RU2698524C1 - Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах - Google Patents

Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах Download PDF

Info

Publication number
RU2698524C1
RU2698524C1 RU2018130619A RU2018130619A RU2698524C1 RU 2698524 C1 RU2698524 C1 RU 2698524C1 RU 2018130619 A RU2018130619 A RU 2018130619A RU 2018130619 A RU2018130619 A RU 2018130619A RU 2698524 C1 RU2698524 C1 RU 2698524C1
Authority
RU
Russia
Prior art keywords
electron
frequency
waveguide
accelerometer
khz
Prior art date
Application number
RU2018130619A
Other languages
English (en)
Inventor
Сергей Вольдемарович Федоров
Михаил Павлович Козочкин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН")
Priority to RU2018130619A priority Critical patent/RU2698524C1/ru
Application granted granted Critical
Publication of RU2698524C1 publication Critical patent/RU2698524C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/12Measuring characteristics of vibrations in solids by using direct conduction to the detector of longitudinal or not specified vibrations
    • G01H1/14Frequency

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Изобретение относится к области машиностроения. Сущность изобретения заключается в том, что способ мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов дополнительно содержит этапы, на которых в качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе воздействия импульса электронного пучка регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала и соседнюю более высокочастотную октаву, сравнивают полученные временные зависимости эффективных значений сигналов с экспериментально полученными эталонными зависимостями и по результатам сравнения судят о достаточности энергии электронно-лучевого импульса или результате протекания фазового превращения. Технический результат – повышение точности настройки аппаратуры, обеспечение производительности электронно-пучковой обработки. 4 ил.

