RU2698533C1 - Металлооксидный солнечный элемент - Google Patents
Металлооксидный солнечный элемент Download PDFInfo
- Publication number
- RU2698533C1 RU2698533C1 RU2018134590A RU2018134590A RU2698533C1 RU 2698533 C1 RU2698533 C1 RU 2698533C1 RU 2018134590 A RU2018134590 A RU 2018134590A RU 2018134590 A RU2018134590 A RU 2018134590A RU 2698533 C1 RU2698533 C1 RU 2698533C1
- Authority
- RU
- Russia
- Prior art keywords
- metal oxide
- solar
- solar cell
- counter electrode
- graphene
- Prior art date
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 20
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 20
- 239000002105 nanoparticle Substances 0.000 claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 18
- 239000002131 composite material Substances 0.000 claims abstract description 14
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 13
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 9
- 239000011737 fluorine Substances 0.000 claims abstract description 9
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 8
- 229910052738 indium Inorganic materials 0.000 claims abstract description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000002096 quantum dot Substances 0.000 claims abstract description 7
- 238000001228 spectrum Methods 0.000 claims abstract description 5
- 239000011248 coating agent Substances 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims abstract description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 21
- 239000004408 titanium dioxide Substances 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052689 Holmium Inorganic materials 0.000 claims description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 2
- 150000002910 rare earth metals Chemical class 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- 229910052697 platinum Inorganic materials 0.000 description 8
- 230000004907 flux Effects 0.000 description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000006101 laboratory sample Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- HVMJUDPAXRRVQO-UHFFFAOYSA-N copper indium Chemical compound [Cu].[In] HVMJUDPAXRRVQO-UHFFFAOYSA-N 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- ZZEMEJKDTZOXOI-UHFFFAOYSA-N digallium;selenium(2-) Chemical compound [Ga+3].[Ga+3].[Se-2].[Se-2].[Se-2] ZZEMEJKDTZOXOI-UHFFFAOYSA-N 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Hybrid Cells (AREA)
Abstract
Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии. Предложен металлооксидный солнечный элемент на основе наноструктурированных слоев металлооксида, сенсибилизированного поглощающей свет субстанцией, включающий проводящий слой из оксида олова, допированного фтором или индием, и противоэлектрод, при этом в качестве поглощающей свет субстанции он содержит органический краситель или квантовые точки, а противоэлектрод выполнен в виде пленки из композитного материала на основе графена и наночастиц редкоземельного элемента, нанесенной на проводящее покрытие из оксида олова, допированного фтором или индием. Органический краситель поглощает свет в диапазоне 400-750 нм, а квантовые точки - в диапазоне 500-1300 нм солнечного спектра. Изобретение обеспечивает стабильную работу металлооксидного солнечного элемента, высокую эффективность преобразования солнечной энергии в электрическую, позволяет существенно уменьшить стоимость солнечного элемента и упростить процесс его конструирования. 3 з.п. ф-лы, 1 ил.
Description
Изобретение относится к области солнечной фотоэнергетики, в частности, к устройствам для прямого преобразования солнечной энергии в электрическую с использованием сенсибилизированных красителем металло-оксидных солнечных элементов. Наиболее успешно настоящее изобретение может быть использовано в солнечных энергоустановках для работы в реальных погодных условиях с изменяющимся уровнем солнечной радиации.
Уровень техники
Суммарная мощность, вырабатываемая установленными в мире солнечными панелями, достигла к 2017 году 400 ГВт, а ежегодный прирост мирового производства солнечных панелей в последнее десятилетие стабильно остается на уровне около 40%.
