RU2694855C1 - Способ отделения платины (ii, iv) и палладия (ii) от серебра (i), железа (iii) и меди (ii) в солянокислых растворах - Google Patents

Способ отделения платины (ii, iv) и палладия (ii) от серебра (i), железа (iii) и меди (ii) в солянокислых растворах Download PDF

Info

Publication number
RU2694855C1
RU2694855C1 RU2019105042A RU2019105042A RU2694855C1 RU 2694855 C1 RU2694855 C1 RU 2694855C1 RU 2019105042 A RU2019105042 A RU 2019105042A RU 2019105042 A RU2019105042 A RU 2019105042A RU 2694855 C1 RU2694855 C1 RU 2694855C1
Authority
RU
Russia
Prior art keywords
mmol
platinum
silver
copper
iron
Prior art date
Application number
RU2019105042A
Other languages
English (en)
Inventor
Ольга Николаевна Кононова
Евгения Викторовна Дуба
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет"
Priority to RU2019105042A priority Critical patent/RU2694855C1/ru
Application granted granted Critical
Publication of RU2694855C1 publication Critical patent/RU2694855C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

Изобретение относится к разделению и концентрированию и может быть использовано для отделения платиновых металлов от серебра, железа и меди в солянокислых растворах сорбционным методом. Pt(II, IV) и Pd(II) отделяют от Ag(I), Fe(III) и Cu(II) сорбцией из свежеприготовленных солянокислых растворов с использованием в качестве сорбента анионита Purolite S985 в хлоридной форме и последующую десорбцию платиновых металлов раствором тиомочевины при температуре 18°С. Сорбцию и десорбцию проводят в динамических условиях. Cорбцию проводят в диапазоне концентраций: НСl 0,01-4,0 моль/л, Cu(II) - 3,125 ммоль/л, Ag(I) - 0,95 ммоль/л, Pt(II, IV) - 0,25 ммоль/л, Pd(II) - 0,25 ммоль/л, Fe(III) - 0,25 ммоль/л. Десорбцию проводят путем последовательного пропускания соответствующих растворов элюентов через слой анионита, насыщенного ионами металлов, причем сначала десорбируют медь 2,0 М раствором HNO3 и при исходной концентрации Cu(II) 3,125 ммоль/л, затем железо и серебро раствором 10,0% аммиака с исходными концентрациями Fe(III) и Ag(I) 0,25 ммоль/л и 0,95 ммоль/л соответственно. Десорбцию платины и палладия проводят при исходной концентрации Pt(II, IV) и Pd(II) 0,25 ммоль/л. Способ позволяет увеличить степень извлечения и десорбции ионов металлов при упрощении проведения процесса. 1 ил., 3 табл., 1 пр.