Description

Изобретение относится к машиностроению, преимущественно к термической и химико-термической обработке металлов и сплавов в вакуумной камере импульсными электронными пучками, и может быть использовано для оперативного мониторинга результирующих показателей процесса обработки.
Из уровня техники известны способы мониторинга фазовых превращений, сопровождающих термическое воздействие, заключающиеся в том, что границы фазовых переходов определяют с помощью датчика акустической эмиссии, присоединяемого к обрабатываемому образцу (Патент РФ №2433190, опубл. 10.11.2011; 2. Вьюненко Ю.Н., Черняева Е.В. Особенности акустической эмиссии при мартенситных превращениях в сплаве TiNi.//Вестник Тамбовского университета. Серия: естественные и технические науки. Т. 21, №31. 2016. С. 917-921).
Основным недостатком приведенного аналога является то, что датчик акустической эмиссии устанавливается в непосредственной близости от обрабатываемого образца. Такой способ затруднительно использовать в вакуумной камере при подаче высокоэнергетических электронных импульсов, поскольку рядом с электронной пушкой возникают мощные электромагнитные помехи, выводящие из строя и сам датчик, и расположенную рядом аппаратуру. Кроме этого, провода, подсоединяемые к датчику, создают трудности для организации надежного функционирования устройств, установленных в вакуумной камере.
Наиболее близким к предлагаемому способу по количеству общих существенных признаков и достигаемому техническому результату - прототипом - является способ мониторинга фазовых превращений в облучаемом объекте при изменении его температуры, заключающийся в том, что к обрабатываемой заготовке присоединяют волновод, выходящий за пределы зоны обработки, на котором закрепляют датчик виброакустических колебаний, информация с которого обрабатывается с помощью компьютера (Воронцов В.Б., Журавлев Д.В. Связь структуры сигналов акустической эмиссии при кристаллизации А1 с механизмом формирования твердой фазы из расплава.//Вестник Новгородского государственного университета, №67. 2012. С. 8-13).
Основным недостатком известного технического решения является то, что оно не предназначено для работы в вакуумной камере в условиях мощных электромагнитных помех. Волновод, выполненный в виде полого цилиндрического стержня с прямолинейной осью, предназначен для установки внутри его рабочей зоны термопары и вывода необходимой проводки к регистрирующей аппаратуре, а также для безопасного контакта датчика акустической эмиссии с зоной высоких температур. С помощью описанного волновода нельзя вывести датчик акустической эмиссии из зоны электромагнитных помех на достаточное расстояние. Это связано с невозможностью его изгиба, большим диаметром и быстрым затуханием высокочастотных колебаний (акустическая эмиссия предполагает регистрацию колебаний в частотном диапазоне от 50 до 1000 кГц) с ростом расстояния до источника вибраций. Эксперименты показали, что для надежной регистрации колебаний при работе электронной пушки необходимо регистрирующую аппаратуру относить на 2 и более метров от зоны обработки.
Технической проблемой, на решение которой направленно заявленное изобретение, является уменьшение влияния электромагнитных помех, упрощение процедуры регистрации сигналов вибраций при облучении деталей в вакуумной камере с помощью электронной пушки, упрощение процедуры сравнения объемов происходящих в детали превращений с эталонным значением по параметрам сигналов вибраций.
Технический результат заключается в повышении точности настройки аппаратуры, определяющей параметры импульсов электронного пучка воздействующего на объект, и обеспечении производительности электронно-пучковой обработки.
Поставленный технический результат достигается тем, что в способе мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов, заключающемся в том, что к обрабатываемому объекту присоединяют волновод, выходящий за пределы вакуумной камеры через вакуумный ввод, на волноводе закрепляют датчик колебаний, информация с которого обрабатывается с помощью компьютера, в качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе выполнения технологической операции регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в нескольких частотных диапазонах с момента подачи электронно-лучевого импульса до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу, где присутствуют наибольшие эффективные значения амплитуды сигнала, и соседнюю более высокую октаву, сравнивают полученные временные зависимости эффективных значений сигналов с экспериментально полученными эталонными зависимостями, по результатам сравнения судят о достаточности энергии электронно-лучевого импульса или результате протекания превращения.
Сущность заявленного изобретения поясняется следующим:
на фиг. 1 - схема установки аппаратуры для записи и анализа виброакустических (ВА) сигналов с акселерометра, возникающих после подачи электронного импульса;
на фиг. 2 - пример ВА сигнала, возникшего после подачи электронного импульса;
на фиг. 3 - пример изменения эффективной амплитуды в частотном диапазоне 11-22 кГц (фиг. 3а) и 22-44 кГц (фиг. 3б) при нормальном ходе мартенситного превращения, запускающегося в результате реакции образования нитридной фазы (NbHf)N;
на фиг. 4 - пример изменения эффективной амплитуды в частотном диапазоне 11-22 кГц (фиг. 4а) и 22-44 кГц (фиг. 4б) при вялой реакции образования мартенсита.