При сохранении таких экспоненциальных темпов роста, уже к концу следующего десятилетия вырабатываемые солнечными станциями электрические мощности будут на 75% покрывать потребности всей мировой электроэнергетики. Однако сохранение имеющихся на сегодняшний день тенденций роста солнечной фотоэнергетики зависит от выполнения двух условий. Во-первых, необходимо постоянное совершенствование самих солнечных элементов (СЭ), определяющими параметрами функционирования которых являются стабильность и эффективность преобразования солнечной энергии в электрическую (КПД): если в прошлом десятилетии среднее значение КПД в СЭ составляло 12%, в настоящее время достигло уровня, приближающегося к 20%. Второе условие является чисто экономическим и реально определяет востребованность СЭ для широкомасштабного производства. Оно касается стоимости ватта вырабатываемой электрической мощности, которая для коммерческих СЭ составляет сегодня менее одного доллара США за один ватт, что, однако, не позволяет СЭ конкурировать с традиционными источниками электроэнергии.
Почти все виды производимых в мире СЭ относятся к фотопреобразователям на основе кристаллического, поликристаллического и аморфного кремния, либо к тонкопленочным СЭ на основе CIGS (copper indium gallium diselenide) и CdTe (cadmium telluride). Перечисленные СЭ обладают достаточно высокой эффективностью, однако средняя стоимость и самих СЭ данного типа, и ватта вырабатываемой ими мощности (в составе солнечных станций) пока не может конкурировать со стоимостью электроэнергии, получаемой от невозобновляемых источников энергии.
В этой связи особый интерес представляют разработки и совершенствование новых видов СЭ следующего поколения на основе сенсибилизированных красителями металло-оксидных солнечных элементов (МО СЭ), которые, с одной стороны, обладают достаточно высоким КПД, превышающим в лабораторных образцах 10%, а с другой стороны, просты в изготовлении и не требуют высокотехнологичного оборудования для производства. Однако основным преимуществом таких СЭ является низкая стоимость ватта вырабатываемой ими электрической мощности, которая в случае массового производства оценивается в 0,1-0,2 доллара США за один ватт, что значительно дешевле электроэнергии, получаемой от СЭ традиционных типов.
Известен СЭ на основе нанокристаллического диоксида титана, впервые представленный группой под руководством М. Гретцеля (заявка WO 91/16719, опубликована 31.10.1991) для выработки электричества в условиях прямого солнечного освещения. Данный МО СЭ состоит из мезоскопического слоя нанокристаллического диоксида титана толщиной около 10 мкм, сенсибилизированного молекулами красителя, которые поглощают световое излучение в диапазоне 400-750 нм. Эффективность преобразования солнечной энергии в электрическую такого СЭ составляет около 8%.
Главным недостатком данного СЭ является ограниченная область оптического поглощения световой энергии, которая обусловлена областью поглощения органического сенсибилизатора: СЭ утилизирует солнечное излучение в относительно узкой коротковолновой области солнечного спектра (400-750 нм). Этот факт не позволяет повысить эффективность преобразования солнечной энергии в данном МО СЭ, так как значительная часть энергии солнечного спектра в длинноволновой и ближней инфракрасной области в нем не утилизируется.
Известен тандемный СЭ на основе двух МО СЭ, который предложил О.И. Шевалеевский с сотрудниками в 2003 г.: О. Shevaleevski, L. Larina, K.S. Lim "Nanocrystalline tandem photovoltaic cell with twin dye-sensitized anodes". IEEE Conf. Publ. Proc. 3rd World Conference on Photovoltaic Energy Conversion, Vol. 1, p. 23-26 (2003). Особенностью указанного тандемного МО СЭ является использование металлического платинизированного противоэлектрода в виде проницаемой для электролита сетки, расположенного между двумя МО СЭ, фоточувствительные области которых ориентированы навстречу друг другу.
Главным недостатком предложенной тандемной схемы является конструктивная сложность установки промежуточного сетчатого противоэлектрода, а также значительное ослабление интенсивности светового потока после прохождения через частично непрозрачный сетчатый электрод. В результате в предложенной тандемной схеме наблюдается незначительное увеличение эффективности преобразования световой энергии по сравнению с эффективностью верхнего по ходу светового потока МО СЭ.
