RU2698151C1 - Система теплоснабжения - Google Patents

Система теплоснабжения Download PDF

Info

Publication number
RU2698151C1
RU2698151C1 RU2018119526A RU2018119526A RU2698151C1 RU 2698151 C1 RU2698151 C1 RU 2698151C1 RU 2018119526 A RU2018119526 A RU 2018119526A RU 2018119526 A RU2018119526 A RU 2018119526A RU 2698151 C1 RU2698151 C1 RU 2698151C1
Authority
RU
Russia
Prior art keywords
heat
network
return
supply
hydraulic
Prior art date
Application number
RU2018119526A
Other languages
English (en)
Inventor
Андрей Николаевич Макеев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва"
Priority to RU2018119526A priority Critical patent/RU2698151C1/ru
Application granted granted Critical
Publication of RU2698151C1 publication Critical patent/RU2698151C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/02Hot-water central heating systems with forced circulation, e.g. by pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

Изобретение относится к теплоэнергетике и может быть использовано для зависимого присоединения систем теплопотребления с возможностью организации импульсной и пульсирующей циркуляции теплоносителя на отдельных участках системы теплопотребления. Система теплоснабжения содержит источник теплоты, включенный с подающим и обратным трубопроводами тепловой сети, сетевой насос, установленный на обратном трубопроводе тепловой сети, систему теплопотребления с разводящими подающим и обратным трубопроводами, присоединенными к тепловой сети, ударный узел, установленный в подающий трубопровод тепловой сети, обратный клапан. Также содержит три гидравлических аккумулятора, регулятор давления и дополнительную зону тепловой нагрузки с разводящими подающим и обратным трубопроводами. Обратный клапан подключен к входу ударного узла и соединен с первым гидравлическим аккумулятором. Второй и третий гидравлические аккумуляторы подключены к входу и выходу насоса. Подающий трубопровод дополнительной зоны тепловой нагрузки подключен через первый гидравлический аккумулятор к обратному клапану, а обратный трубопровод дополнительной зоны тепловой нагрузки подключен через регулятор давления к обратному трубопроводу тепловой сети. Изобретение позволяет создать конструкцию системы теплоснабжения для зависимого присоединения абонентов к тепловой сети по зависимой схеме с возможностью организации импульсной и пульсирующей циркуляции теплоносителя на отдельных участках системы теплопотребления. 1 ил.

