RU2698638C1 - Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением - Google Patents

Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением Download PDF

Info

Publication number
RU2698638C1
RU2698638C1 RU2018136377A RU2018136377A RU2698638C1 RU 2698638 C1 RU2698638 C1 RU 2698638C1 RU 2018136377 A RU2018136377 A RU 2018136377A RU 2018136377 A RU2018136377 A RU 2018136377A RU 2698638 C1 RU2698638 C1 RU 2698638C1
Authority
RU
Russia
Prior art keywords
battery
residual capacity
batteries
spacecraft
charge
Prior art date
Application number
RU2018136377A
Other languages
English (en)
Inventor
Виталий Иванович Глухов
Сергей Юрьевич Коваленко
Алексей Анатольевич Тарабанов
Original Assignee
Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ") filed Critical Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ")
Priority to RU2018136377A priority Critical patent/RU2698638C1/ru
Application granted granted Critical
Publication of RU2698638C1 publication Critical patent/RU2698638C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Изобретение относится к способу эксплуатации литий-ионной аккумуляторной батареи (АБ) в составе космического аппарата негерметичного исполнения с радиационным исполнением. Для осуществления способа производят контроль и поддержание температуры аккумуляторов АБ в заданном диапазоне, осуществляют их заряды, разряды и хранение в заряженном состоянии, при этом заряд обеспечивают на освещенной орбите с контролем напряжений на аккумуляторах, осуществляют выравнивание по остаточной емкости аккумуляторов при проведении заряда и при отсутствии тока разряда АБ, используя режим балансировки остаточной емкости аккумуляторов. При достижении полного заряда хотя бы одного из аккумуляторов приостанавливают заряд АБ и осуществляют замеры остаточной емкости каждого аккумулятора определенным образом. Определяют разницу значений максимальной и минимальной остаточной емкости на аккумуляторах (разбаланс АБ), включают режим балансировки остаточной емкости путем принудительного разряда аккумуляторов с большей остаточной емкостью до минимального значения остаточной емкости на аккумуляторе, который не подлежит разряду, после чего продолжают заряд батареи до достижения допустимых значений. Обеспечивается повышение эффективности использования и увеличения ресурса АБ. 4 ил.