Известен сенсибилизированный красителем МО СЭ для выработки электричества в условиях прямого солнечного освещения, в котором фотоэлектрод выполнен в виде фотопреобразующего мезопористого наноструктурированного слоя из наночастиц диоксида титана или другого металло-оксида, сенсибилизированных молекулами красителя (заявка US 2005/0067009, опубл. 31.03.2005). Для увеличения эффективности данного МО СЭ авторы используют просветляющий буферный слой, который уменьшает потери, связанные с эффектом отражения светового потока от поверхности солнечного элемента, что, тем не менее, не привело к увеличению КПД по сравнению с полученным в МО СЭ, созданном М. Гретцелем.
Известен сенсибилизированный красителем МО СЭ с мезопористым наноструктурированным фотоэлектродом на основе диоксида титана, в котором для получения повышенной эффективности преобразования света выбрано наиболее оптимальное соотношение размеров (длина/ширина) наночастиц диоксида титана, которые использованы для формирования фотоэлектрода (ЕР 2613330, опубл. 10.07.2013). Главным недостатком этого известного сенсибилизированного красителем МО СЭ является низкая эффективность преобразования света - КПД равен 6,4%.
В указанных известных МО СЭ в качестве материала для противоэлектрода используется платина, что существенно повышает стоимость СЭ. Сегодня научный и инженерный поиск направлен на оптимизацию конструкции сенсибилизированных красителями МО СЭ и удешевление их стоимости за счет использования новых перспективных материалов. Последнее касается разработки альтернативных типов противоэлектродов для СЭ с целью замены в них дорогостоящей платины. Одно из возможных направлений связано с разработкой для этой цели тонкопленочных противолектродов на основе композитов из графена и наночастиц металла.
Наиболее близким к предлагаемому МО СЭ является металлооксидный солнечный элемент (прототип), описанный в работе X. Cui, J. Xiao, Y.Wu et al. ("A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells" Angew. Chem. Int. Ed. 55, 2016, 6708-6712). СЭ-прототип содержит тонкопленочный противоэлектрод, выполненный из композиционного материала на основе графена и наночастиц кобальта.
Главным недостатком МО СЭ-прототипа является низкая эффективность преобразования света, которая наблюдалась в представленных образцах с противоэлектродами на основе композитов графена и различных металлов (Со, Mn, Fe, Ni, Cu - Со наиболее эффективен), по сравнению с эффективностью эталонного образца МО СЭ с традиционным противоэлектродом на основе платины.
Сущность изобретения
Задачей заявляемого изобретения является разработка сенсибилизированного поглощающей свет субстанцией МО СЭ, конструкция которого обеспечит стабильную работу устройства, высокую эффективность преобразования солнечной энергии в электрическую.
Решение поставленной задачи достигается предлагаемым металлооксидным солнечным элементом на основе наноструктурированных слоев металло-оксида, сенсибилизированного поглощающей свет субстанцией, включающий проводящий слой из оксида олова, допированного фтором или индием, и противоэлектрод, при этом в качестве поглощающей свет субстанции он содержит органический краситель или квантовые точки, а противоэлектрод выполнен в виде пленки из композитного материала на основе графена и наночастиц редкоземельного элемента, нанесенной на проводящее покрытие из оксида олова, допированного фтором или индием.
В композитном материале на основе графена и наночастиц редкоземельного элемента, редкоземельный элемент может быть выбран из группы: цирконий, гольмий, иттрий.
Наноструктурированный металло-оксид может быть выбран из группы: диоксид титана, оксид цинка, диоксид циркония, оксид никеля, оксид железа или их смеси.
Органический краситель может поглощать свет в диапазоне 400-750 нм, а квантовые точки - в диапазоне 500-1300 нм солнечного спектра.
Использование в предлагаемом МО СЭ в качестве материала для противоэлектрода композита на основе графена и наночастиц редкоземельного элемента (Zr, Но или Y) привело к существенному повышению эффективности преобразования солнечной энергии в электрическую по сравнению с модификацией МО СЭ, описанной в прототипе, в которой противоэлектрод выполнен из композита на основе графена и таких металлов, как Mn, Fe, Со, Ni, или Cu.
На чертеже представлена схема предлагаемого МО СЭ.