Description

Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано для отделения платиновых металлов (платины, палладия) от серебра, железа и меди в солянокислых растворах сорбционным методом с использованием зарубежного селективного комплексообразующего анионита Purolite S985.
Способ разделения цветных и благородных металлов при переработке содержащих их материалов [1] относится к гидрометаллургии и включает распульповку материала в воде, обработку пульпы азотной кислотой. Затем проводят отделение и отмывку не растворившегося материала, хлорирование его в соляной кислоте и фильтрацию пульпы. После фильтрации ведут нейтрализацию солянокислого раствора и отделение образовавшегося осадка примесей цветных металлов от раствора, содержащего благородные металлы. Способ позволяет извлечь из материала до 78% серебра, около 87% свинца, более 84% меди в азотнокислый раствор, а затем выделить эти элементы из раствора в селективные продукты с низким содержанием платиновых металлов.
Способ извлечения серебра, золота, платины и палладия из вторичного сырья, содержащего благородные металлы [2] относится к металлургии и включает плавление и гранулирование вторичного сырья, содержащего драгоценные металлы, растворение полученной пульпы в царской водке, нейтрализацию карбонатом натрия и фильтрацию ее под вакуумом. Получают осадок золота, платиноидов и серебра на разных этапах эксперимента. В результате обеспечивается раздельное получение серебра, золота и концентрата платиноидов из вторичного драгоценного сырья.
В двух описанных выше способах разделение металлов происходит на стадиях переработки исходного сырья и переведения металлов в раствор. Эти процессы достаточно трудоемки, так как включают плавление, растворение, обработку различными реагентами, осаждение.
Способ разделения Pt (IV) и Pd (II) на сорбентах XMК-N и XMК-S, рассматриваемый в статье [3] включает разделение ионов Pt (IV) и Pd (II) в динамических условиях из хлоридного раствора, содержащего 2⋅10-3 моль/л Pt, 1,6⋅10-3 моль/л Pd и 0,1 моль/л по концентрации НСl, с помощью 10%-ного раствора тиомочевины в 0,01 моль/л НСl. При этом Pd (II) предварительно извлекали на XMК-S, a Pt (IV) - XMК-N. Степень извлечения после сорбции составляет >99,8% Pd (II), 2,0% Pt (IV) на XMК-S и 0% Pd (II), 98,0% Pt (IV) на XMК-N. Степень десорбции составляет 99,9% для Pd (II) и 96,0% для Pt (IV).
К недостаткам данного способа можно отнести проведение процессов только в слабокислой среде, использование двух сорбентов для разделения, что увеличивает трудоемкость и время проведения сорбции и десорбции.
Способ извлечения платиновых металлов в присутствии некоторых переходных и щелочноземельных металлов [4] включает добавление к исходному солянокислому раствору компонентов ацетатного буферного раствора с рН в диапазоне 2,0-4,0. Далее проводят сорбцию в статическом режиме на комплексообразующем сорбенте - дитиооксамидированном полисилоксане при перемешивании в течение 30 минут. По прошествии указанного времени сорбент отделяют от раствора фильтрованием, промывают дистиллированной водой и оставляют сушиться при температуре 18°С. Высушенный сорбент заливают 1%-ым раствором тиомочевины в 1,0 моль/дм3 НСl (25,0 см3) и определяют содержание ионов металлов в растворе элюата.
Недостатком данного способа является низкий уровень извлечения металлов, сорбция и анализ исходного хлоридного раствора проходит в нейтральной и слабокислой средах со следующим извлечением металлов: 86,5% Pd, 36,9% Pt, менее 15,6% сопутствующих Сu, Ni, Со, Cd, Pb, Zn, Mn, Ca, Mg. Степень десорбции металлов 89,8% Pd, 65,0% Pt, менее 12,5% сопутствующих Cu, Ni, Со, Cd, Pb, Zn, Mn, Ca, Mg.
Наиболее близкими техническими решениями, выбранными в качестве прототипов, являются способы разделения платины (II, IV) и железа (III) [5]; платины (II, IV), меди (II) и цинка (II) [6] в солянокислых растворах, а также способ извлечения золота, платины и палладия из солянокислых сред [7]. Способы [5, 6] включают сорбцию и десорбцию платины (II, IV) и железа (III), меди (II) и цинка (II) из солянокислых сред в статическом режиме на комплексообразующем анионите Purolite S985. Десорбцию железа (III) проводят 0,01 М раствором НСl при рН=2 при температуре 50°С. Десорбцию меди (II) и цинка (II) - 0,5 М раствором HNO3 Десорбцию платины проводят раствором тиомочевины при температуре 18°С.
Недостатком способов [5, 6] является большая длительность процесса, так как проведение сорбции и десорбции проходит в статическом режиме (в течение 6 ч), десорбция железа (III) при температуре 50°С.
Способ [7] включает сорбцию золота, платины и палладия из солянокислых растворов и их десорбцию на низкоосновном анионите Purolite S990. После сорбции осуществляют десорбцию раствором смеси солей сульфита натрия Na2SO3 и нитрита натрия NaNO2.