Description

Назначение
Изобретение относится к области космической техники и может быть использовано при проектировании космических аппаратов (КА), в составе которых используются аккумуляторные батареи.
Уровень техники
Современная космическая техника, среди прочих, ставит перед собой задачу по увеличению срока активного существования создаваемого КА.
К числу систем современных КА, по сути определяющих срок активного существования КА, относится в первую очередь система генерирования электроэнергии (СГЭ), у которой в качестве первичных источников энергии используются солнечные батареи (СБ), в которых солнечная энергия, преобразуется в электрическую энергию фотоэлектрическими преобразователями, и позволяет обеспечить питание всех устройств КА, а также заряд вторичных источников питания - накопителей электрической энергии в виде аккумуляторных батарей (АБ), являющихся одним из наиболее критичных звеньев у СГЭ.
В современных КА на сегодня наиболее перспективными являются литий-ионные АБ. Их описание, условия эксплуатации и сравнительные характеристики всесторонне представлены в диссертации на соискание ученой степени кандидата технических наук (Тарасов B.C. "Система генерирования электроэнергии с увеличенным сроком активного существования для малого космического аппарата". Специальность 05.09.03. Электротехнические комплексы и системы. «Национальный исследовательский университет «МЭИ», 2015 г.).
Для обеспечения длительного срока службы (ресурса) АБ очень важно проводить непрерывный мониторинг текущего технического состояния аккумуляторов АБ, своевременно проводить различные профилактические мероприятия для восстановления энергетических характеристик и обеспечивать комфортные температурные условия эксплуатации а также их оптимальные заряды, разряды и условия хранения,.
На КА негерметичного исполнения с радиационным охлаждением потенциально существует техническая возможность поддержания температуры АБ в более узком диапазоне, в отличие от КА с герметичным контейнером, в котором установлены АБ вместе с другой аппаратурой (преимущественно - радиоэлектронной) или КА, имеющий жидкостной контур охлаждения, который охватывает вместе с АБ другую аппаратуру. Предпосылкой этому служит то, что при таком построении КА термостатирование АБ может быть реализовано индивидуальным, независимым от другой аппаратуры КА.
Поддержание температуры АБ в узком диапазоне может быть обеспечено системой терморегулирования, например, в виде подробно описанного известного устройства управления нагревателями аппаратуры КА (см. патент, РФ, №2571728).
Аккумуляторные батареи в процессе длительной эксплуатации КА могут выйти из строя или существенно снизить свои характеристики, в том числе и ресурсные, из-за многократного глубокого переразряда, т.е. из-за снижении остаточной емкости аккумулятора (под остаточной емкостью АБ следует понимать значение количества электрической энергии, выраженное в ампер часах или Кулонах, которое АБ отдает при разряде до выбранного конечного напряжения в любом текущем его состоянии) ниже предельных значений, ухудшающих ресурсные характеристики аккумуляторов (см. патент, РФ, №2164881). Поэтому, при обеспечении максимальной отдачи количества электрической энергии АБ, для исключения глубокого переразряда отдельных аккумуляторов в АБ, важнейшим условием является выравнивания в АБ аккумуляторов по остаточной емкости.
Наиболее близким к предлагаемому изобретению является «Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением и космический аппарат для его реализации» (патент №2430860, от 10.10.2011 г.), взятое авторами за прототип.
В данном способе эффективность использования литий-ионных АБ и обеспечение ресурсных характеристик СГЭ и КА негерметичного исполнения в целом при его штатной работе осуществляется следующим образом.
Бортовое программное обеспечение дифференцирует во времени текущую температуру АБ и исходя из входных данных по режиму работы (заряд, разряд, хранение) величины токов заряда-разряда, степени заряженности и температуры и задает режим работы локальных нагревателей АБ через систему терморегулирования. В процессе заряда контролируется напряжение аккумуляторов в АБ и самой АБ. При достижении напряжения в каком-либо аккумуляторе величины максимального зарядного напряжения, зарядный преобразователь переключается в режим стабилизации напряжения на АБ в диапазоне от текущей величины до значения напряжения UАБ:
Figure 00000001
где
Uз акк макс - максимальное зарядное напряжение литий-ионного аккумулятора;
n - число аккумуляторов в АБ;
ΔUдоп - допустимый разбаланс аккумуляторов в АБ по напряжению.
Если в процессе эксплуатации АБ разница в напряжениях аккумуляторов превысит допустимый разбаланс аккумуляторов по напряжению (ΔUдоп), контролируется отсутствие тока разряда и включается режим балансировки аккумуляторов по напряжению. В простейшем виде, это подключение ко всем аккумуляторам, кроме имеющего наименьшее напряжение, разрядных резисторов с последующим их последовательным отключением по мере достижения напряжения каждого аккумулятора текущей величины напряжения аккумулятора, не подвергающегося подразряду.
