RU2695179C1 - Уплотнительная прокладка для фланцевого соединения - Google Patents

Уплотнительная прокладка для фланцевого соединения Download PDF

Info

Publication number
RU2695179C1
RU2695179C1 RU2018135847A RU2018135847A RU2695179C1 RU 2695179 C1 RU2695179 C1 RU 2695179C1 RU 2018135847 A RU2018135847 A RU 2018135847A RU 2018135847 A RU2018135847 A RU 2018135847A RU 2695179 C1 RU2695179 C1 RU 2695179C1
Authority
RU
Russia
Prior art keywords
sensors
gasket
sealing
flange connection
sealing gasket
Prior art date
Application number
RU2018135847A
Other languages
English (en)
Inventor
Александр Евгеньевич Пылаев
Ольга Николаевна ШОРНИКОВА
Артем Петрович Малахо
Виктор Васильевич Авдеев
Евгений Михайлович Алексеев
Юрий Анатольевич Иванов
Лариса Владимировна Октябрьская
Сергей Викторович Минчук
Original Assignee
Акционерное общество "Научно-производственное объединение "СПЛАВ" (АО "НПО "СПЛАВ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение "СПЛАВ" (АО "НПО "СПЛАВ") filed Critical Акционерное общество "Научно-производственное объединение "СПЛАВ" (АО "НПО "СПЛАВ")
Priority to RU2018135847A priority Critical patent/RU2695179C1/ru
Priority to EA201800541A priority patent/EA034266B1/ru
Application granted granted Critical
Publication of RU2695179C1 publication Critical patent/RU2695179C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gasket Seals (AREA)

Abstract

Изобретение относится к уплотнительной технике и может быть использовано для герметизации фланцевых соединений промышленных трубопроводов, в частности в тепловой и ядерной энергетике, в химической и нефтегазовой промышленности. Уплотнительная прокладка для фланцевого соединения выполнена из безасбестового уплотнительного материала и размещена между фланцами фланцевого соединения, стянутыми между собой множеством крепежных элементов. В уплотнительной прокладке в процессе ее изготовления размещены датчики регистрации осевой нагрузки. Датчики выполнены с возможностью их соединения с блоком-регистратором, подключенным к внешнему компьютеру и служащим для обработки сигналов от указанных датчиков. В качестве датчиков использованы волоконно-оптические датчики на основе брэгговской решетки, количество которых равно количеству крепежных элементов фланцевого соединения, и гибкий тонкопленочный датчик с пьезорезистивными чувствительными элементами. При этом гибкий тонкопленочный датчик расположен внутри уплотнительной прокладки в плоскости, перпендикулярной оси уплотнительной прокладки. А волоконно-оптические датчики расположены внутри уплотнительной прокладки в плоскости расположения гибкого тонкопленочного датчика и равномерно распределены по периферии уплотнительной прокладки. Предложенное изобретение, благодаря тому что в уплотнительной прокладке для фланцевого соединения, изготовленной из безасбестового уплотнительного материала, внутри нее размещены при ее изготовлении датчики двух типов - гибкий тонкопленочный датчик с пьезорезистивными чувствительными элементами и волоконно-оптические датчики на основе брэгговской решетки, позволяет контролировать величины и равномерность усилия затяжки крепежных элементов фланцевого соединения при монтажных работах, обеспечивает возможность раннего обнаружения утечки рабочей среды, тем самым обеспечивая надежность уплотнения и, следовательно, гарантируя безопасную эксплуатацию оборудования. 2 ил.