К недостаткам данного способа [7] можно отнести использование двух десорбентов для разделения благородных металлов, что увеличивает время проведения десорбции.
Техническим результатом, на достижение которого направлено предлагаемое изобретение, является увеличение степени извлечения и десорбции ионов металлов за счет полного отделения платиновых металлов от серебра, железа и меди и уменьшение трудоемкости путем проведения процессов сорбции-десорбции в динамическом режиме за один цикл.
Указанный способ отделения платины (II, IV) и палладия (II) от серебра (I), железа (III) и меди (II) в солянокислых растворах включает сорбцию свежеприготовленных солянокислых растворов с использованием в качестве сорбента анионита Purolite S985 в хлоридной форме и последующую десорбцию платиновых металлов раствором тиомочевины при температуре 18°С. Отличием является то, что процессы сорбции и десорбции проходят в динамических условиях. Сорбция платиновых металлов, серебра (I), железа (III) и меди (II) проходит в диапазоне концентраций: НСl 0,01 - 4,0 моль/л; меди (II) - 3,125 ммоль/л; серебра (I) - 0,95 ммоль/л; платины (II, IV) - 0,25 ммоль/л; палладия (II) - 0,25 ммоль/л; железа (III) - 0,25 ммоль/л. Последующая десорбция идет путем последовательного пропускания соответствующих растворов элюентов через слой анионита, насыщенного ионами металлов. На первой стадии десорбируют медь 2,0 М раствором HNO3 и исходной концентрации меди (II) 3,125 ммоль/л. На второй - железо и серебро раствором 1,0% аммиака с исходными концентрациями железа (III) и серебра (I) 0,25 ммоль/л и 0,95 ммоль/л соответственно. В конце проводят десорбцию платины и палладия при исходной концентрации платины (II, IV) и палладия (II) 0,25 ммоль/л.
Изобретение поясняется чертежами. На фиг. 1 представлена общая схема отделения платины (II, IV) и палладия (II) от серебра (I), железа (III) и меди (II) в солянокислых растворах на комплексообразующем анионите Purolite S985.
Сущность заявляемого способа заключается в том, что отделение платины (II, IV) и палладия (II) от серебра (I), железа (III) и меди (II) осуществляют в динамических условиях. При этом в свежеприготовленных солянокислых растворах преимущественно присутствуют хлорокомплексы платины (II) и платины (IV) ([PtCl4]2- и [РtCl4]2-), [PdCl4]2- - хлорокомплексы палладия (II), железо (III) в этих системах присутствует в виде [FeCl4]- комплексов, медь (II) - в [СuСl2]-, а серебро (I), как указывалось выше, - в [AgCl2]-.
На первом этапе навески анионита (0,4 г) в хлоридной форме предварительно заливают раствором НСl с концентрацией 0,01 - 4,0 моль/л, оставляют на 20 мин для набухания, помещают в хроматографическую колонку на высоту 1,5 см и пропускают 50,0 мл солянокислого раствора платины (II, IV), палладия (II), серебра (I), железа (III) и меди (II). В 1,0 - 4,0 моль/л НСl ионы платины (II, IV), палладия (II), серебра (I), железа (III) и меди (II) переходят в фазу ионита; в 0,001 моль/л НСl - только ионы платины (II, IV), палладия (II) и железа (III), ионы серебра (I) и меди (II) не сорбируются в слабокислых средах. После пропускания раствора через слой ионита определяют концентрацию всех ионов в растворе элюата спектрофотометрическим методом.
Второй этап включает последовательное элюирование платины (II, IV), палладия (II), серебра (I), железа (III) и меди (II) с ионитов. Аниониты после десорбции могут быть переведены снова в хлоридную форму и повторно использованы. Платину и палладий после разделения можно использовать для дальнейшей работы в виде раствора или можно перевести в металлическую форму путем электролиза.
После сорбционного извлечения платины, палладия, серебра, железа и меди в среде 0,01 - 4,0 моль/л НСl проводят десорбцию всех компонентов. Сначала элюируют медь (II), серебро (I) и железо (III), а затем платиновые металлы (платину и палладий). Для этого через 1,5 см слой ионита, насыщенного хлоридными комплексами ионов металлов пропускают поочередно растворы различных элюентов (2,0 М HNO3, 10% NH3⋅Н2О, 1,0 М тиомочевины в 0,5 М НСl) со скоростью 1 мл/мин при температуре 18°С. На выходе из колонки элюат собирают порциями по 10,0 мл, и каждую порцию раствора анализируют на ионы платины (II, IV), палладия (II), серебра (I), железа (III) и меди (II) спектрофотометрическим методом по собственной окраске раствора, с бромпирогалоловым красным, сульфосалициловой кислотой и ПАРом соответственно [8 - 11].
Данные по сорбции в многокомпонентной системе, включающей платину, палладий, серебро, железо и медь, показывают, что наблюдается явление синергизма - взаимного влияния компонентов друг на друга при сорбции. Это приводит к тому, что анионит поглощает платину и палладий в большем количестве, а ионы неблагородных металлов извлекаются на невысоком уровне по сравнению с их извлечением из индивидуальных растворов (табл. 1). Кроме того, комплексообразующие аниониты обладают повышенным сродством к платине и палладию ввиду того, что хлоридные комплексы платины (II, IV) и палладия (II) являются более устойчивыми относительно комплексов серебра (I), железа (III) и меди (II) [12].
