с бортовой аппаратурой спутниковой навигации, при этом каждый модуль обеспечивает возможность набора дополнительной скорости по отношению к первоначальной скорости, одни из модулей с КА обеспечены возможностью полета в одной плоскости орбиты, а другие - возможностью полета в плоскости орбиты, находящейся к базовой плоскости орбиты под расчетным углом.
2. Головная часть космической ракеты-носителя по п. 1, отличающаяся тем, что универсальные модули закреплены на центральном основании с помощью пирозамковых устройств.
3. Способ выведения космического аппарата на орбиту, при котором при достижении спада давления в двигательной установке - ДУ последней ступени ракеты-носителя - РН до уровня, близкого к нулю, задействуют ДУ модуля, в процессе работы которой система управления модуля определяет потребное время работы ДУ, обеспечивают приращение кажущейся скорости до первой космической, при достижении спада давления в ДУ до уровня, близкого к нулю, задействуют газореактивную систему ориентации - ГРСО, с помощью которой достигают заданной ориентации космического аппарата - КА к моменту его отделения, отделяют КА от последней ступени РН, отличающийся тем, что, при достижении спада давления в ДУ последней ступени РН до уровня, равного 1…2 кг/см2 , отстыковывают универсальные модули с КА, включают ДУ этих модулей, обеспечивают набор дополнительной скорости каждого модуля с КА примерно (3,5…4)% по отношению к первоначальной скорости, при необходимости корректируют угол отклонения вектора тяги модуля и обеспечивают полет модуля КА в плоскости, находящейся под углом dFi по отношению к базовой плоскости, определяемым по формуле:
Figure 00000002
,
где dVДУ - запас характеристической скорости ДУ одного модуля с КА;
V1 - скорость движения КА по базовой орбите,
за 20…30 с до момента отделения КА переключают ДУ модуля на пониженный режим тяги, величину которой снижают в 10…15 раз по сравнению с номинальным значением, прекращают работу «толкающих» управляющих сопел, задействуют радиально расположенные управляющие сопла, обеспечивают управление угловым положением модуля с КА, придают заданную ориентацию КА к моменту его отделения, обеспечивают нулевую тягу ДУ модуля, отделяют КА от модуля.
RU2018115078A 2018-04-24 2018-04-24 Головная часть космической ракеты-носителя и способ выведения космических аппаратов RU2698838C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018115078A RU2698838C1 (ru) 2018-04-24 2018-04-24 Головная часть космической ракеты-носителя и способ выведения космических аппаратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018115078A RU2698838C1 (ru) 2018-04-24 2018-04-24 Головная часть космической ракеты-носителя и способ выведения космических аппаратов

Publications (1)

Publication Number Publication Date
RU2698838C1 true RU2698838C1 (ru) 2019-08-30

Family

ID=67851715

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018115078A RU2698838C1 (ru) 2018-04-24 2018-04-24 Головная часть космической ракеты-носителя и способ выведения космических аппаратов

Country Status (1)

Country Link
RU (1) RU2698838C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2751729C1 (ru) * 2020-10-29 2021-07-16 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Способ управления ракетой космического назначения
RU2776622C1 (ru) * 2021-12-20 2022-07-22 Игорь Владимирович Догадкин Способ уничтожения подземной цели ракетой

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613653A (en) * 1994-03-22 1997-03-25 Aerospatiale Societe Nationale Industrielle Multisatellite distributor for launcher
RU2428358C1 (ru) * 2010-01-22 2011-09-10 Федеральное государственное образовательное учреждение высшего профессионального образования Военная академия Ракетных войск стратегического назначения имени Петра Великого МО РФ Космическая головная часть для группового запуска спутников
RU2478533C1 (ru) * 2011-08-04 2013-04-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Космическая головная часть
RU2481247C1 (ru) * 2011-12-27 2013-05-10 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" Способ выведения на орбиту ракеты космического назначения пакетной схемы на участке полета до отделения боковых блоков
RU2569966C1 (ru) * 2014-12-01 2015-12-10 Российская Федерация, от имени которой выступает Федеральное космическое агентство Космическая головная часть

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613653A (en) * 1994-03-22 1997-03-25 Aerospatiale Societe Nationale Industrielle Multisatellite distributor for launcher
RU2428358C1 (ru) * 2010-01-22 2011-09-10 Федеральное государственное образовательное учреждение высшего профессионального образования Военная академия Ракетных войск стратегического назначения имени Петра Великого МО РФ Космическая головная часть для группового запуска спутников
RU2478533C1 (ru) * 2011-08-04 2013-04-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Космическая головная часть
RU2481247C1 (ru) * 2011-12-27 2013-05-10 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" Способ выведения на орбиту ракеты космического назначения пакетной схемы на участке полета до отделения боковых блоков
RU2569966C1 (ru) * 2014-12-01 2015-12-10 Российская Федерация, от имени которой выступает Федеральное космическое агентство Космическая головная часть

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СОЛОМОНОВ Ю. С. и др., Космические ракетные комплексы с твердотопливными ракетами Старт и Старт-1, Москва, Юниверсум, 2000. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2751729C1 (ru) * 2020-10-29 2021-07-16 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Способ управления ракетой космического назначения
RU2776622C1 (ru) * 2021-12-20 2022-07-22 Игорь Владимирович Догадкин Способ уничтожения подземной цели ракетой

Similar Documents

Publication Publication Date Title
Braun et al. Design of the ARES Mars airplane and mission architecture
US4964340A (en) Overlapping stage burn for multistage launch vehicles
US4901949A (en) Rocket-powered, air-deployed, lift-assisted booster vehicle for orbital, supraorbital and suborbital flight
JP5508017B2 (ja) 航空力学的および宇宙的飛行を行う飛行機およびそれに関係した操縦方法
US6029928A (en) Space launch vehicles configured as gliders and towed to launch altitude by conventional aircraft
US4884770A (en) Earth-to-orbit vehicle providing a reusable orbital stage
US8955791B2 (en) First and second stage aircraft coupled in tandem
US3929306A (en) Space vehicle system
US20070012820A1 (en) Reusable upper stage
US3289974A (en) Manned spacecraft with staged re-entry
US20020171011A1 (en) System for the delivery and orbital maintenance of micro satellites and small space-based instruments
Christian et al. Extension of traditional entry, descent, and landing technologies for human Mars exploration
RU2698838C1 (ru) Головная часть космической ракеты-носителя и способ выведения космических аппаратов
US9403605B2 (en) Multiple stage tractor propulsion vehicle
Chen et al. Responsive air launch using F-15 global strike eagle
CN103253372A (zh) 飞碟航天器
RU2619486C2 (ru) Способ выведения космического аппарата на геостационарную орбиту с помощью электрореактивных двигателей
Christian et al. Sizing of an entry, descent, and landing system for human Mars exploration
RU2129508C1 (ru) Авиационный пусковой комплекс
Lee et al. Preliminary design of the hybrid air-launching rocket for Nanosat
Murbach et al. Options for Returning Payloads from the ISS after the Termination of STS Flights
RU2485025C1 (ru) Двухступенчатая баллистическая многоразовая транспортная космическая система
RU2193510C2 (ru) Орбитальный самолет
RU2657113C1 (ru) Многоразовая воздушно-космическая система (мвкс), атмосферно-авиационная система (аас) и способы функционирования мвкс и аас (варианты)
Lindberg et al. Pegasus air-launched space booster