В соответствии с изобретением на фиг. 1 показана схема, реализующая аппаратную часть предлагаемого способа, где с обрабатываемым образцом 1 контактирует волновод 2, выполненный из гибкой проволоки, противоположный конец которого присоединен к принимающей пластине 3, на которой установлен акселерометр 4, выход которого подключен к предусилителю 5, подключаемому к аналоговому усилителю 6, на выходе которого установлен аналого-цифровой преобразователь (АЦП) 7, данные которого с помощью компьютера 8 сохраняются для последующей обработки и для вывода изображения на монитор компьютера 8.
На фиг. 2 показан пример ВА сигнала, возникшего в результате подачи электронного импульса на обрабатываемый образец 1. На примере показан короткий импульс 9, возникший в результате электромагнитной помехи в момент подачи электронного импульса, и временной участок в 1,2 мс, соответствующий запаздыванию ВА сигнала по отношению к электронному импульсу. На протяжении последующих 36 мс происходит выброс основной энергии ВА сигнала.
На фиг. 3 показан пример изменения эффективного значения ВА сигнала в диапазонах 11-22 кГц (фиг. 3а) и 22-44 кГц (фиг. 3б) при воздействии рабочего импульса на азотированную стальную пластину с нанесенным на ней слоем пленки, содержащей Nb и Hf при зарядном напряжении электронной пушки 22 кВ. После облучения такого образца электронным пучком происходит экзотермическая химическая реакция с образованием нитридной фазы (NbHf)N, которая, в свою очередь, запускает мартенситное превращение в модифицированном слое. Объемное содержание мартенситной фазы зависело от величины зарядного напряжения и имело случайный разброс. Однако экспериментальные исследования показали, что существует положительная корреляция между количественными показателями результатов реакции и эффективными значениями ВА сигнала.
На фиг. 4 показан аналогичный фиг. 3 пример прохождения вышеописанной реакции, но при зарядном напряжении 16 кВ. Если сравнивать графики изменения эффективной амплитуды на фиг. 3а и 4а, а также 3б и 4б, то видно, что качественно графики похожи, но их амплитуды различаются в 8-10 раз для полосы 11-22 кГц и в 3-5 раз для полосы 22-44 кГц.
В соответствии с фиг. 1 с обрабатываемого образца 1, установленного в вакуумной камере (на фиг. не показана) выводится гибкий волновод 2. Для вывода из вакуумной камеры участок волновода 2 уплотняется. Противоположный конец волновода 2 присоединен к принимающей пластине 3, на которой установлен датчик 4 колебаний, выполненный в виде акселерометра, выход которого подключен к предусилителю 5, подключаемому к аналоговому усилителю 6, на выходе которого установлен аналого-цифровой преобразователь (АЦП) 7, данные которого с помощью компьютера 8 сохраняются для последующей обработки и для вывода изображения на монитор компьютера 8.
Способ мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов 1 в вакуумных камерах под воздействием электронно-пучковых импульсов осуществляется следующим образом: к обрабатываемому объекту 1 присоединяют волновод 2, выходящий за пределы вакуумной камеры через вакуумный ввод, на волноводе 2 закрепляют на принимающей пластине 3 датчик 4 колебаний, информация с которого обрабатывается с помощью компьютера 8. В качестве волновода 2 используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе выполнения технологической операции регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах с момента подачи электронно-лучевого импульса до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу, где присутствуют наибольшие эффективные значения амплитуды сигнала, и соседнюю более высокую октаву, сравнивают полученные временные зависимости эффективных значений сигналов с экспериментально полученными эталонными зависимостями, по результатам сравнения судят о достаточности энергии электронно-лучевого импульса или результате протекания превращения.
Длина волновода должна быть достаточной, чтобы обеспечить приемлемый уровень электромагнитных помех. При необходимости регистрирующая аппаратура может размещаться за защитным экраном, уменьшающим электромагнитное воздействие на аппаратуру. В качестве волновода может использоваться, например, медная проволока диаметром 2-3 мм, которую легко уплотнить при выводе из вакуумной камеры и завести за защитный экран, где устанавливают регистрирующую аппаратуру.
Практика показала, что с увеличением длины волновода быстрее затухают относительно высокочастотные колебания. При одинаковой скорости распространения продольных волн за время движения колебательной энергии от источника до противоположного конца волновода высокочастотные составляющие совершат во столько раз больше циклов колебаний, во сколько раз их частота выше. Если на интервале 1,2 мс составляющая колебаний на частоте 500 кГц совершит 600 циклов колебаний, то составляющая на 50 кГц совершит только 60 циклов. Если доля потерь на каждом цикле одинакова, то очевидно, что на более низкой частоте энергии сохранится больше. Например, при одинаковой начальной амплитуде колебаний на 500 кГц и на 50 кГц и при одинаковом отношении q=ai+l/ai (отношение амплитуд в конце единичного цикла к амплитуде в начале цикла) отношение амплитуд на противоположном конце волновода будет q540. Это означает, что при q=0,9 на приемной пластине амплитуда высокочастотной составляющей (500 кГц) будет относиться к амплитуде низкочастотной составляющей (50 кГц), как 10-25. Практика тоже показала, что на большом удалении от источника возмущений в спектре колебаний пропадают или ослабляются высокочастотные составляющие. Эксперименты также показали, что, если при параллельной записи вибраций в диапазонах низких (от 4-х до 20 кГц) и высоких (до 1МГц) частот