Результаты по десорбции ионов платины (II, IV), палладия (II), серебра (I)*, железа (III) и меди (II) представлены в таблицах 2 и 3 соответственно где С0 - исходная концентрация элемента/среды при сорбции (ммоль/л/ моль/л), Т - температура (°С), υ - скорость пропускания раствора (мл/мин) через hсорбента - слой сорбента (см), помещенный в хроматографическую колонку высотой - h и диаметром d).
Способ иллюстрируется следующим примером.
Пример 1.
Навеску анионита Purolite S985 в хлоридной форме, массой 0,4 г заливают раствором НСl 4,0 моль/л, оставляют на 20 мин для набухания, помещают в хроматографическую колонку на высоту 1,5 см и пропускают 50,0 мл свежеприготовленного солянокислого раствора следующего состава: концентрация НСl 4,0 моль/л, концентрация по платине (II, IV) 0,25 ммоль/л, по палладию (II) 0,25 ммоль/л, по серебру (I) 0,95 ммоль/л, по железу (III) 0,25 ммоль/л, по меди (II) 3,125 ммоль/л. При этом платина, палладий, железо и медь полностью сорбируются на анионите. Серебро в данных условиях сорбируется на уровне 5-8%. После этого проводят десорбцию всех компонентов. Сначала элюируют медь (II) - через 1,5 см слой анионита, насыщенного хлоридными комплексами ионов металлов пропускают 50,0 мл раствора 2,0 М HNO3 со скоростью 1 мл/мин при температуре 18°С. Медь (II) практически полностью десорбируется (табл. 3). Затем проводят десорбцию серебра (I) и железа (III) - через 1,5 см слой анионита, насыщенного хлоридными комплексами ионов металлов пропускают 50,0 мл раствора 10% NH3 Н2О со скоростью 1 мл/мин при температуре 18°С. Серебро (I) и железо (III) полностью десорбируются (табл. 2 - 3). Далее десорбируют платиновые металлы (платину и палладий). Для этого через 1,5 см слой анионита, насыщенного хлоридными комплексами ионов металлов пропускают 50,0 мл раствора 1,0 М тиомочевины в 0,5 М НСl) со скоростью 1 мл/мин при температуре 18°С. Платина (II, IV) и палладий (II) полностью десорбируются (табл. 2). На выходе из колонки элюат собирают порциями по 10,0 мл, и каждую порцию раствора анализируют на ионы платины (II, IV), палладия (II), серебра (I), железа (III) и меди (II) спектрофотометрическим методом.
Использование заявляемого изобретения позволяет отделить платину (II, IV) и палладий (II) от серебра (I), железа (III) и меди (II) в солянокислых растворах в диапазоне концентраций по НСl от 0,01 до 4,0 моль/л, меди (II) - 3,125 ммоль/л, железа (III) - 0,25 ммоль/л и серебра (I) - 0,95 ммоль/л, при концентрации платины (II, IV) и палладия (II) 0,25 ммоль/л. Для процессов десорбции применяются растворы тиомочевины, азотной кислоты и аммиака, что позволяет легко восстановить аниониты. Способ позволяет извлекать указанные металлы из свежеприготовленных солянокислых растворов, как в случае сорбции, так и в случае десорбции. Таким образом, появляется возможность отделения платины (II, IV) и палладия (II) от серебра (I), железа (III) и меди (II), увеличивается степень извлечения ионов металлов, уменьшается трудоемкость процесса разделения.
Список источников
1. Способ разделения цветных и благородных металлов при переработке содержащих их материалов. Патент РФ №2370554 от 20.10.2008 г.
2. Способ извлечения серебра, золота, платины и палладия из вторичного сырья, содержащего благородные металлы. Патент РФ №2089635 от 14.12.1995 г.
3. Борягина, И.В. Сорбция хлоридных комплексов палладия и платины химически модифицированными кремнеземами / И.В. Борягина, Е.В. Волчкова, Т.М. Буслаева и др. // Журн. «Цветные металлы», 2012. - №5. - С. 59-64.
4. Способ извлечения платиновых металлов в присутствии некоторых переходных и щелочноземельных металлов. Патент РФ №2625205 от 21.03.2016 г.
5. Способ разделения платины (II, IV) и железа (III) в солянокислых растворах. Патент РФ №2610185 от 8.02.2017 г.
6. Способ разделения платины (II, IV), меди (II) и цинка (II) в солянокислых растворах. Патент РФ №2637547 от 5.12.2017 г.
7. Способ извлечения золота, платины и палладия из солянокислых сред. Патент РФ №2010150231/02 от 10.02.2012 г. ПРОТОТИП
8. Аналитическая химия платиновых металлов / С.И. Гинзбург и др. - М. Наука, 1972. -617 с.
9. Аналитическая химия серебра / И.В. Пятницкий, В.В. Сухан. - М.: Наука, 1975. - 286 с.
10. Фотометрическое определение элементов / З. Марченко. - М.: Химия, 1971. - 504 с.
11. Аналитическая химия меди / В.Н. Подчайнова, Л.Н. Симонова. - М.: Наука, 1990. -279 с.
12. Ионный обмен / Под. ред. Я. Марийского. - М.: Мир, 1968. - 565 с.
Figure 00000001
* Примечание: серебро при совместном присутствии с другими компонентами в данных условиях сорбируется на уровне 5 - 8%.
Figure 00000002
Figure 00000003