Description

Изобретение относится к теплоэнергетике и может быть использовано для зависимого присоединения систем теплопотребления с возможностью организации импульсной и пульсирующей циркуляции теплоносителя на отдельных участках системы теплопотребления.
Известна автономная система отопления для здания индивидуального пользования с зависимым присоединением системы теплопотребления, включающая замкнутый гидравлический контур с газовой подушкой, насосом, соединенным с теплогенератором гидродинамического кавитационного типа, и теплообменники, причем теплогенератор гидродинамического кавитационного типа содержит установленные последовательно предохранительный клапан, гидравлический таран и гидродинамический кавитатор. Роль газовой подушки выполняет напорный колпак гидравлического тарана, выход ударного клапана которого и выход предохранительного клапана объединены с входом насоса (RU 87501, МПК F24D 11/00, опубл. 10.10.2009).
Недостатком известного технического решения является относительная сложность конструкции, а также низкая надежность, обусловленная влиянием гидравлического удара на работу насоса.
Наиболее близким по технической сущности к предлагаемому техническому решению является система теплоснабжения, содержащая источник теплоты, включенный с подающим и обратным трубопроводами тепловой сети, подключенными к теплообменнику через сетевой насос, установленный на обратном трубопроводе тепловой сети, и систему теплопотребления с разводящими подающим и обратным трубопроводами, присоединенными к тепловой сети по независимой схеме через теплообменник, самовозбуждаемый генератор гидравлического удара установлен в подающий или обратный трубопровод тепловой сети, а импульсный нагнетатель по одну сторону эластичной диафрагмы гидравлически связан с подающим или обратным трубопроводом тепловой сети и со второй ее стороны последовательно через обратные клапаны входа и выхода включен в разводящий подающий или обратный трубопровод системы теплопотребления (RU 98060, МПК F24D 3/00, опубл. 27.09.2010).
Среди недостатков известной системы теплоснабжения следует отметить, что она не предназначена для работы с зависимым присоединением абонентов к тепловой сети. Кроме того, работа насоса в контуре тепловой сети в условиях периодических гидравлических ударов, создаваемых самовозбуждаемым генератором гидравлического удара, характеризуется относительно низкой надежностью.
Технический результат заключается в создании конструкции системы теплоснабжения для зависимого присоединения абонентов к тепловой сети по зависимой схеме с возможностью организации импульсной и пульсирующей циркуляции теплоносителя на отдельных участках системы теплопотребления.
Технический результат достигается за счет того, что система теплоснабжения содержит источник теплоты, включенный с подающим и обратным трубопроводами тепловой сети, сетевой насос, установленный на обратном трубопроводе тепловой сети, систему теплопотребления с разводящими подающим и обратным трубопроводами, присоединенными к тепловой сети, ударный узел, установленный в подающий трубопровод тепловой сети, обратный клапан. Также содержит три гидравлических аккумулятора, регулятор давления и дополнительную зону тепловой нагрузки с разводящими подающим и обратным трубопроводами. Обратный клапан подключен к входу ударного узла и соединен с первым гидравлическим аккумулятором. Второй и третий гидравлические аккумуляторы подключены к входу и выходу насоса. Подающий трубопровод дополнительной зоны тепловой нагрузки подключен через первый гидравлический аккумулятор к обратному клапану, а обратный трубопровод дополнительной зоны тепловой нагрузки подключен через регулятор давления к обратному трубопроводу тепловой сети.
Конструкция системы теплоснабжения представлена на чертеже.
Система теплоснабжения содержит источник теплоты 1, включенный с подающим и обратным трубопроводами тепловой сети 2 и 3. Сетевой насос 4 установлен на обратном трубопроводе тепловой сети 3. Система теплопотребления 5 с разводящими подающим 6 и обратным 7 трубопроводами присоединена к тепловой сети. Ударный узел 8 установлен в подающий трубопровод 2 тепловой сети. Обратный клапан 9 подключен к входу ударного узла 8 и соединен с первым гидравлическим аккумулятором 10. Второй и третий гидравлические аккумуляторы 11 и 12 подключены к входу и выходу насоса 4. Разводящий подающий трубопровод 13 дополнительной зоны тепловой нагрузки 14 подключен через первый гидравлический аккумулятор 10 к обратному клапану 9. А обратный трубопровод 15 дополнительной зоны тепловой нагрузки 14 подключен через регулятор давления 16 к обратному трубопроводу 3 тепловой сети.
Система теплоснабжения работает следующим образом. Сначала ее заполняют теплоносителем до полного удаления из нее воздуха. Затем выбирают способ осуществления движения теплоносителя в ее отдельных элементах системы теплопотребления – с традиционной циркуляцией теплоносителя или с возможностью организации импульсной и пульсирующей циркуляции на отдельных участках.
В случае необходимости организации традиционной циркуляции теплоносителя ударный узел 8 стопорится в открытом положении, а регулятор давления 16 используется как балансировочный вентиль для обеспечения регулирования теплового потока, циркулирующего через дополнительную зону тепловой нагрузки 14 относительно основной системы теплопотребления 5. После этого осуществляют нагревание теплоносителя в источнике теплоты 1 и его циркуляцию по подающему 2 и обратному 3 трубопроводам тепловой сети при помощи сетевого насоса 4.
