RU2695245C2 - Способ защиты компонента турбомашины от эрозии при воздействии капель жидкости, компонент и турбомашина - Google Patents
Способ защиты компонента турбомашины от эрозии при воздействии капель жидкости, компонент и турбомашина Download PDFInfo
- Publication number
- RU2695245C2 RU2695245C2 RU2016138579A RU2016138579A RU2695245C2 RU 2695245 C2 RU2695245 C2 RU 2695245C2 RU 2016138579 A RU2016138579 A RU 2016138579A RU 2016138579 A RU2016138579 A RU 2016138579A RU 2695245 C2 RU2695245 C2 RU 2695245C2
- Authority
- RU
- Russia
- Prior art keywords
- protective layer
- component
- materials
- exposed
- turbomachine
- Prior art date
Links
- 230000003628 erosive effect Effects 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000007788 liquid Substances 0.000 title claims abstract description 22
- 230000004224 protection Effects 0.000 title claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 55
- 239000011241 protective layer Substances 0.000 claims abstract description 39
- 239000011248 coating agent Substances 0.000 claims abstract description 16
- 238000000576 coating method Methods 0.000 claims abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 16
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 13
- 150000004767 nitrides Chemical class 0.000 claims abstract description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 13
- 239000010937 tungsten Substances 0.000 claims abstract description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 12
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000010936 titanium Substances 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 239000007791 liquid phase Substances 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 239000011651 chromium Substances 0.000 claims description 11
- 238000005240 physical vapour deposition Methods 0.000 claims description 10
- 238000007740 vapor deposition Methods 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910001105 martensitic stainless steel Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 239000004411 aluminium Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 20
- 239000002245 particle Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/286—Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/441—Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
- F04D29/444—Bladed diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Способ защиты компонента турбомашины от эрозии при воздействии капель жидкости включает покрытие защитным слоем области поверхности компонента, испытывающей воздействие потока текучей среды, содержащей жидкую фазу и подвергаемой технологическому процессу в турбомашине. Защитный слой содержит множество смежных подслоев из двух материалов, расположенных с чередованием, причем указанные материалы имеют высокую твердость и низкую вязкость разрушения. Первым из двух материалов является стехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия, а вторым из двух материалов является нестехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия. Другое изобретение группы относится к компоненту центробежного компрессора, имеющему поверхность, подверженную воздействию потока текучей среды, содержащей жидкую фазу и сжимаемой центробежным компрессором, и область которой покрыта защитным слоем, нанесенным указанным выше способом. Другие изобретения группы относятся к центробежному компрессору, содержащему указанный выше компонент, а также к осевому компрессору и паровой турбине, в которых лопатки имеют защитный слой, нанесенный указанным выше способом. Группа изобретений позволяет повысить защиту компонента турбомашины от эрозии. 5 н. и 10 з.п. ф-лы, 11 ил.
Description
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Описанные в настоящем документе варианты выполнения заявленного изобретения относятся к способам защиты компонента турбомашины от эрозии при воздействии капель жидкости, к компонентам турбомашин, защищаемым в соответствии с такими способами, и к турбомашинам, содержащим такие компоненты.
УРОВЕНЬ ТЕХНИКИ
В области турбомашиностроения, связанной с нефтегазовой отраслью промышленности, известны два типа эрозии, которым подвержены детали, входящие в контакт с рабочей текучей средой, обрабатываемой машиной. Это эрозия при воздействии твердых частиц (ЭТЧ) и эрозия при воздействии капель жидкости (ЭКЖ). Эти два типа эрозии сильно отличаются степенью плотности элементов, ударяющихся о поверхность таких деталей: твердые частицы, подвергающие поверхность эрозии и отскакивающие после соударения с ней, и мягкие частицы, ударяющие по поверхности и разбивающиеся на более мелкие мягкие частицы после соударения.
Защищенная от эрозии деталь может быть полностью выполнена из одного материала, устойчивого к эрозии, или, довольно часто, может состоять из основной части, выполненной из материала, специально предназначенного для задач, выполняемых данной деталью, и покрытой защитным слоем материала, устойчивого к эрозии. В типичном случае для защиты от эрозии при воздействии твердых частиц используют твердые материалы, тогда как для защиты от эрозии при воздействии капель жидкости используют вязкие материалы.
Материалы с высокой твердостью не обеспечивают хороших результатов в случае соударения с каплями жидкости, так как обычно эти материалы являются недостаточно вязкими, чтобы противостоять ударному воздействию.