Claims (1)

  1. Способ отделения платины (II, IV) и палладия (II) от серебра (I), железа (III) и меди (II) в солянокислых растворах, включающий сорбцию из свежеприготовленных солянокислых растворов с использованием в качестве сорбента анионита Purolite S985 в хлоридной форме и последующую десорбцию платиновых металлов раствором тиомочевины при температуре 18°С, отличающийся тем, что сорбцию и десорбцию проводят в динамических условиях, сорбцию платиновых металлов, серебра (I), железа (III) и меди (II) проводят в диапазоне концентраций: НСl 0,01-4,0 моль/л, меди (II) - 3,125 ммоль/л, серебра (I) - 0,95 ммоль/л, платины (II, IV) - 0,25 ммоль/л, палладия (II) - 0,25 ммоль/л, железа (III) - 0,25 ммоль/л, а последующую десорбцию проводят путем последовательного пропускания соответствующих растворов элюентов через слой анионита, насыщенного ионами металлов, причем сначала десорбируют медь 2,0 М раствором HNO3 и при исходной концентрации меди (II) 3,125 ммоль/л, затем железо и серебро раствором 10,0% аммиака с исходными концентрациями железа (III) и серебра (I) 0,25 ммоль/л и 0,95 ммоль/л соответственно, после чего проводят десорбцию платины и палладия при исходной концентрации платины (II, IV) и палладия (II) 0,25 ммоль/л.
RU2019105042A 2019-02-22 2019-02-22 Способ отделения платины (ii, iv) и палладия (ii) от серебра (i), железа (iii) и меди (ii) в солянокислых растворах RU2694855C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019105042A RU2694855C1 (ru) 2019-02-22 2019-02-22 Способ отделения платины (ii, iv) и палладия (ii) от серебра (i), железа (iii) и меди (ii) в солянокислых растворах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019105042A RU2694855C1 (ru) 2019-02-22 2019-02-22 Способ отделения платины (ii, iv) и палладия (ii) от серебра (i), железа (iii) и меди (ii) в солянокислых растворах

Publications (1)

Publication Number Publication Date
RU2694855C1 true RU2694855C1 (ru) 2019-07-17

Family

ID=67309440

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019105042A RU2694855C1 (ru) 2019-02-22 2019-02-22 Способ отделения платины (ii, iv) и палладия (ii) от серебра (i), железа (iii) и меди (ii) в солянокислых растворах

Country Status (1)

Country Link
RU (1) RU2694855C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU633291A1 (ru) * 1977-03-25 1989-01-07 Институт Химии И Технологии Редких Элементов И Минерального Сырья Кольского Филиала Ан Ссср Им.С.М.Кирова Способ извлечени платиновых металлов из раствора сорбцией
RU2161130C1 (ru) * 2000-01-26 2000-12-27 Карманников Владимир Павлович Способ извлечения и разделения металлов платиновой группы
WO2002053788A1 (en) * 2000-12-29 2002-07-11 Nichromet Extraction Inc. Method for the recovery of base and precious metals by extractive chloridation
RU2370556C1 (ru) * 2008-03-11 2009-10-20 Открытое акционерное общество "Красноярский завод цветных металлов имени В.Н. Гулидова" (ОАО "Красцветмет") Способ разделения металлов при переработке солянокислых растворов, содержащих благородные металлы, сурьму и другие неблагородные металлы
RU2637547C1 (ru) * 2016-11-02 2017-12-05 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ разделения платины (ii, iv), меди (ii) и цинка (ii) в солянокислых растворах

