RU2695287C1 - Способ измерения частотной зависимости комплексного коэффициента отражения звука от поверхности с использованием шумового сигнала - Google Patents
Способ измерения частотной зависимости комплексного коэффициента отражения звука от поверхности с использованием шумового сигнала Download PDFInfo
- Publication number
- RU2695287C1 RU2695287C1 RU2018141436A RU2018141436A RU2695287C1 RU 2695287 C1 RU2695287 C1 RU 2695287C1 RU 2018141436 A RU2018141436 A RU 2018141436A RU 2018141436 A RU2018141436 A RU 2018141436A RU 2695287 C1 RU2695287 C1 RU 2695287C1
- Authority
- RU
- Russia
- Prior art keywords
- emitter
- receiver
- complex
- frequency dependence
- current
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000010355 oscillation Effects 0.000 claims abstract description 25
- 238000001228 spectrum Methods 0.000 claims abstract description 23
- 230000001678 irradiating effect Effects 0.000 claims abstract description 11
- 230000001934 delay Effects 0.000 claims abstract description 10
- 238000012935 Averaging Methods 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims abstract description 9
- 230000005284 excitation Effects 0.000 claims abstract description 3
- 238000012360 testing method Methods 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 7
- 238000002834 transmittance Methods 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract 2
- 239000000126 substance Substances 0.000 abstract 1
- 230000001629 suppression Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 244000309464 bull Species 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Изобретение относится к метрологии. Способ измерения частотной зависимости коэффициента отражения звука заключается в расположении излучателя, исследуемой поверхности и приемника в гидроакустическом бассейне, возбуждении излучателя линейно частотно-модулированным сигналом с заданными параметрами, регистрации мгновенных значений тока в цепи излучателя и выходного напряжения приемника, определении комплексной частотной зависимости передаточного импеданса, подавлении в полученной зависимости осцилляций, обусловленных влиянием отраженных сигналов, скользящим комплексным взвешенным усреднением с использованием взвешивающих функций, получении комплексной частотной зависимости передаточного импеданса пары излучатель-приемник и зависимости, в которой сохранена осцилляция, обусловленная первым по времени прихода отражением, и подавлены осцилляции от второго и более поздних по времени прихода отражений, определении частотной зависимости комплексного коэффициента отражения с учетом временных задержек облучающего сигнала и сигнала, отраженного исследуемой поверхностью, и коэффициента пропускания пространственного фильтра, реализуемого обработкой скользящим комплексным взвешенным усреднением. Излучатель возбуждают шумовым сигналом, мощность которого распределена в заданной полосе частот, регистрируют мгновенные спектры тока в цепи излучателя и выходного напряжения приемника, по мгновенным спектрам тока излучателя и напряжения рассчитывают спектр мощности тока в цепи излучателя и взаимный спектр тока излучателя и напряжения приемника, а комплексную частотную зависимость передаточного импеданса пары излучатель-приемник в реверберационном звуковом поле получают как отношение взаимного спектра к спектру мощности. Технический результат – повышение точности. 6 ил.
Description
Изобретение относится к испытаниям акустических свойств материалов и может быть использовано для измерения частотной зависимости коэффициента отражения звука от поверхности в лабораторных и натурных условиях при различных углах падения звуковой волны.
Известен способ измерения коэффициента отражения звука от поверхности [1], который основан на облучении исследуемой поверхности акустическим сигналом изменяющейся частоты, регистрации приемником интерференционного сигнала, представляющего собой сумму облучающего сигнала и сигнала, отраженного исследуемой поверхностью, определении коэффициента отражения по отношению максимума к минимуму интерференционного сигнала.
Недостатками известного способа является погрешность измерений, обусловленная влиянием сигналов, отраженных границами среды, в которой выполняют измерения (стенки лабораторного гидроакустического бассейна либо акустической камеры, дно и поверхность водоема). Этот способ позволяет определять коэффициент отражения только на дискретном ряде частот, при этом получаемые результаты не могут быть однозначно привязаны к частотам максимума или минимума интерференционного сигнала. Результат измерений отягощен погрешностью, если коэффициент отражения существенно изменяется с частотой.