В связи с потребностью в улучшенных эксплуатационных качествах в области турбомашиностроения, связанной с нефтегазовой отраслью промышленности, постоянно существует необходимость усовершенствования технических решений, в том числе решений, связанных с проблемой эрозии. Настоящее изобретение направлено на решение проблем, связанных с эрозией при воздействии капель жидкости.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Как известно, процесс эрозии при воздействии твердых частиц протекает равномерно, и как показано на фиг.1, скорость развития эрозии является приблизительно постоянной.
Кроме того, известно, что процесс эрозии при воздействии капель жидкости протекает неравномерно. На фиг.2 показано, что в этом случае имеется начальный период Р1, так называемый «инкубационный период», на котором, как правило, не происходит потери материала, промежуточный период Р2, на котором потеря материала возрастает очень быстро, быстрее, чем по линейной характеристике, и заключительный период Р3, на котором скорость развития эрозии является приблизительно постоянной. Если используют защитный слой, то этот слой полностью удаляется через некоторое время, обычно соответствующее сумме периода Р1 и части периода Р2, в зависимости от толщины слоя (см. фиг.3).
Также известно, что весьма сложно получить толстый (например, в десятки микронов) и компактный защитный слой из твердого материала, прочно присоединенный к подложке. Обычно толщина такого слоя может достигать лишь нескольких микронов и, соответственно, его противоэрозионное защитное действие является сравнительно непродолжительным.
Авторы изобретения неожиданно обнаружили, что благодаря использованию защитного слоя, состоящего из множества подслоев различных материалов, имеющих высокую твердость и низкую вязкость разрушения, имеет место начальный «инкубационный этап», но затем процесс эрозии происходит очень медленно и приблизительно линейно (см. фиг.4). То есть, в соответствии с упрощенным описанием этого явления, эрозионное разрушение различных подслоев происходит медленно и последовательно слой за слоем.
Кроме того, каждый подслой является компактным и прочно соединен с нижележащим подслоем, в связи с чем можно выполнять покрытие основной части толстым защитным слоем, причем толщина такого слоя может достигать 70 мкм и, следовательно, его защитное действие является относительно продолжительным.
Следует отметить, что некоторые поставщики покрытий не так давно стали предлагать на рынке защитные слои, состоящие из множества подслоев из различных материалов, имеющих высокую твердость и низкую вязкость, для защиты от эрозии, вызываемой мелкими, средними и крупными частицами.
Между тем, в соответствии с изложенными выше причинами, специалисту не следует ожидать, что такие слои будут обеспечивать хорошие результаты в случае эрозии при воздействии капель жидкости.
Авторы изобретения решили использовать защитные слои, состоящие из множества подслоев из различных материалов, имеющих высокую твердость и низкую вязкость разрушения, в турбомашинах, в частности, в центробежных компрессорах, в особенности (но не ограничиваясь этим) для закрытых центробежных рабочих колес этих компрессоров.
Предпочтительной технологией, используемой для нанесения такого слоя (точнее, каждого подслоя такого слоя), является нанесение покрытия методом физического осаждения из паровой фазы (PVD), в частности, нанесение покрытия методом катодно-дугового осаждения из паровой фазы (Cathodic Arc PVD), или нанесение покрытия методом химического осаждения из паровой фазы (CVD).
Что касается закрытых центробежных рабочих колес, то следует отметить, что областями поверхностей проточных каналов, наиболее подверженными воздействию капель жидкости, являются зона входа и зона выхода. Процесс PVD является процессом, выполняемым по линии прямой видимости, однако для указанных зон, к счастью, можно выбрать расположение и форму «мишеней» так, что они могут быть видны непосредственно или опосредованно (т.е. благодаря непрерывному вращению рабочего колеса) с возможностью их покрытия.
Первые примерные варианты выполнения относятся к способам защиты компонента турбомашины от эрозии при воздействии капель жидкости, в которых покрывают защитным слоем по меньшей мере одну область поверхности компонента, испытывающей воздействие потока текучей среды, содержащего жидкую фазу, подвергаемого технологическому процессу в турбомашине, причем указанный защитный слой содержит множество смежных подслоев из различных материалов, и указанные материалы имеют высокую твердость в диапазоне 1000 – 3000 HV (твердость по Викерсу) и низкую вязкость разрушения, составляющую менее 20 MПa·м1/2.
Указанными материалами являются два материала, расположенные с чередованием.
Первым из двух материалов является стехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия.
Вторым из двух материалов является нестехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия.