В качестве верхней подложки (по ходу падающего светового потока) в предлагаемом МО СЭ используется прозрачная стеклянная пластина (1а), покрытая со стороны, противоположной направлению светового потока, прозрачным проводящим слоем оксида олова, допированного фтором или индием (2а), на который нанесен наноструктурированный слой поглощающих свет сенсибилизированных наночастиц металлооксида (3), представляющий собой мезопористую структуру. Под слоем металлооксида (3) расположен слой электролита (4), проникающий в объем мезопористого слоя металлооксида. В качестве сенсибилизатора используется органический краситель, поглощающий в диапазоне 400-750 нм, или квантовые точки, поглощающие в диапазоне 500-1300 нм. В качестве противоэлектрода используется тонкий слой композита на основе графена и наночастиц редкоземельного элемента (циркония, гольмия или иттрия)
(5), нанесенной на проводящее покрытие из оксида олова, допированного фтором или индием (2b). Проводящие слои (5) и (2b) нанесены на нижнюю стеклянную подложку (1b) со стороны, обращенной к направлению падающего светового потока. Токосъемные контакты, нанесенные на верхнюю (1 а) и нижнюю подложки (2а) подключены к нагрузке (6).
При освещении поверхности МО СЭ в объеме наноструктурированного слоя происходит процесс захвата квантов света молекулами сенсибилизатора, что инициирует перенос электрона из основного в возбужденное состояние молекулы, и последующий перенос фотоэлектрона с верхнего уровня молекулы сенсибилизатора в зону проводимости диоксида титана. Далее, за счет диффузии, происходит процесс транспорта электронов через объем наноструктурированного слоя в направлении верхнего токосъемного контакта МО СЭ. Роль электролита в системе заключается в восполнении носителей заряда в молекулах красителя через редокс-пару от противоэлектрода, выполненного из композитного материала на основе графена и наночастиц Zr.
Приводим пример осуществления изобретения и данные, полученные при измерении фотоэлектрических параметров (включая КПД) образца МО СЭ, в котором в качестве материала для противоэлектрода был использован композит на основе графена и наночастиц редкоземельного элемента Zr.
Пример.
Функционирование предлагаемого МО СЭ с противоэлектродом на основе графена и наночастиц редкоземельного элемента Zr было испытано на изготовленном лабораторном образце на основе наноструктурированного слоя диоксида титана, сенсибилизированного красителем N719. поглощающим солнечный свет в области 400-750 нм. При этом для сравнения в качестве эталонного МО СЭ был использован аналогичный элемент, сконструированный с использованием традиционного противоэлектрода на основе платины.
Предлагаемый МО СЭ был сформирован на прозрачной стеклянной подложке, нижняя часть которой, по ходу светового потока, покрыта прозрачным электрическим контактом на основе оксида олова, допированного фтором (FTO), с удельным сопротивлением 10 ом × см. На поверхности проводящего слоя был сформирован ианоструктурированный слой толщиной 10 мкм, состоящий из наночастиц диоксида титана (TiO2) размером ~ 20 нм. Наноструктурированный слой состоит из отдельных наночастиц TiO2, которые имеют между собой электрический контакт и представляют мезопористую структуру с размерами пор около 20 нм. Поверхность наноструктурированного слоя и наночастицы в объеме слоя покрыты молекулами сенсибилизатора N719 (Solaronix, Швейцария). Пространство мезопористого объема заполнялось йод-содержащим электролитом. Ианоструктурированный слой диоксида титана примыкал к противоэлектроду, выполненному в виде проводящего слоя толщиной около 50 нм из композитного материала на основе графена и наночастиц редкоземельного элемента Zr, нанесенного на проводящий слой из FTO на нижней стеклянной подложке. Подключение к нагрузке МО СЭ осуществлялось по схеме, которая проиллюстрирована на фиг.
В качестве сравнительного эталонного СЭ при тестировании работы разработанного МО СЭ с противоэлектродом на основе графена был использован МО СЭ, конструкция которого были аналогичной описанному лабораторному образцу, с той разницей, что в нем был использован традиционный противоэлектрод на основе платины с толщиной металлического слоя около 50 нм.