Известен способ измерения частотной зависимости коэффициента отражения звука от поверхности, принятый за прототип [2]. Способ заключается в расположении излучателя, исследуемой поверхности и приемника в гидроакустическом бассейне так, чтобы первым по времени прихода на приемник отраженным сигналом был сигнал от исследуемой поверхности, облучении исследуемой поверхности и приемника линейно частотно-модулированным сигналом, регистрации тока излучателя, регистрации приемником интерференционного акустического сигнала, представляющего собой сумму облучающего и отраженных сигналов, получении комплексной частотной зависимости передаточного импеданса пары излучатель-приемник, выделении в полученной зависимости комплексной частотной зависимости осцилляции, обусловленной отражением сигнала облучения от исследуемой поверхности, определении комплексной частотной зависимости коэффициента отражения звука по полученной частотной зависимости осцилляции.
Недостаток прототипа заключается в том, что вследствие нестационарности линейно частотно-модулированного сигнала при его использовании в качестве сигнала облучения результат измерений частотной зависимости коэффициента оказывается искажен переходным процессом, также возникает погрешность, обусловленная несовпадением мгновенных частот облучающего и отраженного от исследуемой поверхности сигналов.
Техническим результатом, получаемым от внедрения изобретения, является повышение точности измерения частотной зависимости коэффициента отражения за счет исключения погрешностей, обусловленных нестационарностью сигнала облучения.
Данный технический результат достигают за счет того, что в известном способе, заключающемся в расположении излучателя, исследуемой поверхности и приемника в гидроакустическом бассейне так, чтобы первым по времени прихода на приемник отраженным сигналом был сигнал от исследуемой поверхности, определении относительно начала излучения временных задержек прихода на приемник облучающего и отраженных сигналов, возбуждении излучателя линейно частотно-модулированным сигналом с заданными параметрами, регистрации мгновенных значений тока в цепи излучателя и выходного напряжения приемника, определении по полученным значениям тока и напряжения комплексной частотной зависимости передаточного импеданса пары излучатель-приемник в реверберационном звуковом поле, подавлении в полученной зависимости осцилляций, обусловленных влиянием отраженных сигналов, скользящим комплексным взвешенным усреднением с использованием взвешивающих функций, которые конструируют исходя из временных задержек облучающего и отраженных сигналов, получении комплексной частотной зависимости передаточного импеданса пары излучатель-приемник в которой подавлены осцилляции, обусловленные отраженными сигналами, и зависимости в которой сохранена осцилляция, обусловленная первым по времени прихода отражением, и подавлены осцилляции от второго и более поздних по времени прихода отражений, определении частотной зависимости комплексного коэффициента отражения по отношению к
где τ0 и τ1 - временные задержки облучающего сигнала и сигнала, отраженного исследуемой поверхностью, соответственно, Δτ = τ1 - τ0, K(Δτ) - коэффициент пропускания пространственного фильтра, реализуемого обработкой скользящим комплексным взвешенным усреднением при получении , излучатель возбуждают шумовым сигналом, мощность которого распределена в заданной полосе частот, регистрируют мгновенные спектры тока в цепи излучателя и выходного напряжения приемника, по мгновенным спектрам тока и напряжения рассчитывают спектр мощности тока в цепи излучателя и взаимный спектр тока излучателя и напряжения приемника, а комплексную частотную зависимость передаточного импеданса пары излучатель-приемник в реверберационном звуковом поле получают как отношение взаимного спектра к спектру мощности.
Изобретение поясняется чертежами. На фиг. 1 представлена схема реализации способа при измерениях в гидроакустическом бассейне (ГАБ); на фиг. 2-6 приведены диаграммы, поясняющие работу способа.