Вторые иллюстративные варианты выполнения относятся к компонентам центробежного компрессора, имеющим поверхность, испытывающую воздействие потока текучей среды, содержащего жидкую фазу и сжимаемого посредством указанного компрессора, причем по меньшей мере одна область данной поверхности покрыта защитным слоем, при этом указанный защитный слой содержит множество смежных подслоев из двух материалов, расположенных с чередованием, и указанные материалы имеют высокую твердость в диапазоне 1000 – 3000 HV (твердость по Викерсу) и низкую вязкость разрушения, составляющую менее 20 MПa·м1/2. Первым из двух материалов является стехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия, а вторым из двух материалов является нестехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия.
Третьи иллюстративные варианты выполнения относятся к турбомашинам, которые содержат по меньшей мере один вышеописанный компонент или в которых выполняют вышеописанные способы.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Настоящее изобретение будет более понятным из нижеследующего описания примерных вариантов выполнения, рассмотренных в сочетании с сопроводительными чертежами, на которых
на фиг.1 показан график зависимости от времени потери основного материала вследствие эрозии при воздействии твердых частиц,
на фиг.2 показан график зависимости от времени потери основного материала вследствие эрозии при воздействии капель жидкости,
на фиг.3 показан график зависимости от времени потери материала слоя, выполненного из одного материала, вследствие эрозии при воздействии капель жидкости,
на фиг.4 показан график зависимости от времени потери материала слоя, выполненного из множества подслоев из одного материала, вследствие эрозии при воздействии капель жидкости, в соответствии с вариантом выполнения настоящего изобретения,
на фиг.5 схематически показан разрез варианта выполнения слоя, покрывающего поверхность компонента турбомашины,
на фиг.6 схематически показан разрез варианта выполнения закрытого центробежного рабочего колеса в соответствии с настоящим изобретением,
на фиг.7 схематически показан разрез диафрагмы в соответствии с изобретением (также показано закрытое центробежное рабочее колесо),
на фиг.8 схематически показаны первые возможные этапы катодно- дугового осаждения из паровой фазы для изготовления варианта закрытого центробежного рабочего колеса в соответствии с настоящим изобретением, и на фиг.9 схематически показаны вторые возможные этапы катодно- дугового осаждения из паровой фазы для изготовления варианта закрытого центробежного рабочего колеса в соответствии с настоящим изобретением.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Нижеследующее подробное описание иллюстративных вариантов выполнения приведено со ссылкой на сопроводительные чертежи. Одинаковыми ссылочными позициями на различных чертежах обозначены одинаковые или подобные элементы. Нижеследующее описание не ограничивает настоящее изобретение, объем правовой охраны которого определен прилагаемой формулой изобретения.
В данном описании ссылка на «один вариант выполнения» или «вариант выполнения» означает, что конкретное свойство, конструкция или характеристика, описанные в отношении варианта выполнения, включены по меньшей мере в один вариант выполнения настоящего изобретения. Таким образом, появление фразы «в одном варианте выполнения» или «в варианте выполнения» в различных местах описания не обязательно относится к одному и тому же варианту выполнения. Кроме того, конкретные свойства, конструкции или характеристики могут быть объединены любым подходящим способом в одном или более вариантах выполнения.
На фиг.5 схематически показан разрез варианта выполнения, в соответствии с изобретением, слоя, покрывающего поверхность компонента турбомашины. На этом чертеже ссылочное обозначение S соответствует подложке, т.е. основной части компонента, причем в этом случае имеется четыре вышележащих подслоя L1, L2, L3, L4, имеющих по существу одинаковую толщину и составляющих защитный слой.
Подслои L1, L2, L3, L4 выполнены из различных материалов, каждый из которых имеет высокую твердость в диапазоне 1000 – 3000 HV (твердость по Викерсу) и низкую вязкость разрушения, составляющую менее 20 MПa·м1/2.
Материалы подслоев выбраны из группы, содержащей нитриды, карбиды и бориды (предпочтительно нитриды и карбиды) одного или более веществ, причем эти вещества выбраны из группы, содержащей титан, цирконий, хром, вольфрам, алюминий и ванадий (предпочтительно титан, хром, вольфрам и алюминий).
В типичном случае защитный слой содержит смежные подслои из двух материалов, расположенные с чередованием, причем первым из двух материалов и вторым из двух материалов, являются нитрид, карбид или борид титана, циркония, хрома, вольфрама, алюминия или ванадия. Примерами таких материалов являются TiN (нитрид титана) и TiAlN (нитрид алюминия титана). Например, в соответствии с фиг.5, подслои L1 и L3 выполнены из первого материала, а подслои L2 и L4 выполнены из второго материала.