Недостатком прототипа является то, что данный способ наиболее приемлем для литий-ионных аккумуляторов у которых положительный электрод изготовлен из литированного оксида кобальта или подобных оксидных соединений, но не позволяет обеспечить достаточную точность выравнивания разбаланса аккумуляторов в АБ с катодом на базе литированного фосфата железа при использовании описанного режима балансировки аккумуляторов по напряжению, что приводит к неэффективному использованию остаточной емкости АБ и к снижению сроку службы АБ.
Это видно из графика на фиг. 1, на котором показана зависимость напряжения (U) от остаточной емкости (Q) при его разряде для ненагруженных литий-ионных аккумуляторов, у которых положительный электрод изготовлен из литированного оксида кобальта или подобных оксидных соединений, и из графика на фиг. 2, на котором показана зависимость напряжения от остаточной емкости при его разряде для ненагруженных литий-ионных аккумуляторов, у которых положительный электрод изготовлен из литированного фосфата железа (см. патент, РФ, №2533328).
На фиг. 1 и фиг. 2 представлено снятие остаточной емкости Q в % от полной емкости Qmax заряженного аккумулятора.
На фиг. 1 изменение остаточной емкости аккумулятора сопровождается заметным изменением напряжения на нем, а на фиг. 2 напряжение на аккумуляторе почти на всем протяжении изменения остаточной емкости является горизонтальной прямой и резкое изменение (снижение) напряжения наступает после снятия с аккумулятора около 90% емкости, или в области полного заряда аккумулятора (увеличение), в результате чего мониторинг степени разряженности аккумулятора по измерению напряжения на всем протяжении изменения остаточной емкости становится неточным.
Литий-ионные аккумуляторы с катодом на базе литированного фосфата железа хотя и имеют более низкие удельные энергетические параметры из-за несколько меньшего (3,2 В) номинального напряжения, в сравнении с литий-ионными аккумуляторами с оксидными катодами с номинальным напряжением (3,6 В), но обладают в 2-3 раза большим ресурсом работы и безопасны в эксплуатации (см. Вопросы электромеханики Т. 123. 2011, стр. 29-30).
Целью предлагаемого изобретения является повышение эффективности использования и увеличение ресурса службы литий-ионных аккумуляторных батарей, в том числе с положительным катодом, выполненным на основе литированного фосфата железа.
Раскрытие изобретения
Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением, снабженного солнечными батареями, заключается в контроле и поддержании температуры аккумуляторов аккумуляторной батареи в заданном диапазоне, в проведении зарядов, разрядов и хранении в заряженном состоянии аккумуляторной батареи. Заряд аккумуляторной батареи от солнечных батарей обеспечивают на освещенной орбите с контролем напряжений на аккумуляторах. Выравнивание по остаточной емкости аккумуляторов в аккумуляторной батарее осуществляют при заряде аккумуляторов и отсутствии тока разряда аккумуляторной батареи, используя при этом режим балансировки остаточной емкости аккумуляторов в батарее. В процессе заряда батареи постоянно контролируют напряжение (U) на каждом аккумуляторе и при достижении полного заряда (максимального значения остаточной емкости) хотя бы одного из аккумуляторов (фиксируют по резкому увеличению напряжения, см. фиг. 2), приостанавливают заряд аккумуляторов и осуществляют контрольные замеры остаточной емкости каждого аккумулятора, для чего через аккумуляторную батарею пропускают короткий импульсный ток и вычисляют по каждому аккумулятору в данной контрольной точке разность между постоянным напряжением и напряжением под импульсной нагрузкой на нем. Определяют разницу значений максимальной и минимальной остаточной емкости на аккумуляторах, которая является величиной разбаланса батареи, и если данная величина превышает заданное значение величины разбаланса, включают режим балансировки остаточной емкости путем принудительного разряда аккумуляторов с большей остаточной емкостью до минимального значения остаточной емкости на аккумуляторе, который не подлежит разряду. В простейшем виде, это подключают разрядные резисторы (R) ко всем аккумуляторам, кроме имеющего наименьшую остаточную емкость, и последовательно отключают по мере достижения текущего значения их остаточной емкости, соответствующей остаточной емкости аккумулятора, не подвергающегося подразряду, при этом контроль осуществляют, например, по времени (t) подключения разрядного резистора к контролируемому аккумулятору в зависимости от ΔQ, т.е. разницы значений остаточной емкости контролируемого аккумулятора и остаточной емкости минимально заряженного аккумулятора:
Figure 00000002
где U - величина практически одинаковая для всех аккумуляторов (см. фиг. 2).
После этого продолжают заряд батареи. Описанный процесс заряда, контроля и балансировки аккумуляторов повторяют до достижения номинального значения остаточной емкости в каждом аккумуляторе с учетом допустимого разбаланса.
Данный способ обеспечивает получение следующих технических преимуществ:
- повышается остаточная емкость АБ в виду малого разброса остаточной емкости аккумуляторов в АБ,
- уменьшается глубина разряда аккумуляторов при требуемой для питания остаточной емкости АБ;
- увеличивается ресурс работы аккумуляторов в АБ;
- повышается надежность работы аккумуляторов в АБ.
Предлагаемый способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением позволяет увеличить срок службы, улучшить эксплуатационные и энергетические характеристики литий-ионных аккумуляторных батарей, в том числе с положительным катодом, выполненным на основе литированного фосфата железа.