потом построить их огибающие (вся запись разбивается на небольшие участки времени, для каждого участка определяется эффективное значение, совокупность эффективных значений формирует огибающую), то они оказываются в значительной степени подобными. Это означает, что когда вибрации возбуждаются совокупностями очень коротких импульсов, то они формируют импульсы и на высоких, и на низких частотах. Поскольку при длинном волноводе вибрации на высоких частотах не удается выделить на фоне помех, то контроль сравнительно низкочастотных составляющих вибраций может осуществляться акселерометром. Большинство выпускаемых промышленностью акселерометров имеют резонансную частоту не более 100 кГц (Акселерометры пьезоэлектрические фирмы Брюль и Къер. http://asm-tm.ru/wp-content/uploads/2014/08/8309.pdf). Их линейная характеристика, которую допускается использовать в метрологических целях, значительно уже. Для целей мониторинга можно использовать весь частотный диапазон, но тогда допустимо давать оценку не в единицах ускорения, а в приращениях по отношению к предыдущему замеру или эталонному значению. Эти соображения и данные экспериментов показали, что достаточно использовать акселерометр с частотной характеристикой до 100 кГц.
Пример:
На фиг. 3 показан пример изменения эффективного значения ВА сигнала в октавных диапазонах 11-22 кГц (фиг. 3а) и 22-44 кГц (фиг. 3б) при воздействии рабочего импульса на азотированную пластину из стали 08Х17Т с нанесенным на ней слоем пленки, содержащей Nb и Hf при зарядном напряжении электронной пушки 22 кВ. После облучения такого образца электронным пучком запускается экзотермическая химическая реакция с образованием нитридной фазы (NbHf)N, которая в свою очередь вызывает мартенситное превращение в модифицированном слое. Объемное содержание мартенситной фазы зависело от величины зарядного напряжения и имело случайный разброс. Однако экспериментальные исследования показали, что существует положительная корреляция между количественными показателями результатов реакции и эффективными значениями ВА сигнала. На фиг. 4 показан другой пример прохождения реакции с образованием нитридной фазы при тех же условиях, как и на рис. 3, но при зарядном напряжении 16 кВ. Если сравнивать графики изменения эффективной амплитуды на фиг. 3а и 4а, а также 3б и 4б, то видно, что качественно графики похожи, но их амплитуды различаются в 8-10 раз для полосы 11-22 кГц и в 3-5 раз для полосы 22-44 кГц. Если заранее с помощью экспериментов были установлены эталонные значения эффективных амплитуд для обеих октав или одной, то в дальнейшем можно следить за отклонениями зависимостей эффективных значений от эталонных характеристик. Дело в том, что даже при постоянном зарядном напряжении энергетические характеристики могут иметь значительный разброс, что скажется на количестве новой фазы.
Кроме того, характер изменения эффективной амплитуды ВА сигналов после рабочего импульса может нести дополнительную информацию о протекании процесса преобразования в материале заготовки. Например, на фиг. 3а видно, что эффективная амплитуда до 10-ой мс находится на невысоком уровне и только потом переходит в быстрый рост. Начало основной реакции предваряло плавление и испарение материала, сопровождаемое короткими импульсами отдачи. Эти короткие импульсы и определили бурный рост амплитуды в диапазоне 22-44 кГц до 5-ой мс. (Чем короче импульсы, тем выше их амплитуда в высокочастотном диапазоне). На фиг. 4б тоже присутствует рост в октаве 22-44 кГц, но его амплитуда в 4 раза меньше, что и определило низкую активность дальнейшей реакции. Это отразилось на фиг. 4а. На основании таких данных можно принять решение о необходимости повторного импульса, возможно, с большим зарядным напряжением. Если нет возможностей мониторинга последствий облучения, установить недостатки обработки можно будет только с помощью дополнительных анализов состава поверхностного слоя изделия. Это существенно снижает производительность технологической операции.
С учетом изложенного можно сделать вывод о том, что поставленная задача - уменьшение влияния электромагнитных помех, упрощение процедуры регистрации сигналов вибраций при облучении деталей в вакуумной камере с помощью электронной пушки, упрощение процедуры сравнения объемов происходящих в детали превращений с эталонным значением по параметрам сигналов вибраций - решена, а заявленный технический результат - повышение точности настройки аппаратуры, определяющей параметры импульсов электронного пучка, воздействующего на объект, и обеспечении производительности электронно-пучковой обработки - достигнут.
Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в независимом пункте формулы признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности неизвестной на дату приоритета из уровня техники необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.
Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:
- объект, воплощающий заявленное техническое решение, при его осуществлении относится к электрофизическим методам обработки, в частности к электронно-пучковой обработке в вакуумных камерах;
- для заявленного объекта в том виде, как он охарактеризован в независимом пункте нижеизложенной формулы, подтверждена возможность его осуществления с помощью вышеописанных в заявке и/или известных из уровня техники на дату приоритета средств и методов;
- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.
Следовательно, заявленный объект соответствует критериям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Claims (1)