В варианте выполнения, показанном на фиг.5, подслои L1 и L3 выполнены из соединения, имеющего стехиометрический состав (в частности, TiN), а подслои L2 и L4 выполнены из того же соединения, имеющего нестехиометрический состав (в частности, TiN), причем эти два материала имеют слегка отличающуюся высокую твердость и слегка отличающуюся низкую вязкость. Эти подслои создают защиту, имеющую низкую вязкость, благодаря нестехиометрическому составу, и высокую твердость, благодаря стехиометрическому составу.
Толщина таких подслоев может быть различной или по существу одинаковой в диапазоне 0,1 - 5,0 мкм, предпочтительно в диапазоне 0,3 - 3,0 мкм, причем в случае различной толщины один слой может иметь толщину, равную, например, 0,5 мкм, а другой слой – толщину, равную, например, 2,0 мкм или 2,5 мкм.
Общее количество подслоев может изменяться от минимального количества, равного 2, до максимального количества, равного 30, причем более типичное количество слоев лежит в диапазоне значений 5 – 10.
Полная толщина защитного слоя может изменяться от минимального значения 10 мкм до максимального значения 70 мкм, причем более типичные значения толщины лежат в диапазоне 15 – 30 мкм.
Первым весьма эффективным способом реализации покрытия компонента в соответствии с настоящим изобретением является технология, известная как химическое осаждение из паровой фазы (CVD).
Вторым весьма эффективным способом реализации покрытия компонента в соответствии с настоящим изобретением является технология, известная как физическое осаждение из паровой фазы (PVD), в частности, катодно-дуговое осаждение из паровой фазы (Cathodic Arc PVD).
Как известно, в технологии катодно-дугового осаждения из паровой фазы используют «мишени» для выполнения осаждения на покрываемую деталь, в типичном случае «мишени» выполнены с таким расположением и/или формой, что по меньшей мере мишени находятся непосредственно на линии видимости области детали, на которую должно быть нанесено покрытие осаждением.
В соответствии с изобретением, поскольку доступ к некоторым покрываемым областям поверхностей компонентов может быть затруднен, даже если расположение и форма мишеней продуманы надлежащим образом, для достижения труднодоступных областей предпочтительно может быть использовано вращение компонента во время процесса PVD (это станет более понятным из последующего описания). В этом смысле можно утверждать, что «мишени» выполнены с таким расположением и/или формой, что по меньшей мере эти мишени находятся опосредовано на линии видимости области детали, на которую должно быть нанесено покрытие осаждением.
Первый подслой, т.е. подслой (L1 на фиг.5), ограниченный подложкой (S на фиг.5), может полностью отличаться от других подслоев для обеспечения наилучшего сцепления слоя с подложкой, например, он может быть толстым предварительным подслоем («ударным слоем») никеля, выполненным путем химического никелирования (ENP) или нанесения гальванического покрытия.
Слой в соответствии с настоящим изобретением может быть нанесен на любую деталь турбомашины, например, на выбранные детали центробежных компрессоров, осевых компрессоров или паровых турбин, которые с наибольшей вероятностью испытывают соударения с каплями жидкости. В случае компрессоров, наиболее вероятным является наличие капель жидкости в первой ступени или ступенях, а в случае паровых турбин капли жидкости с наибольшей вероятностью имеются в последней ступени или ступенях.
Одним из наиболее целесообразных применений защитного слоя в соответствии с настоящим изобретением является применение в центробежных компрессорах.
В центробежных компрессорах, по меньшей мере в некоторых из них (т.е. в тех, в которых рабочая текучая среда содержит воду, представляющую собой капли и/или способную превращаться в капли), может быть множество компонентов, которые могут быть покрыты полностью, или чаще – частично, защитным слоем в соответствии с настоящим изобретением.
Компонентом центробежного компрессора может быть рабочее колесо, при этом поверхность, испытывающая воздействие потока текучей среды, содержащего жидкую фазу, и покрытая защитным слоем, может соответствовать всем внутренним поверхностям проточных каналов. В случае закрытого рабочего колеса (т.е. выполненного в виде одной детали) поверхность, испытывающая воздействие потока текучей среды, содержащего жидкую фазу и покрытая защитным слоем, соответствует поверхностям только зоны входа проточных каналов и/или зоны выходы проточных каналов, в частности, поверхностям лопаток. На фиг.6 показано закрытое центробежное рабочее колесо 60 (выполненное в виде одной детали) и два её проточных канала 61 и 62, причем точки 63, 64 и 65 принадлежат зоне входа, а точки 66, 67 и 68 принадлежат зоне выхода. Точки 63 и 67 находятся на ступице, точки 64 и 68 находятся на лопатке, точки 65 и 66 находятся на бандаже, при этом точка 63 показана в виде окружности, чтобы подчеркнуть, что фиг.5 является увеличенным видом этой точки. Все эти точки 63, 64, 65, 66, 67 и 68 являются примерными точками, в которых особенно предпочтительно иметь защиту от эрозии при воздействии капель жидкости, в соответствии с настоящим изобретением. В этом случае подложка S, т.е. основная часть рабочего колеса, может быть выполнена, например, из мартенситной нержавеющей стали или сплава на основе никеля, или сплава на основе кобальта.