Сравнительные измерения характеристик предлагаемого МО СЭ с противоэлектродом из композита на основе графена и наночастиц Zr и МО СЭ с традиционным противоэлектродом на основе платины были проведены при освещении указанных МО СЭ солнечным имитатором в режиме AM1,5 (1000 Вт/м2) и показали следующие результаты. В предлагаемом МО СЭ плотность тока короткого замыкания составила 16,8 мА/см2, напряжение холостого хода - 0,73 В, фактор заполнения - 0,68 и КПД - 8,3%. В эталонном МО СЭ с противоэлектродом на основе платины соответствующие величины составили: плотность тока короткого замьщания - 15,3 мА/см2, напряжение холостого хода - 0,75 В, фактор заполнения - 0,65 и КПД - 7,4%.
Полученные данные свидетельствуют о том, что заявляемый МО СЭ обладает более высокой эффективностью преобразования солнечной энергии в сравнении с МО СЭ, в котором был использован традиционный противоэлектрод на основе платины. В настоящее время конструкции МО СЭ с противоэлектродами из композитных материалов на основе графена и наночастиц редкоземельных элементов неизвестны.
Таким образом, предлагаемый МО СЭ позволяет повысить эффективность преобразования солнечной энергии в электрическую. Его конструкция отличается достаточной простотой и обеспечивает стабильную работу устройства.
Claims (4)
1. Металлооксидный солнечный элемент на основе наноструктурированных слоев металлооксида, сенсибилизированного поглощающей свет субстанцией, включающий проводящий слой из оксида олова, допированного фтором или индием, и противоэлектрод, при этом в качестве поглощающей свет субстанции он содержит органический краситель или квантовые точки, а противоэлектрод выполнен в виде пленки из композитного материала на основе графена и наночастиц редкоземельного элемента, нанесенной на проводящее покрытие из оксида олова, допированного фтором или индием.
2. Металлооксидный солнечный элемент по п. 1, отличающийся тем, что в композитном материале на основе графена и наночастиц редкоземельного элемента редкоземельный элемент выбран из группы: цирконий, гольмий, иттрий.
3. Металлооксидный солнечный элемент по п. 1, отличающийся тем, что наноструктурированный металлооксид выбран из группы: диоксид титана, оксид цинка, диоксид циркония, оксид никеля, оксид железа или их смеси.
4. Металлооксидный солнечный элемент по п. 1, отличающийся тем, что органический краситель поглощает свет в диапазоне 400-750 нм, а квантовые точки - в диапазоне 500-1300 нм солнечного спектра.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018134590A RU2698533C1 (ru) | 2018-10-02 | 2018-10-02 | Металлооксидный солнечный элемент |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018134590A RU2698533C1 (ru) | 2018-10-02 | 2018-10-02 | Металлооксидный солнечный элемент |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2698533C1 true RU2698533C1 (ru) | 2019-08-28 |
Family
ID=67851595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018134590A RU2698533C1 (ru) | 2018-10-02 | 2018-10-02 | Металлооксидный солнечный элемент |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2698533C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1528579A2 (en) * | 2003-10-31 | 2005-05-04 | Korea Institute Of Science And Technology | Dye-sensitized solar cell based on electrospun ultra-fine titanium dioxide fibers and fabrication method thereof |
US20090056808A1 (en) * | 2007-08-29 | 2009-03-05 | Seong-Mu Jo | Dye-sensitized solar cell with metal oxide layer containing metal oxide nanoparticles produced by electrospnning and method for manufacturing same |
US20110061722A1 (en) * | 2009-09-08 | 2011-03-17 | Seunghoon Ryu | Dye-sensitized solar cell and manufacturing method of the same |
RU2531767C1 (ru) * | 2013-05-06 | 2014-10-27 | Открытое акционерное общество "Нефтяная компания "Роснефть" | Тандемный солнечный фотопреобразователь |