Description

Изобретение относится к уплотнительной технике и может быть использовано для герметизации фланцевых соединений промышленных трубопроводов, а также между клапанами и сосудами под давлением, в частности, в тепловой и ядерной энергетике, в химической и нефтегазовой промышленности и других отраслях техники.
Для обеспечения герметичности трубопроводной системы между фланцами соединяемых деталей устанавливают уплотнительную прокладку, и фланцы стягивают между собой посредством крепежных элементов, например, стяжных болтов.
В месте уплотнения фланцевого соединения могут возникать утечки рабочей среды из-за погрешности формы и шероховатости поверхности фланцев. Также утечки могут быть вызваны динамическими нагрузками, возникающими либо при неправильной установке уплотнительной прокладки между фланцами, либо при некачественном монтаже фланцевого соединения. Проблема заключается в том, что при стягивании фланцев между собой каждый из крепежных элементов затягивают индивидуально, что неизбежно приводит к тому, что приложенный крутящий момент и, следовательно, возникающая сила неравномерно распределены по всей прокладке, тем самым вызывая локальные изменения приложенного давления в прокладке.
Требования к герметизации фланцевых соединений промышленных трубопроводов очень строгие и в последние годы постоянно повышаются. Возможность контроля утечек рабочей среды в местах уплотнений фланцевых соединений является важной проблемой.
Известна уплотнительная прокладка для фланцевого соединения, выполненная с возможностью размещения между фланцами фланцевого соединения, которые стянуты между собой множеством крепежных элементов, и содержащая датчики регистрации осевой нагрузки, размещенные в уплотнительной прокладке с возможностью их соединения с блоком-регистратором, служащим для обработки сигналов от указанных датчиков и подключенным к внешнему компьютеру (см., например, WO 9411718, F17D 3/00, 26.05.1994). Данная уплотнительная прокладка является наиболее близким аналогом к заявленной узлу уплотнительной прокладке для фланцевого соединения.
Технической проблемой известной уплотнительной прокладки для фланцевого соединения является невозможность обнаружения начального этапа утечки рабочей среды через фланцевое соединение (т.е. неясно, когда начинается утечка) и, соответственно, невозможность контроля состояния уплотнения в широком диапазоне контактных давлений.
Технический результат при осуществлении изобретения достигается тем, что уплотнительная прокладка для фланцевого соединения выполнена из безасбестового уплотнительного материала с возможностью размещения между фланцами фланцевого соединения, которые стянуты между собой множеством крепежных элементов, и содержит датчики регистрации осевой нагрузки, размещенные в уплотнительной прокладке при ее изготовлении с возможностью их соединения с блоком-регистратором, служащим для обработки сигналов от указанных датчиков и подключенным к внешнему компьютеру, при этом в качестве датчиков использованы гибкий тонкопленочный датчик с пьезорезистивными чувствительными элементами, расположенный внутри уплотнительной прокладки в плоскости, перпендикулярной оси уплотнительной прокладки, а также волоконно-оптические датчики на основе брэгговской решетки, количество которых равно количеству крепежных элементов фланцевого соединения, и которые размещены внутри уплотнительной прокладки в плоскости расположения гибкого тонкопленочного датчика и равномерно распределены по периферии уплотнительной прокладки.
По сравнению с наиболее близким аналогом предложенная уплотнительная прокладка для фланцевого соединения выполнена из безасбестового уплотнительного материала, который является экологически безопасным, выдерживает эксплуатацию при высоком давлении и больших перепадах температур, более пластичен, увеличивает антиадгезионные свойства, исключает коррозийное воздействие на уплотняемую поверхность, имеет высокие электроизоляционные свойства, при этом имеет ряд функциональных преимуществ, например, прокладки из безасбестового материала обеспечивают лучшую герметичность и более долговечны, они не прилипают к поверхности и легче демонтируются.
Также, по сравнению с наиболее близким аналогом предложенная уплотнительная прокладка для фланцевого соединения благодаря использованию датчиков двух типов - гибкого тонкопленочного датчика с пьезорезистивными чувствительными элементами и волоконно-оптических датчиков на основе брэгговской решетки - предоставляет возможность раннего обнаружения утечки рабочей среды (т.е. обнаружения, по существу, утечки на начальном этапе), а также контроля состояния уплотнения в широком диапазоне удельных давлений (от 0,1 мПа до 130 мПа). Использование комбинации датчиков разного типа позволяет регистрировать изменения упругих и пластических деформаций по всей поверхности зоны контакта уплотнения с фланцами.
К тому же датчики регистрации осевой нагрузки размещены в уплотнительной прокладке при ее изготовлении и располагаются внутри нее в плоскости, перпендикулярной оси уплотнительной прокладки, что обеспечивает надежную фиксацию датчиков в уплотнительной прокладке и значительно упрощает сборку фланцевого узла.
Вышеизложенные особенности и преимущества изобретения будут понятны из последующего описания предпочтительного примера ее осуществления со ссылками на прилагаемые чертежи, на которых:
на фиг. 1 представлена схема фланцевого соединения с уплотнительной прокладкой между фланцами, в соответствии с настоящим изобретением;
на фиг. 2 - разрез А-А фиг. 1 в соответствии с настоящим изобретением.
На указанных фигурах для представления одинаковых элементов используются одинаковые позиции:
1 - уплотнительная прокладка;
2 и 3 - фланцы фланцевого соединения;
4 - крепежные элементы, например, стяжные болты;
5 - гибкий тонкопленочный датчик;
6 - волоконно-оптические датчики;
7 - блок-регистратор;
8 - внешний компьютер.