Следует отметить, что первое рабочее колесо в компрессоре обычно наиболее подвержено эрозии при воздействии капель жидкости.
Компонентом центробежного компрессора может быть диафрагма, в этом случае поверхность, испытывающая воздействие потока текучей среды, содержащего жидкую фазу, и покрытая защитным слоем, может содержать все внутренние поверхности обратных каналов. На фиг.7 показана диафрагма 70 (выполненная в виде множества деталей, прикрепленных друг к другу, например, гайками и болтами), присоединенная к рабочему колесу 60, показанному на фиг.6, а также обратные каналы 71, при этом точки 73, 74, 75 и 76 являются примерными точками, в которых наиболее предпочтительно иметь защиту от эрозии при воздействии капель жидкости, в соответствии с настоящим изобретением. Точка 73 находится на наружной поверхности начальной части начального U-образного участка обратного канала 71, точка 74 находится на наружной поверхности промежуточной части начального U- образного участка обратного канала 71 (эта точка расположена на так называемом «встречном кожухе”). Точки 75 и 76 находятся на лопатке обратного канала 71, соответственно, в начале и в конце указанного канала.
Компонентом центробежного компрессора может быть входной направляющий аппарат, сокращенно ВНА (т.е. компонент, расположенный выше по потоку относительно первой ступени компрессора). В этом случае поверхность, испытывающая воздействие потока текучей среды, содержащего жидкую фазу, и покрытая защитным слоем, может содержать все поверхности данного компонента. Этот компонент на чертежах не показан.
Следует отметить, что для снижения производственных расходов покрытие в соответствии с настоящим изобретением может быть выполнено только на некоторых участках указанных компонентов (на тех участках, которые наиболее подвержены эрозии при воздействии капель жидкости), например, на лопатках обратных каналов диафрагмы или лопатках ВНА.
Важно иметь в виду, что защитный слой в соответствии с настоящим изобретением является твердым и хрупким. Поэтому, например, когда две детали, имеющие такой защитный слой, вводят в контакт друг с другом и затем прикрепляют друг к другу, их защитные слои предпочтительно не должны быть сжаты. В связи с этим, одна область контакта, а предпочтительно обе области контакта, не содержит (не содержат) такого защитного слоя.
На фиг.8 весьма схематично проиллюстрированы первые возможные этапы катодно-дугового осаждения из паровой фазы при изготовлении варианта закрытого центробежного рабочего колеса 60 в соответствии с настоящим изобретением, в частности, этапы нанесения покрытия.
На фиг.8 закрытое рабочее колесо 60 расположено горизонтально.
В случае открытого рабочего колеса предпочтительно располагать его открытой стороной вниз. В целом предпочтительно, чтобы во время процесса PVD или CVD любая покрываемая поверхность была обращена вниз.
Ссылочными позициями Т1 и Т2 обозначены две мишени из множества «мишеней». Во время этапов нанесения покрытия рабочее колесо поворачивают вокруг его оси симметрии.
На фиг.8 стрелки показывают прохождение материала в направлении компонента, причем этот материал в итоге осаждается на указанном компоненте. Материал проходит в проточные тракты рабочего колеса 60 и покрывает зону входа проточных трактов. Для улучшения покрытия зоны входа проточных трактов рабочее колесо поворачивают в первом направлении вращения (фиг.8А), а затем во втором направлении вращения (фиг.8В). Благодаря указанному повороту можно обеспечить нанесение покрытия также на те участки внутренней поверхности проточных трактов, которые не находятся непосредственно на линии видимости мишеней Т1 и Т2.
На фиг.9 весьма схематично показаны вторые возможные этапы катодно-дугового осаждения из паровой фазы для изготовления варианта закрытого центробежного рабочего колеса 60 в соответствии с настоящим изобретением, в частности, этапы нанесения покрытия.
В соответствии с фиг.9, закрытое колесо 60 расположено вертикально, поэтому в данном случае возможно расположение второго закрытого рабочего колеса 90. Во время этапов нанесения покрытия оба закрытых рабочих колеса 60 и 90 поворачивают вокруг оси, перпендикулярной их оси симметрии.