Графические иллюстрации
Фиг. 1 - График зависимости напряжения (U) от остаточной емкости Q (которая представлена в % от полной емкости Qmax заряженного аккумулятора) при разряде ненагруженных литий-ионных аккумуляторов, у которых положительный электрод изготовлен из литированного оксида кобальта или подобных оксидных соединений.
Фиг. 2 - График зависимости напряжения (U) от остаточной емкости Q (которая представлена в % от полной емкости Qmax заряженного аккумулятора) при разряде ненагруженных литий-ионных аккумуляторов, у которых положительный электрод изготовлен из литированного фосфата железа.
Фиг. 3 - Пример структурной схемы для реализации заявляемого способа эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением, содержащей следующие обозначенные позиции:
1 - СБ (солнечные батареи);
2 - литий-ионная аккумуляторная батарея;
3 - аккумуляторы;
4 - УБА (устройство балансировки аккумуляторов);
5 - СПН (стабилизированный преобразователь напряжения);
5-1 - ЗУ (зарядное устройство);
5-2 - РУ (разрядное устройство);
6 - нагреватели;
7 - термодатчики;
8 - СТР (система терморегулирования);
9 - БКУ с БВМ (бортовой комплекс управления с бортовой вычислительной машиной);
10 - УИН - управляемая импульсная нагрузка;
11 - ЭК (электронный ключ);
12 - нагрузка.
Фиг. 4 - График зависимости разности напряжений (ΔU) ненагруженного аккумулятора (U1) и амплитуды импульсного напряжения (U2) данного аккумулятора в контрольных точках под воздействием импульсного тока от остаточной емкости Q (которая представлена в % от полной емкости Qmax заряженного аккумулятора).
Пример исполнения
Солнечные батареи (СБ) 1 космического аппарата устанавливают на внешней стороне радиационной поверхности корпуса КА и оптимально ориентируют таким образом, что во время движения КА по орбите угол отклонения нормали к активной поверхности СБ 1 от линии направления на Солнце должен быть минимальным (см. В.Н. Васильев. Системы ориентации космических аппаратов, М., 2009, с. 273-275). Все остальные составляющие, обозначенные позициями на фиг. 3, устанавливают на внутренней стороне радиационной поверхности корпуса КА (внутри корпуса КА), используя различные активные и пассивные способы терморегулирования, причем для исключения взаимовлияния и поддержания нужного теплового режима данных составляющих используют многослойную экранно-вакуумную теплоизоляцию. Особенно это касается литий-ионных АБ, для которых требуется сравнительно узкий температурный диапазон в различных режимах эксплуатации (см. «Питание для холодного климата: морозостойкие литий-полимерные АКБ от ЕЕМВ». Новости электроники, №4, 2016 г.).
Для обеспечения данного узкого температурного диапазона в различных режимах эксплуатации используют систему терморегулирования (СТР) 8, термодатчики 7 и нагреватели 6 (см. патент, РФ, №2571728).
Литий-ионная АБ 2 с требуемым номинальным напряжением (например, для бортового питания КА - 28 В) выполняется в виде нескольких последовательно соединенных аккумуляторов, в виду того, что номинальное напряжение аккумулятора равно приблизительно 3,2 В (у которых положительный электрод изготовлен из литированного фосфата железа). Тогда, например, для получения стабилизированного питающего бортового напряжения КА - 28 В требуется оптимальное количество аккумуляторов АБ с учетом глубины разряда блока АБ не менее 10 штук. Величину глубины разряда аккумуляторов выбирают исходя недопущения глубокого разряда (см. Д.А. Хрусталев. Аккумуляторы. Москва, 2003 г., стр. 124-125), позволяющего сохранить рабочие характеристики АБ в течение как можно большего периода времени, т.е. увеличить срок его службы.
При прохождении КА освещенной орбиты питание всех устройств КА, а также заряд АБ 2 осуществляется за счет электрической энергии СБ 1. В начале прохождения КА освещенной орбиты аккумуляторы 3 АБ 2 разряжены, т.к. питание устройств КА на теневом участке осуществлялось за счет аккумуляторной энергии, поэтому их необходимо заряжать. Оптимальная величина тока заряда должна находиться в пределах от 0,1 до 0,3 номинальной емкости АБ 2. Малые зарядные токи (менее 0,1 номинальной емкости АБ) не позволяют проводить заряд с высоким коэффициентом полезного действия, а заряд током менее 0,03 номинальной емкости практически не приводит к повышению емкости АБ (см. патент, РФ, №. 2510105).
При этом, при заряде АБ 2 важнейшим условием является выравнивание аккумуляторов 3 в АБ 2 по остаточной емкости, в виду того, что вследствие переразряда отдельных аккумуляторов в АБ 2 из-за не выравненной их остаточной емкости приводит к снижению фактической энергоемкости аккумуляторной батареи и к снижению срока ее службы. Более того, при эксплуатации АБ нельзя допускать переполюсовку аккумуляторов, т.к. переполюсовавшиеся аккумуляторы выйдут из строя и восстановить их будет невозможно (см. патент, РФ, №2168828). Как видно из графика на фиг. 2, на котором показана зависимость напряжения от остаточной емкости при его разряде для ненагруженных литий-ионных аккумуляторов, у которых положительный электрод изготовлен из литированного фосфата железа, напряжение на аккумуляторе почти на всем протяжении изменения остаточной емкости является горизонтальной прямой и резкое изменение (снижение) напряжения наступает после снятия с аккумулятора приблизительно 90% емкости, в результате чего мониторинг степени заряженности (разряженности) аккумулятора по измерению напряжения становится неточным. Однако литий-ионные аккумуляторы с катодом на базе литированного фосфата железа обладают большим ресурсом работы и безопасны в эксплуатации, что является особенно важным достоинством для использования их на КА.