Излучатель 2, исследуемую поверхность 1 и приемник 3 располагают в ГАБ, как это показано на фиг. 1, чтобы первым по времени прихода на приемник отраженным сигналом был сигнал 5, отраженный исследуемой поверхностью. В памяти ЭВМ 10 формируют шумовой сигнал, мощность которого распределена в заданной полосе частот. С помощью цифроаналогового преобразователя 11 цифровой шумовой сигнал преобразуют в электрическое напряжение и подают на усилитель мощности 7. Напряжением с выхода усилителя мощности возбуждают излучатель, акустическим сигналом которого облучают приемник и исследуемую поверхность. При этом на приемник падают прямая звуковая волна излучателя 4, звуковая волна 5, отраженная исследуемой поверхностью, и звуковые волны 6, отраженные посторонними поверхностями, условно показанные на фиг.1 отражениями от стенок ГАБ. С помощью переключателя 8 через усилитель 9 на аналого-цифровой преобразователь 12 подают выходное напряжение гидрофона или напряжение, падающее на калиброванном сопротивлении R в цепи излучателя. Реализации мгновенных значений напряжений записывают в память ЭВМ, которая выполняет математическую обработку.
Процедура измерений и математическая обработка включают в себя следующие операции. Относительно сигнала возбуждения излучателя определяют временные задержки прихода на приемник облучающего и отраженных сигналов. Мгновенные значения тока излучателя получают по мгновенным значениям напряжения, падающего на калиброванном сопротивлении R, и значению этого сопротивления. Регистрируют мгновенные спектры тока и напряжения которые получают преобразованием Фурье реализаций мгновенных значений тока излучателя и напряжения на выходе приемника (k - означает номер реализации). По полученным мгновенным спектрам рассчитывают спектр мощности тока и взаимный спектр тока и напряжения (<…>обозначает усреднение по реализациям, * - комплексное сопряжение).
Комплексную частотную зависимость передаточного импеданса пары излучатель-приемник в реверберационном поле определяют, как отношение взаимного спектра к спектру мощности:
В полученной частотной зависимости подавляют осцилляции, обусловленные влиянием отраженных сигналов, для чего зависимость подвергают обработке по методу скользящего комплексного взвешенного усреднения (СКВУ) [3-5]:
где n - количество отражений, подлежащих подавлению, τj - временная задержка i-го отраженного сигнала относительно сигнала облучения, Δву - частотный интервал взвешенного усреднения, Hву(f) - взвешивающая функция, полученная сверткой n единичных прямоугольных окон шириной τj.
Комплексную частотную зависимость получают, подавив в зависимости осцилляции, начиная с осцилляции, обусловленной первым по времени прихода отраженным сигналом.
Комплексную частотную зависимость получают, сохранив при обработке по формуле (1) осцилляцию первого по времени прихода отраженного сигнала (отражение от исследуемой поверхности) и подавив осцилляции, обусловленные более поздними по времени прихода отраженными сигналами (отражения от посторонних поверхностей).
Вычисляют K(Δτ) - коэффициент пропускания пространственного фильтра, реализуемого обработкой по методу СКВУ, при получении
Частотную зависимость осцилляции, обусловленной отражением звука от исследуемой поверхности, с учетом затухания звука при распространении сферической волны и характеристики пропускания реализуемого обработкой по методу СКВУ пространственного фильтра получают по формуле:
где τ0 и τ1 - временные задержки облучающего сигнала и сигнала, отраженного исследуемой поверхностью, соответственно.
где Δτ = τ1 - τ0.
Изложенное выше проиллюстрировано результатами физического эксперимента при излучении шумового сигнала в частотном диапазоне от 1 до 6 кГц, представленными на фиг. 2 - 6.