Ссылочными позициями Т1, Т2, Т3, Т4, Т5 и Т6 обозначены шесть мишеней из множества «мишеней».
На фиг.9 стрелки показывают прохождение материала, в направлении компонента, причем этот материал в итоге осаждается на обоих указанных компонентах. Материал проходит в проточные тракты колес 60 и 90 и покрывает зону входа проточных трактов. Для улучшения покрытия зоны входа проточных трактов колеса 60 и 90 поворачивают в первом направлении вращения (фиг.9А), а затем во втором направлении вращения (фиг.9В). Благодаря такому повороту можно обеспечить нанесение покрытия также на те участки внутренней поверхности проточных трактов, которые не находятся непосредственно на линии видимости мишеней Т1, Т2, Т3, Т4, Т5 и Т6.
Claims (15)
1. Способ защиты компонента турбомашины от эрозии при воздействии капель жидкости, включающий покрытие защитным слоем по меньшей мере одной области (S) поверхности компонента, испытывающей воздействие потока текучей среды, содержащей жидкую фазу и подвергаемой технологическому процессу в турбомашине, причем указанный защитный слой содержит множество смежных подслоев (L1, L2, L3, L4) из двух материалов, расположенных с чередованием, причем указанные материалы имеют высокую твердость в диапазоне 1000-3000 HV (твердость по Виккерсу) и низкую вязкость разрушения, составляющую менее 20 MПa·м1/2, и первым из двух материалов является стехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия, а вторым из двух материалов является нестехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия.
2. Способ по п.1, в котором указанные материалы являются нитридом титана (TiN).
3. Способ по п.1 или 2, в котором указанное покрытие защитным слоем выполняют методом химического осаждения из паровой фазы.
4. Способ по п.1 или 2, в котором указанное покрытие защитным слоем выполняют методом физического осаждения из паровой фазы, в частности методом катодно-дугового осаждения из паровой фазы.
5. Способ по п.4, в котором «мишени» для метода катодно-дугового осаждения из паровой фазы располагают так и/или придают им такую форму, что по меньшей мере указанные мишени находятся непосредственно или опосредованно на линии видимости частей указанной по меньшей мере одной области поверхности компонента, на которую должно быть нанесено покрытие.
6. Компонент (60, 70) центробежного компрессора, имеющий поверхность, которая подвержена воздействию потока текучей среды, содержащей жидкую фазу и сжимаемой центробежным компрессором, и по меньшей мере одна область (S) которой покрыта защитным слоем, при этом указанный защитный слой содержит множество смежных подслоев (L1, L2, L3, L4) из двух материалов, расположенных с чередованием, причем указанные материалы имеют высокую твердость в диапазоне 1000-3000 HV (твердость по Виккерсу) и низкую вязкость разрушения, составляющую менее 20 MПa·м1/2, при этом первым из двух материалов является стехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия, а вторым из двух материалов является нестехиометрический нитрид, или карбид, или борид титана, или циркония, или хрома, или вольфрама, или алюминия, или ванадия.
7. Компонент по п.6, который является диафрагмой (70), причем его поверхность, подверженная воздействию потока текучей среды, полностью покрыта указанным защитным слоем.
8. Компонент по п.6, который является открытым рабочим колесом, причем его поверхность, подверженная воздействию потока текучей среды, полностью покрыта указанным защитным слоем.
9. Компонент по п.6, который является закрытым рабочим колесом (60), причем его поверхность, подверженная воздействию потока текучей среды, покрыта указанным защитным слоем только во входной зоне каналов и/или в выходной зоне каналов.
10. Компонент по п.6, который является входным направляющим аппаратом, причем его поверхность, подверженная воздействию потока текучей среды, полностью покрыта указанным защитным слоем.
11. Центробежный компрессор, содержащий по меньшей мере один компонент по любому из пп.6-10.
12. Центробежный компрессор по п.11, содержащий комбинацию компонентов по любому из пп.6-10.
13. Центробежный компрессор по п.11 или 12, в котором основной материал компонента или каждого компонента является мартенситной нержавеющей сталью, или сплавом на основе никеля, или сплавом на основе кобальта.
14. Осевой компрессор, в котором по меньшей мере лопатки первой ступени или первых ступеней имеют защитный слой для их защиты, выполненный способом по любому из пп.1-5.