Уплотнительная прокладка для фланцевого соединения размещена между фланцами 2 и 3 фланцевого соединения, которые стянуты между собой посредством множества крепежных элементов 4, например, стяжных болтов.
Уплотнительная прокладка 1 выполнена из неметаллического уплотнительного материала, а именно, из безасбестового уплотнительного материала, например, из материала на основе терморасширенного графита (ТРГ), материала на основе фторопласта (ПТФЭ) и т.п.
Безасбестовые уплотнительные материалы все больше набирают популярность. Плюсы безасбестового материала по сравнению с асбестовым заключаются в том, что он выдерживает эксплуатацию при высоком давлении, способен выдерживать большие перепады температур, более пластичен, обеспечивает лучшую герметизацию, увеличивает антиадгезионные свойства, исключает коррозийное воздействие на уплотняемую поверхность, экологически безопасен, имеет высокие электроизоляционные свойства, увеличивает эффективность работы механизмов и оборудования. К тому же, прокладки из безасбестового материала имеют следующие функциональные преимущества: не прилипают к поверхности и легче демонтируются.
В уплотнительной прокладке 1 из безасбестового уплотнительного материала размещены датчики регистрации осевой нагрузки: гибкий тонкопленочный датчик 5 и волоконно-оптические датчики 6. Принцип работы датчиков 5 и 6 основан на измерении выходных сигналов, поступающих от датчиков, и присвоению им значений осевого напряжения на основании калибровочных данных.
Гибкий тонкопленочный датчик 5 выполнен с пьезорезистивными чувствительными элементами. В качестве гибкого тонкопленочного датчика 5 может быть использован тонкопленочный матричный сенсор, позволяющий регистрировать удельное давление и его распределение по всей площади контакта между сопряженными поверхностями. Принцип работы гибкого тонкопленочного датчика 5 с пьезорезистивными чувствительными элементами основан на измерении сопротивления чувствительных элементов - пьезоэлементов, которое обратно пропорционально приложенной осевой нагрузке. Система обработки сигналов преобразует регистрируемые значения сопротивления на пьезоэлементах в значения напряжения в МПа. При этом незначительная толщина и гибкость подложки сенсора позволяют минимизировать воздействие на фактическое распределение давления между контактирующими поверхностями и получить наиболее точные и объективные измерительные данные.
Волоконно-оптические датчики 6 выполнены на основе брэгговской решетки. Их количество равно количеству крепежных элементов 4 фланцевого соединения. Принцип работы волоконно-оптических датчиков 6 основан на регистрации отраженного оптического сигнала, который изменяется в зависимости от приложенной осевой нагрузки. Использование волоконно-оптических датчиков дает ряд преимуществ: безиндукционность, малые размеры, эластичность, механическая прочность, высокая коррозийная стойкость, широкий диапазон рабочих температур и т.д. При этом результаты экспериментов показали, что волоконно-оптические датчики могут регистрировать повышение и снижение нагрузки при небольших усилиях поджатия (до 2,5 мПа), что важно для раннего обнаружения утечки в месте расположения уплотнительной прокладки.
Гибкий тонкопленочный датчик 5 с пьезорезистивными чувствительными элементами и волоконно-оптические датчики 6 заделаны в уплотнительную прокладку 1 из безасбестового уплотнительного материала в процессе ее изготовления (например, при изготовлении уплотнительной прокладки 1 из материала на основе ТРГ указанные датчики 5 и 6 запрессованы в указанный материал на стадии изготовления уплотнительной прокладки 1). При этом гибкий тонкопленочный датчик 5 расположен внутри уплотнительной прокладки 1 в плоскости, перпендикулярной оси O-O уплотнительной прокладки 1. А волоконно-оптические датчики 6 размещены внутри уплотнительной прокладки 1 в плоскости расположения гибкого тонкопленочного датчика 5 с внешней его стороны относительно оси О-О и равномерно распределены по периферии уплотнительной прокладки 1, при этом каждый волоконно-оптический датчик 6 размещен в собранном узле уплотнения фланцевого соединения в непосредственной близости от соответствующего ему крепежного элемента 4.
Указанные гибкий тонкопленочный датчик 5 с пьезорезистивными чувствительными элементами и волоконно-оптические датчики 6 соединены с блоком-регистратором 7, который подключен к внешнему компьютеру 8 и служит для обработки сигналов от указанных датчиков 5 и 6. Программное обеспечение внешнего компьютера 8 позволяет измерять и регистрировать значения точечной нагрузки одновременно на всех чувствительных элементах датчиков в режиме реального времени.
Таким образом, предложенное изобретение, благодаря тому, что в уплотнительной прокладке для фланцевого соединения, изготовленной из безасбестового уплотнительного материала, внутри нее размещены при ее изготовлении датчики двух типов - гибкий тонкопленочный датчик с пьезорезистивными чувствительными элементами и волоконно-оптические датчики на основе брэгговской решетки, позволяет контролировать величины и равномерность усилия затяжки крепежных элементов фланцевого соединения при монтажных работах, обеспечивает возможность раннего обнаружения утечки рабочей среды (т.е. обнаружения, по существу, утечки на ее начальном этапе), позволяет определить, какой из крепежных элементов требуется подтянуть (подкрутить), а также позволяет контролировать нагрузку по всей площади уплотнения, контролировать состояние уплотнения фланцевого соединения в любое время в широком диапазоне удельных давлений (от 0,1 мПа до 130 мПа), тем самым обеспечивая надежность уплотнения, и, следовательно, гарантируя безопасную эксплуатацию оборудования.
Описанные выше примеры осуществления и чертежи следует во всех аспектах рассматривать лишь как иллюстративные и не обуславливающие никаких ограничений. Следовательно, могут быть использованы другие примеры осуществления настоящего изобретения и примеры внедрения, которые не выходят за пределы описанных здесь существенных признаков.