На фиг. 2 представлен модуль частотной зависимости которую получили расположив излучатель и приемник в ГАБ так, чтобы первым по времени прихода на приемник отраженным сигналом был сигнал от поверхности воды в ГАБ - границы раздела сред вода-воздух, значение комплексного коэффициента отражения звука от которой известно и не зависит от частоты [6]. Осцилляции модуля частотной зависимости обусловлены отражениями от исследуемой поверхности, стенок и дна ГАБ. На фиг. 3 кривой 1 представлен модуль частотной зависимости которую получили, подавив в частотной зависимости осцилляции, начиная с осцилляции, обусловленной первым по времени прихода отраженным сигналом. Кривой 2 представлен модуль частотной зависимости которую получили, подавив в частотной зависимости осцилляции, обусловленные вторым и последующими отражениями (дно и стенки бассейна), и сохранив осцилляцию, обусловленную первым отражением (граница раздела сред вода-воздух).
В эксперименте отношение временных задержек составило 3,39, разность временных задержек Δτ = τ1-τ0 составила 0,44 мс. На фиг. 4 изображена характеристика пропускания пространственного фильтра, реализованного обработкой по методу СКВУ при получении пунктирными прямыми отмечено значение коэффициента пропускания K(Δτ)=0,96.
На фиг. 5 приведены действительная и мнимая части частотной зависимости осцилляции полученной по формуле (2).
На фиг. 6 изображены частотные зависимости модуля и аргумента комплексного коэффициента отражения от границы раздела сред вода-воздух, рассчитанные по формуле (3).
Полученные в эксперименте значения коэффициента отражения звука и аргумента комплексного коэффициента отражения составляют, соответственно, (100 ± 11)% и (π ± 0,1) рад, что весьма близко к теоретическим значениям: коэффициент отражения звука от границы раздела сред вода-воздух равен единице и не зависит от частоты, при отражении от границы раздела сред вода-воздух падающая из воды звуковая волна меняет фазу на противоположную (см. приложение 2 в [6]).
Литература
1. Боббер Р. Дж. Гидроакустические измерения / Пер. с англ. под ред. А.Н. Голенкова // М: Мир. - 1974.
2. Исаев А.Е., Николаенко А.С. Способ измерения частотной зависимости коэффициента отражения звука от поверхности. Патент на изобретение №2655478, С1. МПК G01N 29/00, опубликован 28.05.2018. Бюл. №16.
3. Исаев А.Е., Черников И.В. Лабораторная градуировка гидроакустического приемника в реверберационном поле шумового сигнала // Акуст. журн. - 2015. - Т. 61 -№5. -С. 1-9.
4. Исаев А.Е., Матвеев А.Н. Градуировка гидрофонов по полю при непрерывном излучении в реверберирующем бассейне // Акуст. журн. - 2009. - Т. 55. - №6. - С. 727-736.
5. Исаев А.Е. Точная градуировка приемников звукового давления в водной среде в условиях свободного поля // Менделеево: ФГУП «ВНИИФТРИ». - 2008. - 369 с.
6. Румынская И.А. Основы гидроакустики // Л.: «Судостроение». - 1979 г.