15. Паровая турбина, в которой по меньшей мере лопатки последней ступени или последних ступеней имеют защитный слой для их защиты, выполненный способом по любому из пп.1-5.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITCO20140010 | 2014-04-09 | ||
ITCO2014A000010 | 2014-04-09 | ||
PCT/EP2015/057336 WO2015155119A1 (en) | 2014-04-09 | 2015-04-02 | Method of protecting a component of a turbomachine from liquid droplets erosion, component and turbomachine |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2016138579A RU2016138579A (ru) | 2018-05-10 |
RU2016138579A3 RU2016138579A3 (ru) | 2018-10-09 |
RU2695245C2 true RU2695245C2 (ru) | 2019-07-22 |
Family
ID=50943381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016138579A RU2695245C2 (ru) | 2014-04-09 | 2015-04-02 | Способ защиты компонента турбомашины от эрозии при воздействии капель жидкости, компонент и турбомашина |
Country Status (6)
Country | Link |
---|---|
US (1) | US10526903B2 (ru) |
EP (1) | EP3129596B1 (ru) |
JP (1) | JP6793039B2 (ru) |
CN (1) | CN106536860B (ru) |
RU (1) | RU2695245C2 (ru) |
WO (1) | WO2015155119A1 (ru) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106122083B (zh) * | 2016-08-26 | 2019-03-22 | 常州索拉尔熔盐泵阀科技有限公司 | 熔盐泵组合式叶轮 |
JPWO2019235588A1 (ja) * | 2018-06-06 | 2021-05-13 | 株式会社Ihi | タービンインペラ |
KR102083417B1 (ko) * | 2018-06-25 | 2020-05-22 | 두산중공업 주식회사 | 내침식성이 향상된 복합 코팅층 및 이를 포함하는 터빈용 부품 |
CN109653965B (zh) * | 2018-11-27 | 2019-12-20 | 中国航空制造技术研究院 | 一种复合材料叶片保护方法 |
US12037923B2 (en) * | 2019-07-08 | 2024-07-16 | Pratt & Whitney Canada Corp. | Pulse-managed plasma method for coating on internal surfaces of workpieces |
WO2024199724A1 (en) * | 2023-03-28 | 2024-10-03 | Nuovo Pignone Tecnologie - S.R.L. | Multilayer coating for high stressed metal pieces |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3951612A (en) * | 1974-11-12 | 1976-04-20 | Aerospace Materials Inc. | Erosion resistant coatings |
WO2003044374A1 (de) * | 2001-11-19 | 2003-05-30 | Alstom Technology Ltd | Verdichter für gasturbinen |
US20090123737A1 (en) * | 2006-01-18 | 2009-05-14 | Toyoaki Yasui | Solid Particle Erosion Resistant Surface Treated Coat and Rotating Machine Applied Therewith |
EP2312018A1 (en) * | 2008-08-06 | 2011-04-20 | Mitsubishi Heavy Industries, Ltd. | Component for rotary machine |
RU2491368C2 (ru) * | 2008-03-12 | 2013-08-27 | Кеннаметал Инк. | Элемент, покрытый твердым материалом |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63255357A (ja) * | 1987-04-09 | 1988-10-21 | Hitachi Ltd | タ−ビン動翼とその製造方法 |
US5275850A (en) * | 1988-04-20 | 1994-01-04 | Hitachi, Ltd. | Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias |
KR950005349B1 (ko) | 1989-09-11 | 1995-05-23 | 유니온 카바이드 코팅즈 서비시즈 테크놀로지 코포레이션 | 질화물 함유 화합물의 다중층 피막이 피복된 다중층 피복기판 및 다중층 피막의 생성방법 |
US5714202A (en) * | 1995-06-07 | 1998-02-03 | Lemelson; Jerome H. | Synthetic diamond overlays for gas turbine engine parts having thermal barrier coatings |
DE10026477A1 (de) * | 2000-05-27 | 2001-11-29 | Abb Patent Gmbh | Schutzüberzug für metallische Bauelemente |
US7247348B2 (en) * | 2004-02-25 | 2007-07-24 | Honeywell International, Inc. | Method for manufacturing a erosion preventative diamond-like coating for a turbine engine compressor blade |
US7901799B2 (en) * | 2006-10-02 | 2011-03-08 | Praxair S.T. Technology, Inc. | Multilayer nitride-containing coatings |
FR2909998B1 (fr) * | 2006-12-18 | 2009-03-06 | Snecma Propulsion Solide Sa | Piece en materiau composite a matrice ceramique contenant du silicium, protegee contre la corrosion |
US20100226783A1 (en) * | 2009-03-06 | 2010-09-09 | General Electric Company | Erosion and Corrosion Resistant Turbine Compressor Airfoil and Method of Making the Same |