Claims (1)

  1. Уплотнительная прокладка для фланцевого соединения, выполненная из безасбестового уплотнительного материала с возможностью размещения между фланцами фланцевого соединения, которые стянуты между собой множеством крепежных элементов, и содержащая датчики регистрации осевой нагрузки, размещенные в уплотнительной прокладке при ее изготовлении с возможностью их соединения с блоком-регистратором, служащим для обработки сигналов от указанных датчиков и подключенным к внешнему компьютеру, при этом в качестве датчиков использованы гибкий тонкопленочный датчик с пьезорезистивными чувствительными элементами, расположенный внутри уплотнительной прокладки в плоскости, перпендикулярной оси уплотнительной прокладки, а также волоконно-оптические датчики на основе брэгговской решетки, количество которых равно количеству крепежных элементов фланцевого соединения и которые размещены внутри уплотнительной прокладки в плоскости расположения гибкого тонкопленочного датчика и равномерно распределены по периферии уплотнительной прокладки.
RU2018135847A 2018-10-10 2018-10-10 Уплотнительная прокладка для фланцевого соединения RU2695179C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2018135847A RU2695179C1 (ru) 2018-10-10 2018-10-10 Уплотнительная прокладка для фланцевого соединения
EA201800541A EA034266B1 (ru) 2018-10-10 2018-10-31 Уплотнительная прокладка для фланцевого соединения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018135847A RU2695179C1 (ru) 2018-10-10 2018-10-10 Уплотнительная прокладка для фланцевого соединения

Publications (1)

Publication Number Publication Date
RU2695179C1 true RU2695179C1 (ru) 2019-07-22

Family

ID=67512300

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018135847A RU2695179C1 (ru) 2018-10-10 2018-10-10 Уплотнительная прокладка для фланцевого соединения