Claims (3)
- Способ измерения частотной зависимости коэффициента отражения звука от поверхности, заключающийся в расположении излучателя, исследуемой поверхности и приемника в гидроакустическом бассейне так, чтобы первым по времени прихода на приемник отраженным сигналом был сигнал от исследуемой поверхности, определении относительно начала излучения временных задержек прихода на приемник облучающего и отраженных сигналов, возбуждении излучателя линейно частотно-модулированным сигналом с заданными параметрами, регистрации мгновенных значений тока в цепи излучателя и выходного напряжения приемника, определении по полученным значениям тока и напряжения комплексной частотной зависимости передаточного импеданса пары излучатель-приемник в реверберационном звуковом поле, подавлении в полученной зависимости осцилляций, обусловленных влиянием отраженных сигналов, скользящим комплексным взвешенным усреднением с использованием взвешивающих функций, которые конструируют исходя из временных задержек облучающего и отраженных сигналов, получении комплексной частотной зависимости передаточного импеданса пары излучатель-приемник в которой подавлены осцилляции, обусловленные отраженными сигналами, и зависимости в которой сохранена осцилляция, обусловленная первым по времени прихода отражением, и подавлены осцилляции от второго и более поздних по времени прихода отражений, определении частотной зависимости комплексного коэффициента отражения по отношению к :
- где τ0 и τ1 - временные задержки облучающего сигнала и сигнала, отраженного исследуемой поверхностью, соответственно, Δτ=τ1-τ0, K(Δτ) - коэффициент пропускания пространственного фильтра, реализуемого обработкой скользящим комплексным взвешенным усреднением при получении отличающийся тем, что излучатель возбуждают шумовым сигналом, мощность которого распределена в заданной полосе частот, регистрируют мгновенные спектры тока в цепи излучателя и выходного напряжения приемника, по мгновенным спектрам тока излучателя и напряжения рассчитывают спектр мощности тока в цепи излучателя и взаимный спектр тока излучателя и напряжения приемника, а комплексную частотную зависимость передаточного импеданса пары излучатель-приемник в реверберационном звуковом поле получают как отношение взаимного спектра к спектру мощности.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018141436A RU2695287C1 (ru) | 2018-11-26 | 2018-11-26 | Способ измерения частотной зависимости комплексного коэффициента отражения звука от поверхности с использованием шумового сигнала |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018141436A RU2695287C1 (ru) | 2018-11-26 | 2018-11-26 | Способ измерения частотной зависимости комплексного коэффициента отражения звука от поверхности с использованием шумового сигнала |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2695287C1 true RU2695287C1 (ru) | 2019-07-22 |
Family
ID=67512310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018141436A RU2695287C1 (ru) | 2018-11-26 | 2018-11-26 | Способ измерения частотной зависимости комплексного коэффициента отражения звука от поверхности с использованием шумового сигнала |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2695287C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2722964C1 (ru) * | 2019-11-14 | 2020-06-05 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") | Способ измерения коэффициента отражения звука от образца материала |
RU2756352C2 (ru) * | 2020-01-16 | 2021-09-29 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") | Способ измерения коэффициента отражения звука от образца материала |
RU2776616C1 (ru) * | 2021-11-12 | 2022-07-22 | Российская Федерация, от имени которой выступает Федеральное агентство по техническому регулированию и метрологии (Росстандарт) | Способ измерения коэффициента отражения звука от образца материала с плоской поверхностью |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7286946B2 (en) * | 2002-04-30 | 2007-10-23 | Sony Corporation | Transmission characteristic measuring device transmission characteristic measuring method, and amplifier |
RU2568070C1 (ru) * | 2014-08-15 | 2015-11-10 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") | Способ измерения комплексной частотной зависимости передаточного импеданса пары излучатель-приемник в свободном поле |
RU2655478C1 (ru) * | 2017-07-26 | 2018-05-28 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") | Способ измерения частотной зависимости коэффициента отражения звука от поверхности |
-
2018
- 2018-11-26 RU RU2018141436A patent/RU2695287C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7286946B2 (en) * | 2002-04-30 | 2007-10-23 | Sony Corporation | Transmission characteristic measuring device transmission characteristic measuring method, and amplifier |