JP5285486B2 (ja) * | 2009-03-30 | 2013-09-11 | 三菱重工業株式会社 | 遮熱コーティング用材料、遮熱コーティング、タービン部材及びガスタービン |
US20100304181A1 (en) * | 2009-05-29 | 2010-12-02 | General Electric Company | Protective coatings which provide erosion resistance, and related articles and methods |
-
2015
- 2015-04-02 WO PCT/EP2015/057336 patent/WO2015155119A1/en active Application Filing
- 2015-04-02 RU RU2016138579A patent/RU2695245C2/ru active
- 2015-04-02 US US15/302,506 patent/US10526903B2/en active Active
- 2015-04-02 CN CN201580018050.5A patent/CN106536860B/zh active Active
- 2015-04-02 EP EP15714219.1A patent/EP3129596B1/en active Active
- 2015-04-02 JP JP2016560588A patent/JP6793039B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3951612A (en) * | 1974-11-12 | 1976-04-20 | Aerospace Materials Inc. | Erosion resistant coatings |
WO2003044374A1 (de) * | 2001-11-19 | 2003-05-30 | Alstom Technology Ltd | Verdichter für gasturbinen |
US20090123737A1 (en) * | 2006-01-18 | 2009-05-14 | Toyoaki Yasui | Solid Particle Erosion Resistant Surface Treated Coat and Rotating Machine Applied Therewith |
RU2491368C2 (ru) * | 2008-03-12 | 2013-08-27 | Кеннаметал Инк. | Элемент, покрытый твердым материалом |
EP2312018A1 (en) * | 2008-08-06 | 2011-04-20 | Mitsubishi Heavy Industries, Ltd. | Component for rotary machine |
Also Published As
Publication number | Publication date |
---|---|
CN106536860B (zh) | 2019-01-11 |
US20170051616A1 (en) | 2017-02-23 |
EP3129596B1 (en) | 2023-12-13 |
WO2015155119A1 (en) | 2015-10-15 |
JP2017521587A (ja) | 2017-08-03 |
US10526903B2 (en) | 2020-01-07 |
RU2016138579A3 (ru) | 2018-10-09 |
CN106536860A (zh) | 2017-03-22 |
EP3129596A1 (en) | 2017-02-15 |
RU2016138579A (ru) | 2018-05-10 |
JP6793039B2 (ja) | 2020-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2695245C2 (ru) | Способ защиты компонента турбомашины от эрозии при воздействии капель жидкости, компонент и турбомашина | |
US7927709B2 (en) | Wear-resistant coating and a component having a wear-resistant coating | |
US6623241B2 (en) | Low-pressure steam turbine | |
EP1741876B1 (de) | Schaufel einer Turbomaschine mit einer Schaufelspitzenpanzerung | |
US20100266409A1 (en) | Method for Coating a Blade and Blade of a Gas Turbine | |
KR20140103066A (ko) | 내침식성 및 내부식성 코팅 시스템을 갖는 터보머신 구성요소 및 그러한 구성요소의 제조 방법 | |
KR20080063449A (ko) | 액체에 의해 부식되는 기관의 처리방법 및 부식방지 피복합금 | |
US20160115797A1 (en) | Coated article and method for producing coating | |
Ryzhenkov et al. | Erosion wear of the blades of wet-steam turbine stages: Present state of the problem and methods for solving it | |
KR20180026532A (ko) | 가스 터빈의 압축기 부품에 대한 외형 윤곽을 따른 보호 코팅 | |
Szala et al. | Cavitation wear of pump impellers | |
US20150030459A1 (en) | Turbomachine component with a parting joint, and a steam turbine comprising said turbomachine component | |
CN111448339B (zh) | 用于燃气轮机的涡轮叶片的防腐耐蚀涂层 | |
DE102013105200B4 (de) | Geschlossenes Laufrad mit einer beschichteten Schaufel | |
EP3839096A1 (en) | Diffusion barrier to prevent super alloy depletion into nickel-cbn blade tip coating | |
JPS61257466A (ja) | 蒸気タービンブレード | |
US20140166473A1 (en) | Erosion and corrosion resistant components and methods thereof | |
JP6845702B2 (ja) | 蒸気タービン内側ケーシング構成部品およびその修復方法 | |
JP6077104B2 (ja) | 機能性被覆を備えたターボ機械部品 | |
CN110023540B (zh) | 多层的含铝的保护覆层和构件 | |
US12060810B2 (en) | Layer system and blade | |
RU2687788C1 (ru) | Многослойное эрозионностойкое покрытие | |
WO2024147847A2 (en) | Coating composition, coated turbine component, and method of applying the coating | |
PL228956B1 (pl) | Powłoka ochronna na łopatki sprężarki silnika turbinowego |