Таким образом, подогретый в источнике теплоты 1 теплоноситель будет поступать через обратный клапан 9, первый гидравлический аккумулятор 10 и подающий трубопровод 13 в дополнительную зону тепловой нагрузки 14. Отдав запасенное тепло, теплоноситель покидает ее по обратному трубопроводу 15 дополнительной зоны тепловой нагрузки 14 и, минуя регулятор давления 16, поступит в обратный трубопровод тепловой сети 3 на вход сетевого насоса 4, а оттуда снова к источнику теплоты 1.
Поскольку ударный узел 8 находится в постоянно открытом положении, то подогретый в источнике теплоты 1 теплоноситель будет также поступать и в систему теплопотребления 5 по подающему трубопроводу 6. Отдав запасенное тепло, он покинет ее по обратному трубопроводу 7 системы теплопотребления 5, а затем поступит в обратный трубопровод тепловой сети 3 на вход сетевого насоса 4, а оттуда вновь к источнику теплоты 1.
Работа системы теплоснабжения по описанному выше алгоритму будет происходить до тех пор, пока будет присутствовать подогрев теплоносителя на источнике теплоты 1 и поддержание располагаемого давления в тепловой сети насосом 4. Гидравлические аккумуляторы 10, 11, 12 в этом случае будут выступать как расширительные баки, компенсируя температурное изменение объема теплоносителя.
В случае необходимости организации импульсной и пульсирующей циркуляции теплоносителя на отдельных участках системы теплопотребления ударный узел 8 должен быть настроен на автоматическое закрытие и последующее открытие его проходного сечения истекающим через него потоком теплоносителя. Регулятор давления 16 настраивают на поддержание большего по значению давления, чем располагаемый напор в тепловой сети, создаваемый сетевым насосом 4.
Затем осуществляют нагревание теплоносителя в источнике теплоты 1 и его циркуляцию по подающему 2 и обратному 3 трубопроводам тепловой сети при помощи сетевого насоса 4. В условиях различного гидравлического сопротивления для истечения теплоносителя в системе теплопотребления 5 и дополнительной зоне тепловой нагрузки 14, подогретый в источнике теплоты 1 теплоноситель при открытом проходном сечении ударного узла 8 будет поступать только в систему теплопотребления 5 по ее подающему трубопроводу 6. Отдав запасенное тепло, теплоноситель покинет систему теплопотребления 5 по обратному трубопроводу 7 и устремится в обратный трубопровод тепловой сети 3 на вход сетевого насоса 4, а оттуда снова поступит к источнику теплоты 1.
В некоторый момент времени ударный узел 8, настроенный на определенную скорость истечения через него теплоносителя, автоматически закроется, что в свою очередь спровоцирует появление гидравлического удара в трубопроводе тепловой сети. Положительная волна этого гидравлического удара начнет обеспечивать поступление подогретого теплоносителя через обратный клапан 9, первый гидравлический аккумулятор 10 в дополнительную зону тепловой нагрузки 14 по ее подающему трубопроводу 13. Отдав запасенное тепло, теплоноситель покинет зону тепловой нагрузки 14 по обратному трубопроводу 15 и, минуя регулятор давления 16, поступит в обратный трубопровод тепловой сети 3.
В это же время положительная волна гидравлического удара, отразившись от второго 11 и третьего 12 гидравлических аккумуляторов, сменится на отрицательную. При этом проходное сечение ударного узла 8 откроется для истечения подогретого теплоносителя в подающий трубопровод 6 системы теплопотребления 5, а обратный клапан 9 закроется, в результате чего поступление подогретого теплоносителя от источника теплоты 1 в первый гидравлический аккумулятор 10 прекратится.
С последующим закрытием проходного сечения ударного узла 8 процесс работы системы теплоснабжения повторится в описанной выше последовательности. При этом в самой системе теплопотребления 5 будет наблюдаться импульсная циркуляция теплоносителя, которая характеризуется изменением скорости движения теплоносителя от нуля до установленного максимума. В дополнительной зоне тепловой нагрузки 14 циркуляция теплоносителя будет пульсирующей, которая характеризуется изменением скорости циркуляции от минимума к максимуму при сохранении ее среднего значения больше нуля за счет сглаживания пульсаций скорости первым гидравлическим аккумулятором 10.
Импульсная и пульсирующая циркуляция теплоносителя могут быть использованы применительно к интенсификации теплообмена, а также для реализации эффекта самоочищения поверхностей теплопередачи теплоэнергетического оборудования от накипи и шлама.
В результате использования данной конструкции системы теплоснабжения с зависимым присоединением абонентов к тепловой сети обеспечиваются импульсная и пульсирующая циркуляция теплоносителя на отдельных участках системы теплопотребления, что может быть использовано для усиления располагаемого напора в отдельных зонах системы теплопотребления и интенсификации теплообменных процессов в ней. Кроме того, импульсная и пульсирующая циркуляция теплоносителя в теплоэнергетическом оборудовании будет способствовать эффекту самоочищения поверхностей теплообмена от накипи и шлама, содержащегося в теплоносителе.
Предлагаемая система теплоснабжения также отличается повышенной надежностью, которая достигается за счет установки гидравлических аккумуляторов на входе и выходе насоса, что позволяет снизить на него влияние импульсов гидравлического удара.