RU2568070C1 (ru) * | 2014-08-15 | 2015-11-10 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") | Способ измерения комплексной частотной зависимости передаточного импеданса пары излучатель-приемник в свободном поле |
RU2655478C1 (ru) * | 2017-07-26 | 2018-05-28 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") | Способ измерения частотной зависимости коэффициента отражения звука от поверхности |
Non-Patent Citations (3)
Title |
---|
Isaev A.E. MEASUREMENT OF SOUND REFLECTION COEFFICIENTS AS A FUNCTION OF FREQUENCY IN AN UNDAMPED TANK //Measurement Techniques. 2018. Vol. 61, No. 4, July, 2018. Isaev A.E. Suppression of Reverberation Distortions of a Receiver Signal Using the Water Tank Transfer Function // Acoustical Physics, 2017, Vol. 63, No. 2, pp. 175-184. * |
Isaev A.E. MEASUREMENT OF SOUND REFLECTION COEFFICIENTS AS A FUNCTION OF FREQUENCY IN AN UNDAMPED TANK //Measurement Techniques. 2018. Vol. 61, No. 4, July, 2018. ol. 63, No. 2, pp. 175-184. * |
Isaev A.E. Suppression of Reverberation Distortions of a Receiver Signal Using the Water Tank Transfer Function // Acoustical Physics, 2017, V * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2722964C1 (ru) * | 2019-11-14 | 2020-06-05 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") | Способ измерения коэффициента отражения звука от образца материала |
RU2756352C2 (ru) * | 2020-01-16 | 2021-09-29 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") | Способ измерения коэффициента отражения звука от образца материала |
RU2776616C1 (ru) * | 2021-11-12 | 2022-07-22 | Российская Федерация, от имени которой выступает Федеральное агентство по техническому регулированию и метрологии (Росстандарт) | Способ измерения коэффициента отражения звука от образца материала с плоской поверхностью |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11391863B2 (en) | Method of free-field broadband calibration of hydrophone sensitivity based on pink noise | |
RU2655478C1 (ru) | Способ измерения частотной зависимости коэффициента отражения звука от поверхности | |
Chen et al. | A methodology for estimating guided wave scattering patterns from sparse transducer array measurements | |
RU2695287C1 (ru) | Способ измерения частотной зависимости комплексного коэффициента отражения звука от поверхности с использованием шумового сигнала | |
Goujon et al. | Behaviour of acoustic emission sensors using broadband calibration techniques | |
Monnier et al. | Primary calibration of acoustic emission sensors by the method of reciprocity, theoretical and experimental considerations | |
RU2390968C1 (ru) | Способ градуировки гидрофона по полю при излучении непрерывного сигнала в измерительном бассейне с отражениями | |
Bloxham et al. | Combining simulated and experimental data to simulate ultrasonic array data from defects in materials with high structural noise | |
CN111586546B (zh) | 一种低频换能器谐振点发射响应的测量方法和系统 | |
Van Neer et al. | Reflector-based phase calibration of ultrasound transducers | |
Chakrapani et al. | A calibration technique for ultrasonic immersion transducers and challenges in moving towards immersion based harmonic imaging | |
RU2568070C1 (ru) | Способ измерения комплексной частотной зависимости передаточного импеданса пары излучатель-приемник в свободном поле | |
Isaev et al. | Laboratory free-field calibration of a hydroacoustic receiver at low frequencies | |
US20160223495A1 (en) | Method for the non-destructive ultrasonic testing of a part by echo analysis | |
Fan et al. | Calibration of an acoustic system for measuring 2-D temperature distribution around hydrothermal vents | |
RU2673871C1 (ru) | Способ измерения коэффициента отражения звука от поверхности | |
Li et al. | Simultaneously determining sensitivity and effective geometrical parameters of ultrasonic piezoelectric transducers using a self-reciprocity method | |
Hurrell et al. | A two-dimensional hydrophone array using piezoelectric PVDF | |
RU2655049C1 (ru) | Способ калибровки гидрофона по полю на низких частотах | |
Miqueleti et al. | Acoustic impedance measurement method using spherical waves | |
Isaev et al. | Calibration of hydrophones in a field with continuous radiation in a reverberating pool | |
CN110208778B (zh) | 一种基于对数可变窗函数的换能器宽带复数响应测量装置与方法 | |
Wu et al. | Quantitative estimation of ultrasonic attenuation in a solid in the immersion case with correction of diffraction effects | |
RU121113U1 (ru) | Устройство для самоградуировки акустического преобразователя | |
Haumesser et al. | Acoustic distortion ratio enhancement using multiple pulse-echo method (MPEM) for evaluation of B/A nonlinear parameter |