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU633291A1 (ru) * 1977-03-25 1989-01-07 Институт Химии И Технологии Редких Элементов И Минерального Сырья Кольского Филиала Ан Ссср Им.С.М.Кирова Способ извлечени платиновых металлов из раствора сорбцией
RU2161130C1 (ru) * 2000-01-26 2000-12-27 Карманников Владимир Павлович Способ извлечения и разделения металлов платиновой группы
WO2002053788A1 (en) * 2000-12-29 2002-07-11 Nichromet Extraction Inc. Method for the recovery of base and precious metals by extractive chloridation
RU2370556C1 (ru) * 2008-03-11 2009-10-20 Открытое акционерное общество "Красноярский завод цветных металлов имени В.Н. Гулидова" (ОАО "Красцветмет") Способ разделения металлов при переработке солянокислых растворов, содержащих благородные металлы, сурьму и другие неблагородные металлы
RU2637547C1 (ru) * 2016-11-02 2017-12-05 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ разделения платины (ii, iv), меди (ii) и цинка (ii) в солянокислых растворах

Similar Documents

Publication Publication Date Title
Mendes et al. Selective sorption of nickel and cobalt from sulphate solutions using chelating resins
Zhang et al. Recovery of rhenium from copper leach solutions using ion exchange with weak base resins
CN102516425B (zh) 一种超级螯合离子交换树脂及其制备方法和应用
Dai et al. Comparison of activated carbon and ion-exchange resins in recovering copper from cyanide leach solutions
Siddhanta et al. Separation and concentration of some platinum metal ions with a new chelating resin containing thiosemicarbazide as functional group
Brajter et al. Separation of metal ions on a modified aluminium oxide
Hubicki et al. Application of ion exchange methods in recovery of Pd (II) ions—a review
Snyders et al. The application of activated carbon for the adsorption and elution of platinum group metals from dilute cyanide leach solutions
Schoeman et al. The extraction of platinum and palladium from a synthetic cyanide heap leach solution with strong base anion exchange resins
Littlejohn et al. Recovery of nickel and cobalt from laterite leach tailings through resin-in-pulp scavenging and selective ammoniacal elution
Hubicki et al. Recovery of palladium (II) from chloride and chloride–nitrate solutions using ion-exchange resins with S-donor atoms
US3970737A (en) Metal, particularly gold, recovery from adsorbed cyanide complexes
Agrawal et al. Separation and recovery of lead from a mixture of some heavy metals using Amberlite IRC 718 chelating resin
US4885143A (en) Method for the interseparation of platinum group metals
Warshawsky Polystyrenes impregnated with ethers—a polymeric reagent selective for gold
RU2694855C1 (ru) Способ отделения платины (ii, iv) и палладия (ii) от серебра (i), железа (iii) и меди (ii) в солянокислых растворах
Vernon et al. Chelating ion-exchangers containing N-substituted hydroxylamine functional groups: Part 6. Sorption and separation of gold and silver by a polyhydroxamic acid
Kiriyama et al. Anion-exchange enrichment and spectrophotometric determination of traces of gallium in natural waters.
Hidalgo et al. Study of the sorption and separation abilities of commercial solid‐phase extraction (SPE) cartridge oasis MAX towards Au (III), Pd (II), Pt (IV), and Rh (III)
Virolainen et al. Ion exchange purification of a silver nitrate electrolyte
Zuo et al. Extraction of noble metals by sulfur-containing reagents and solvent impregnated resins
Lukey et al. The effect of functional group structure on the elution of metal cyanide complexes from ion-exchange resins
RU2637547C1 (ru) Способ разделения платины (ii, iv), меди (ii) и цинка (ii) в солянокислых растворах
Schoeman et al. The elution of platinum and palladium cyanide from strong base anion exchange resins
RU2111272C1 (ru) Способ выделения платиновых металлов