Claims (1)

  1. Система теплоснабжения, содержащая источник теплоты, включенный с подающим и обратным трубопроводами тепловой сети, сетевой насос, установленный на обратном трубопроводе тепловой сети, и систему теплопотребления с разводящими подающим и обратным трубопроводами, присоединенными к тепловой сети, ударный узел, установленный в подающий трубопровод тепловой сети, обратный клапан, отличающаяся тем, что содержит три гидравлических аккумулятора, регулятор давления и дополнительную зону тепловой нагрузки с разводящими подающим и обратным трубопроводами, причем обратный клапан подключен к входу ударного узла и соединен с первым гидравлическим аккумулятором, второй и третий гидравлические аккумуляторы подключены к входу и выходу насоса, подающий трубопровод дополнительной зоны тепловой нагрузки подключен через первый гидравлический аккумулятор к обратному клапану, а обратный трубопровод дополнительной зоны тепловой нагрузки подключен через регулятор давления к обратному трубопроводу тепловой сети.
RU2018119526A 2018-05-28 2018-05-28 Система теплоснабжения RU2698151C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018119526A RU2698151C1 (ru) 2018-05-28 2018-05-28 Система теплоснабжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018119526A RU2698151C1 (ru) 2018-05-28 2018-05-28 Система теплоснабжения

Publications (1)

Publication Number Publication Date
RU2698151C1 true RU2698151C1 (ru) 2019-08-22

Family

ID=67733938

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018119526A RU2698151C1 (ru) 2018-05-28 2018-05-28 Система теплоснабжения

Country Status (1)

Country Link
RU (1) RU2698151C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2771202C1 (ru) * 2021-12-13 2022-04-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Система теплоснабжения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2151344C1 (ru) * 1998-12-04 2000-06-20 Брянская государственная инженерно-технологическая академия Система водяного отопления
RU87501U1 (ru) * 2009-04-13 2009-10-10 Государственное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарева" Автономная система отопления для здания индивидуального пользования
CN101761972A (zh) * 2008-10-29 2010-06-30 张明亮 无负压生活热水给水系统
RU98060U1 (ru) * 2010-05-31 2010-09-27 Негосударственное научно-образовательное учреждение "Саранский Дом науки и техники Российского Союза научных и инженерных общественных организаций" (ННОУ "Саранский Дом науки и техники РСНИИОО") Система теплоснабжения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2151344C1 (ru) * 1998-12-04 2000-06-20 Брянская государственная инженерно-технологическая академия Система водяного отопления
CN101761972A (zh) * 2008-10-29 2010-06-30 张明亮 无负压生活热水给水系统
RU87501U1 (ru) * 2009-04-13 2009-10-10 Государственное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарева" Автономная система отопления для здания индивидуального пользования
RU98060U1 (ru) * 2010-05-31 2010-09-27 Негосударственное научно-образовательное учреждение "Саранский Дом науки и техники Российского Союза научных и инженерных общественных организаций" (ННОУ "Саранский Дом науки и техники РСНИИОО") Система теплоснабжения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2771202C1 (ru) * 2021-12-13 2022-04-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Система теплоснабжения

Similar Documents

Publication Publication Date Title
CA2455582A1 (en) Passive back-flushing thermal energy system
RU98060U1 (ru) Система теплоснабжения
AU2016359565B2 (en) Method and system of combined power plant for waste heat conversion to electrical energy, heating and cooling
CN109000413A (zh) 一种适用于水下平台的非能动舷外冷却系统
RU2698151C1 (ru) Система теплоснабжения
RU2716545C1 (ru) Система теплоснабжения и способ организации ее работы
MY186200A (en) System for passive heat removal from the pressurized water reactor through the steam generator
RU2019129723A (ru) Локальный теплопотребляющий блок и локальный теплогенерирующий блок для районной системы распределения тепловой энергии
CN108895062A (zh) 大容积油箱冷却过滤集成系统
RU2543465C1 (ru) Тепловой пункт
RU167942U1 (ru) Импульсный нагнетатель-теплообменник
RU102760U1 (ru) Тепловой пункт
RU168152U1 (ru) Импульсный нагнетатель
RU87501U1 (ru) Автономная система отопления для здания индивидуального пользования
RU2647254C1 (ru) Теплогенерирующая установка
CN210119714U (zh) 液体控温系统
RU189928U1 (ru) Водо-водяной теплообменник
RU2780439C1 (ru) Система солнечного теплоснабжения и горячего водоснабжения
Levsev et al. Increasing the heat transfer efficiency of sectional radiators in building heating systems
JP2008185226A (ja) 膨張タンク及び膨張タンクを用いた給湯システム
RU88104U1 (ru) Система отопления здания (варианты)
RU2716644C1 (ru) Энергетическая теплоутилизационная установка
RU2771202C1 (ru) Система теплоснабжения
RU2622599C1 (ru) Система химводоподготовки
JPS57192735A (en) Room cooling, heating and hot-water supplying device