Известно (см. патент, РФ, №2533328), что внутреннее сопротивление данного аккумулятора является гораздо более чувствительной величиной по отношению к остаточной емкости, чем напряжение разомкнутой цепи. Поэтому повышение точности и достоверности определения остаточной емкости аккумулятора в АБ 2 возможно по значениям разности (ΔU) напряжений ненагруженного аккумулятора (U1) и амплитуды импульсного напряжения (U2) данного аккумулятора под воздействием импульсного тока, т.е.
Figure 00000003
На фиг. 4 показана ярко выраженная зависимость ΔU от остаточной емкости Q, которая представлена в % от полной емкости Qmax заряженного аккумулятора. При этом параметры импульсного тока могут быть следующими:
- длительность импульса тока 0,01-0,1 секунд;
- амплитуда не менее чем в 5 раз превышает максимально допустимый ток непрерывного разряда для данного типоразмера аккумулятора, но меньше, чем допустимый для данного аккумулятора импульсный ток нагрузки.
Импульсный ток для аккумуляторов 3 формирует УИН 10 путем подключения нагрузки 12 через управляемый электронный ключ ЭК 11 по сигналу БКУ с БВМ.
Рассмотрим процесс заряда аккумуляторов 3 в АБ 2 и их выравнивания. Зарядное устройство (ЗУ) 5-1 стабилизированного преобразователя напряжения (СПН) 5 обеспечивает требуемый для данного типоразмера аккумуляторов 3 зарядный ток (БКУ с БВМ 9 контролирует и обеспечивает отсутствие разрядного тока аккумуляторов 3 через РУ 5-2), при этом БКУ с БВМ 9 постоянно контролирует напряжение U1 на клеммах каждого аккумулятора. При достижении полного заряда (максимального значения остаточной емкости) хотя бы одного из аккумуляторов 3 (фиксируют по резкому увеличению напряжения, см. фиг. 2), приостанавливают заряд аккумуляторов и осуществляют контрольные замеры остаточной емкости каждого аккумулятора 3 (при этом БКУ с БВМ 9 контролирует отсутствие разряда аккумуляторов 3 через РУ 5-2), для чего через данные последовательно включенные аккумуляторы 3 пропускают короткий импульсный ток, формируемым УИН 10 (ЭК 11 открывается и импульсный ток, определяемый нагрузкой 12 протекает по цепи: СБ 1 - ЭК 11 - нагрузка 12 - аккумуляторы 3 - СБ 1), и вычисляют по каждому аккумулятору 3 в данной контрольной точке разность ΔU между постоянным напряжением и напряжением под импульсной нагрузкой на нем в соответствии с выражением (3). Определяют разницу значений максимальной и минимальной остаточной емкости на аккумуляторах 3, которая является величиной разбаланса батареи, и если данная величина превышает заданное значение величины разбаланса, записанного в БКУ с БВМ 9, то сигналом с БКУ с БВМ 9, поступающему на УБА 4, включают режим балансировки остаточной емкости путем принудительного разряда аккумуляторов 3 с большей остаточной емкостью до минимального значения остаточной емкости на аккумуляторе 3, который не подлежит разряду. В простейшем виде, это подключают разрядные резисторы (R) УБА 4 ко всем аккумуляторам 3, кроме имеющего наименьшую остаточную емкость, и последовательно отключают по мере достижения текущего значения их остаточной емкости, соответствующей остаточной емкости аккумулятора 3, не подвергающегося подразряду, при этом данный контроль осуществляют в БКУ с БВМ 9, например, по времени подключения разрядного резистора к контролируемому аккумулятору 3 в зависимости от разницы значений остаточной емкости контролируемого аккумулятора 3 и остаточной емкости минимально заряженного аккумулятора 3 в соответствии с выражением (2).
После этого продолжают заряд аккумуляторов 3 в аккумуляторной батарее 2. Описанный процесс заряда, контроля и балансировки аккумуляторов 3 повторяют до достижения номинального значения остаточной емкости в каждом аккумуляторе 3 с учетом допустимого разбаланса, записанного в БКУ с БВМ 9.
При хранении заряженной АБ 2 в составе КА аккумуляторы 3 подвергаются саморазряду. При этом существующий технологический разброс в их токах саморазряда приводит к разбалансу аккумуляторов 3 по остаточной емкости, что требует периодического проведения балансировки аккумуляторов 3.
Известно, что оптимальным условием хранения для АБ является заряженность до 40% номинальной емкости (см. Фрэн Хоффард, "Правильная эксплуатация может продлить жизнь литий-ионного аккумулятора", www.powerelectronics.com), поэтому при эксплуатации АБ 2, имеющего режим длительного хранения, заряд АБ 2 по остаточной емкости следует осуществлять в два этапа:
- 1-й - в начале прохождения КА освещенной орбиты приблизительно до 40% номинальной емкости (режим хранения АБ);
- 2-й - в конце прохождения КА освещенной орбиты до требуемой номинальной емкости.
Таким образом, использование предлагаемого способа эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением позволяет повысить эффективность использования аккумуляторной батареи и ресурс ее службы, что в целом улучшает характеристики системы генерирования электроэнергии космического аппарата и увеличивает срок его активного существования.