RU2626752C1 (ru) * | 2016-04-26 | 2017-07-31 | Открытое акционерное общество "Нефтяная компания "Роснефть" | Тандемный металлооксидный солнечный элемент |
RU2649239C1 (ru) * | 2016-12-01 | 2018-03-30 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Сенсибилизированный красителем металлооксидный солнечный элемент |
-
2018
- 2018-10-02 RU RU2018134590A patent/RU2698533C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1528579A2 (en) * | 2003-10-31 | 2005-05-04 | Korea Institute Of Science And Technology | Dye-sensitized solar cell based on electrospun ultra-fine titanium dioxide fibers and fabrication method thereof |
US20090056808A1 (en) * | 2007-08-29 | 2009-03-05 | Seong-Mu Jo | Dye-sensitized solar cell with metal oxide layer containing metal oxide nanoparticles produced by electrospnning and method for manufacturing same |
US20110061722A1 (en) * | 2009-09-08 | 2011-03-17 | Seunghoon Ryu | Dye-sensitized solar cell and manufacturing method of the same |
RU2531767C1 (ru) * | 2013-05-06 | 2014-10-27 | Открытое акционерное общество "Нефтяная компания "Роснефть" | Тандемный солнечный фотопреобразователь |
RU2626752C1 (ru) * | 2016-04-26 | 2017-07-31 | Открытое акционерное общество "Нефтяная компания "Роснефть" | Тандемный металлооксидный солнечный элемент |
RU2649239C1 (ru) * | 2016-12-01 | 2018-03-30 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Сенсибилизированный красителем металлооксидный солнечный элемент |
Non-Patent Citations (1)
Title |
---|
X. Cui et al. "A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells", Angew. Chem. Int. Ed. 55, 2016, 6708-6712. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ali et al. | Advances in nanostructured thin film materials for solar cell applications | |
GB2559800B (en) | Multijunction photovoltaic device | |
CN112018100A (zh) | 一种硅/钙钛矿叠层太阳能电池 | |
CN101393938A (zh) | 宽禁带半导体纳米管/线阵列膜及其制备方法、一种光电极 | |
CN104021941A (zh) | 具有高效电荷分离层的光伏电池 | |
Lin et al. | Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes | |
Luo et al. | MnS passivation layer for highly efficient ZnO–based quantum dot-sensitized solar cells | |
Patel et al. | A study of the optical properties of wide bandgap oxides for a transparent photovoltaics platform | |
Han et al. | High efficiency of dye-sensitized solar cell and module | |
RU2531767C1 (ru) | Тандемный солнечный фотопреобразователь | |
Yang et al. | Fully printable transparent monolithic solid-state dye-sensitized solar cell with mesoscopic indium tin oxide counter electrode | |
Alfa et al. | Fabrication and Characterisation of Titanium Dioxide Based Dye Sensitized Solar Cell using Flame of the Forest Dye | |
Lin et al. | Back-contact perovskite solar cells | |
RU2698533C1 (ru) | Металлооксидный солнечный элемент | |
Mahesh et al. | TiO2 microstructure, fabrication of thin film solar cells and introduction to dye sensitized solar cells | |
Khan et al. | Nanomaterials for Solar Cells | |
RU2626752C1 (ru) | Тандемный металлооксидный солнечный элемент | |
Barzic | Practices to enhance conversion efficiencies in solar cell | |
Ribeiro et al. | Dye-sensitized solar cells: novel concepts, materials, and state-of-the-art performances | |
RU2531768C1 (ru) | Двусторонний солнечный фотопреобразователь (варианты) | |
Nagata et al. | Development of dye-sensitized solar cells | |
Lyu | Design, synthesis and study of functional organometallic ruthenium complexes for dye-sensitized solar cells and photoelectrochemical cells | |
Assi et al. | Conductive polymer dye sensitive solar cell (DSSC) for improving the efficiency | |
Dong et al. | Theoretical analysis and comparison of Third Generation Solar Cells | |
Widhiyanuriyawan et al. | Fabrication of Perovskite Solar Cell (PSC) Using NiO/GO Material |