  1. Способ мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов, заключающийся в присоединении к обрабатываемому объекту волновода, выходящего за пределы вакуумной камеры через вакуумный ввод, закреплении на волноводе датчика колебаний и обработке информации с последнего с помощью компьютера, отличающийся тем, что в качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе воздействия импульса электронного пучка регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала и соседнюю более высокочастотную октаву, сравнивают полученные временные зависимости эффективных значений сигналов с экспериментально полученными эталонными зависимостями и по результатам сравнения судят о достаточности энергии электронно-лучевого импульса или результате протекания фазового превращения.
RU2018130619A 2018-08-23 2018-08-23 Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах RU2698524C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018130619A RU2698524C1 (ru) 2018-08-23 2018-08-23 Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018130619A RU2698524C1 (ru) 2018-08-23 2018-08-23 Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах

Publications (1)

Publication Number Publication Date
RU2698524C1 true RU2698524C1 (ru) 2019-08-28

Family

ID=67851357

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018130619A RU2698524C1 (ru) 2018-08-23 2018-08-23 Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах

Country Status (1)

Country Link
RU (1) RU2698524C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727338C1 (ru) * 2019-09-18 2020-07-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Способ акустического мониторинга электронно-пучковой технологии поверхностного легирования в вакуумных камерах
RU2727339C1 (ru) * 2019-09-18 2020-07-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Способ вывода звуковой информации о технологическом процессе электронно-пучкового воздействия
RU2763863C1 (ru) * 2020-12-11 2022-01-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Способ получения акустической информации для мониторинга технологического процесса поверхностного легирования керамического и твердосплавного инструмента

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738137A (en) * 1986-06-12 1988-04-19 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Acoustic emission frequency discrimination
RU2104515C1 (ru) * 1991-05-23 1998-02-10 Особое конструкторское бюро кабельной промышленности Способ определения границ фазовых переходов в полимерах
RU2008100973A (ru) * 2008-01-09 2009-07-20 Государственное образовательное учреждение высшего профессионального образования Ростовская-на-Дону государственная академия сельс Способ контроля размера кристаллов в процессе их роста из жидкой фазы
RU2478947C1 (ru) * 2011-11-10 2013-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный горный университет" (МГГУ) Способ контроля качества материалов методом акустической эмиссии