Claims (1)

  1. Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением, снабженного солнечными батареями, заключающийся в контроле и поддержании температуры аккумуляторов АБ в заданном диапазоне, в проведении зарядов, разрядов и хранении в заряженном состоянии аккумуляторной батареи, причем заряд аккумуляторной батареи от солнечных батарей обеспечивают на освещенной орбите с постоянным контролем напряжений на аккумуляторах, выравнивание по остаточной емкости аккумуляторов в аккумуляторной батарее осуществляют при заряде аккумуляторов и при отсутствии тока разряда аккумуляторной батареи, используя режим балансировки остаточной емкости аккумуляторов в батарее, отличающийся тем, что при достижении полного заряда хотя бы одного из аккумуляторов приостанавливают заряд батареи и осуществляют контрольные замеры остаточной емкости каждого аккумулятора, для чего через аккумуляторную батарею пропускают короткий импульсный ток и вычисляют по каждому аккумулятору в данной контрольной точке разность между постоянным напряжением и напряжением под импульсной нагрузкой на нем, определяют разницу значений максимальной и минимальной остаточной емкости на аккумуляторах, которая является величиной разбаланса батареи, и, если данная величина превышает заданное значение величины разбаланса, включают режим балансировки остаточной емкости путем принудительного разряда аккумуляторов с большей остаточной емкостью до минимального значения остаточной емкости на аккумуляторе, который не подлежит разряду, после чего продолжают заряд батареи, при этом описанный процесс заряда, контроля и балансировки аккумуляторов повторяют до достижения номинального значения остаточной емкости в каждом аккумуляторе с учетом допустимого разбаланса.
RU2018136377A 2018-10-15 2018-10-15 Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением RU2698638C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018136377A RU2698638C1 (ru) 2018-10-15 2018-10-15 Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018136377A RU2698638C1 (ru) 2018-10-15 2018-10-15 Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением

Publications (1)

Publication Number Publication Date
RU2698638C1 true RU2698638C1 (ru) 2019-08-28

Family

ID=67851337

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018136377A RU2698638C1 (ru) 2018-10-15 2018-10-15 Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением

Country Status (1)

Country Link
RU (1) RU2698638C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2722619C1 (ru) * 2019-11-18 2020-06-02 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Устройство балансировки литий-ионной аккумуляторной батареи
RU2730703C1 (ru) * 2019-10-31 2020-08-25 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации многоблочной литий-ионной аккумуляторной батареи в составе космического аппарата
RU2738379C1 (ru) * 2020-05-18 2020-12-11 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Автономный источник питания на основе литиевых элементов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049190A (en) * 1998-04-13 2000-04-11 Space Systems/Loral, Inc. Spacecraft power system
US6246217B1 (en) * 1999-09-17 2001-06-12 Japan Storage Battery Co., Ltd. Non-aqueous electrolytic battery module for artificial satellite
RU2390478C1 (ru) * 2009-04-29 2010-05-27 Открытое акционерное общество "Авиационная электроника и коммуникационные системы" (ОАО "АВЭКС") Система электропитания космического аппарата
RU2403656C1 (ru) * 2009-07-07 2010-11-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации литий-ионной аккумуляторной батареи в составе искусственного спутника земли
RU127521U1 (ru) * 2012-10-22 2013-04-27 Федеральное государственное унитарное предприятие "18 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Устройство контроля электрических параметров и управления режимом заряда литиевой аккумуляторной батареи

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049190A (en) * 1998-04-13 2000-04-11 Space Systems/Loral, Inc. Spacecraft power system
US6246217B1 (en) * 1999-09-17 2001-06-12 Japan Storage Battery Co., Ltd. Non-aqueous electrolytic battery module for artificial satellite
RU2390478C1 (ru) * 2009-04-29 2010-05-27 Открытое акционерное общество "Авиационная электроника и коммуникационные системы" (ОАО "АВЭКС") Система электропитания космического аппарата
RU2403656C1 (ru) * 2009-07-07 2010-11-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации литий-ионной аккумуляторной батареи в составе искусственного спутника земли
RU127521U1 (ru) * 2012-10-22 2013-04-27 Федеральное государственное унитарное предприятие "18 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Устройство контроля электрических параметров и управления режимом заряда литиевой аккумуляторной батареи

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730703C1 (ru) * 2019-10-31 2020-08-25 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации многоблочной литий-ионной аккумуляторной батареи в составе космического аппарата
RU2722619C1 (ru) * 2019-11-18 2020-06-02 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Устройство балансировки литий-ионной аккумуляторной батареи
RU2738379C1 (ru) * 2020-05-18 2020-12-11 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Автономный источник питания на основе литиевых элементов

Similar Documents

Publication Publication Date Title
EP1798100B1 (en) Battery management system
RU2698638C1 (ru) Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением
US10840722B2 (en) Battery control device
US9231407B2 (en) Battery system, method of controlling the same, and energy storage system including the battery system
US9184600B2 (en) Method for balancing the voltages of electrochemical cells connected in several parallel branches
EP1172916A2 (en) Power control device with electric double layer capacitor unit cells
US20130049698A1 (en) Cell balancing method, cell balancing device, and energy storage system including the cell balancing device
WO2002042786A2 (en) Method and apparatus for determining the state of charge of a lithium-ion battery
Leuchter et al. Capacity of power-batteries versus temperature
Hussein et al. Design considerations and performance evaluation of outdoor PV battery chargers
RU2430860C1 (ru) Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением и космический аппарат для его реализации
US9435563B2 (en) Rechargeable backup electric heating system for power outages
JP2017162721A (ja) セルバランス回路制御装置、及び、セルバランス回路制御方法
US20190043674A1 (en) Electric power storage apparatus
US8237413B2 (en) Method for battery charging management
RU2464675C2 (ru) СПОСОБ ЗАРЯДА КОМПЛЕКТА ИЗ n ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ В СОСТАВЕ ГЕОСТАЦИОНАРНОГО ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ
Al-Refai et al. A programmable charger for monitoring and control of multi-cell lithium-ion batteries
Tyrpekl et al. Comparison of active and passive battery balancing
Alaoui et al. Experiments in fast charging lead acid electric vehicle batteries
Lee et al. Efficient and reconfigurable multi-cell battery pack for portable electronic devices with simultaneous charging and discharging capability
RU2638825C2 (ru) Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника Земли
RU2637815C2 (ru) Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника Земли
RU2702758C1 (ru) Способ заряда комплекта аккумуляторных батарей в составе автономной системы электропитания космического аппарата
RU2444818C1 (ru) Способ эксплуатации никель-водородной аккумуляторной батареи в составе искусственного спутника земли
Zhi et al. Charging Li Ions with Minimal Energy: A Study on Current Profiles