Country Status (2)

Country Link
EA (1) EA034266B1 (ru)
RU (1) RU2695179C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220403935A1 (en) * 2019-11-20 2022-12-22 Carl Freudenberg Kg Seal assembly and seal element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU389335A1 (ru) * 1971-03-09 1973-07-05 Уплотнительное соединение
EP0363785A2 (en) * 1988-10-12 1990-04-18 POLYSENS S.p.A. Transducer for the detection of dynamic forces, measuring and/or control equipment and method including such transducer
US5121929A (en) * 1991-06-24 1992-06-16 Fel-Pro Incorporated Gasket with encased load sensor
WO1994011718A1 (en) * 1992-11-10 1994-05-26 Intellectual Property Holding Pte Limited Joints
CN107152449A (zh) * 2017-06-30 2017-09-12 大连理工大学 一种基于光纤光栅用于监测螺栓松动的智能垫片装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU389335A1 (ru) * 1971-03-09 1973-07-05 Уплотнительное соединение
EP0363785A2 (en) * 1988-10-12 1990-04-18 POLYSENS S.p.A. Transducer for the detection of dynamic forces, measuring and/or control equipment and method including such transducer
US5121929A (en) * 1991-06-24 1992-06-16 Fel-Pro Incorporated Gasket with encased load sensor
WO1994011718A1 (en) * 1992-11-10 1994-05-26 Intellectual Property Holding Pte Limited Joints
CN107152449A (zh) * 2017-06-30 2017-09-12 大连理工大学 一种基于光纤光栅用于监测螺栓松动的智能垫片装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220403935A1 (en) * 2019-11-20 2022-12-22 Carl Freudenberg Kg Seal assembly and seal element

Also Published As

Publication number Publication date
EA034266B1 (ru) 2020-01-23
EA201800541A1 (ru) 2020-01-22

Similar Documents

Publication Publication Date Title
RU2695179C1 (ru) Уплотнительная прокладка для фланцевого соединения
RU188644U1 (ru) Уплотнительная прокладка для фланцевого соединения
Jinescu et al. Evaluation and completion the design methods of pressure vessels flange joints
JP2012087885A (ja) 軟質ガスケットの締結状態の検査方法
GB2536962A (en) Apparatus and method for joint monitoring
Cloostermans et al. Spiral wound gaskets with fiber Bragg grating sensors
US20230280149A1 (en) Clamp-on pressure and flow metering system
JP4490597B2 (ja) 配管フランジ接続診断装置およびその方法
Sawa et al. Sealing performance evaluation of pipe flange connection under elevated temperatures
Diany et al. Evaluation of contact stress in stuffing box packings
CN111855548B (zh) 一种压力管路腐蚀损伤的监测探针、系统及其方法
RU2702456C1 (ru) Интеллектуальное уплотнение для контроля состояния разъемных соединений
Sawa et al. Stress Analysis and the Sealing Performance Evaluation of Pipe Flange Connections With Gaskets Subjected to Internal Pressure and External Bending Moment: Effects of Scatter in Bolt Preload
US11467056B2 (en) Sensing leak in a multi-seal sealing assembly with sensors
Sato et al. FEM stress analysis and mechanical characteristics of bolted pipe flange connections with ptfe blended gaskets subjected to external bending moments and internal pressure
He et al. Strength and tightness evaluation method for pipe flange connections considering thermal effects
WO2020064837A1 (en) Gasket with long term sealing capacity
Bu et al. Experimental studies on vibration testing of pipe joints using metal gaskets
Radzi et al. A review on the bolted flange looseness detection method
CN118392065B (zh) 基于光纤光栅传感器的增敏部件及管道压力监测方法
Abid et al. Performance testing of a gasketed bolted flange pipe joint under combined pressure and thermal loading
US11221264B2 (en) Optical fiber sensing device for sensing the distribution of the compression or deformation of a compressible or deformable element
Sato et al. An estimation of long-term sealing performance for bolted pipe flange connections with spiral wound gaskets under elevated temperature
RU2371626C1 (ru) Фланцевое соединение аппарата, футерованного фторопластом
Adhreena et al. An Fbg-Based Gap Sensor for the Detection of Gap Elongation in Bolted Flange Connection