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738137A (en) * 1986-06-12 1988-04-19 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Acoustic emission frequency discrimination
RU2104515C1 (ru) * 1991-05-23 1998-02-10 Особое конструкторское бюро кабельной промышленности Способ определения границ фазовых переходов в полимерах
RU2008100973A (ru) * 2008-01-09 2009-07-20 Государственное образовательное учреждение высшего профессионального образования Ростовская-на-Дону государственная академия сельс Способ контроля размера кристаллов в процессе их роста из жидкой фазы
RU2478947C1 (ru) * 2011-11-10 2013-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный горный университет" (МГГУ) Способ контроля качества материалов методом акустической эмиссии

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Воронцов В.Б., Журавлев Д.В. Связь структуры сигналов акустической эмиссии при кристаллизации А1 с механизмом формирования твердой фазы из расплава. Вестник Новгородского государственного университета, N 67. 2012. Стр. 8-13. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727338C1 (ru) * 2019-09-18 2020-07-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Способ акустического мониторинга электронно-пучковой технологии поверхностного легирования в вакуумных камерах
RU2727339C1 (ru) * 2019-09-18 2020-07-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Способ вывода звуковой информации о технологическом процессе электронно-пучкового воздействия
RU2763863C1 (ru) * 2020-12-11 2022-01-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Способ получения акустической информации для мониторинга технологического процесса поверхностного легирования керамического и твердосплавного инструмента

Similar Documents

Publication Publication Date Title
RU2698524C1 (ru) Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах
Fedorov et al. Vibroacoustic diagnostics of surface electron beam alloying process of ferritic stainless steel
RU2727338C1 (ru) Способ акустического мониторинга электронно-пучковой технологии поверхностного легирования в вакуумных камерах
Bellotti et al. Nonlinear ultrasonic technique for the quantification of dislocation density in additive materials
KR20220003105A (ko) 레이저 초음파(lus) 측정 장비로 물체의 재료 특성을 추정하기 위한 방법 및 배열체
RU2702537C1 (ru) Способ оперативной оценки результатов электронно-пучкового термического воздействия на объекты в вакуумной камере
Nani Babu et al. Fatigue crack growth study in P91 and 316LN steels using acoustic emission
RU2727339C1 (ru) Способ вывода звуковой информации о технологическом процессе электронно-пучкового воздействия
Shiwa et al. Fatigue process evaluation of ultrasonic fatigue testing in high strength steel analyzed by acoustic emission and Non-linear ultrasonic
RU2661980C1 (ru) Способ пластической деформации алюминия и его сплавов
Shibkov et al. Mechanism of low-frequency discrete acoustic emission during intermittent creep of aluminum alloy
Ono et al. Application of correlation analysis to acoustic emission
Fedorov et al. Investigation of the Kinetics of the SHS Process, Initiated Using Electron-Beam Technology
Solovyov et al. Acoustic signals induced in a copper target under irradiation by a low-energy high-current electron beam
JP2019138712A (ja) 結晶粒径評価装置および結晶粒径評価方法
RU2763863C1 (ru) Способ получения акустической информации для мониторинга технологического процесса поверхностного легирования керамического и твердосплавного инструмента
RU2724209C1 (ru) Способ пластической деформации алюминия и его сплавов
US3282087A (en) Apparatus for generating ultrasonic waves
Khanzhin et al. Quantitative information on damage processes obtained in acoustic-emission measurements
Dong et al. Induced stress wave on the materials surface irradiated by high-intensity pulsed ion beam
Sergeev et al. Diagnostics of the HF-pumped ionospheric region using wide-band radio emission
Skal’s’ kyi et al. Acoustic-emission diagnostics of the initiation of fatigue fracture of 1201-T aluminum alloy
RU2122220C1 (ru) Способ сейсмической разведки
Ayoub et al. Generation of custom acoustic harmonic bursts from spherical helmholtz resonators using Q-switched Nd: YAG laser induced plasma
Frolov et al. Studying the features of transport processes in the upper ionosphere using HF-induced artificial ionospheric turbulence