RU2693101C1 - Способ разработки обводненной нефтяной залежи - Google Patents
Способ разработки обводненной нефтяной залежи Download PDFInfo
- Publication number
- RU2693101C1 RU2693101C1 RU2018118834A RU2018118834A RU2693101C1 RU 2693101 C1 RU2693101 C1 RU 2693101C1 RU 2018118834 A RU2018118834 A RU 2018118834A RU 2018118834 A RU2018118834 A RU 2018118834A RU 2693101 C1 RU2693101 C1 RU 2693101C1
- Authority
- RU
- Russia
- Prior art keywords
- water
- low
- composition
- gel
- forming composition
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 31
- 238000011161 development Methods 0.000 title abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 87
- 239000000243 solution Substances 0.000 claims abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000002347 injection Methods 0.000 claims abstract description 19
- 239000007924 injection Substances 0.000 claims abstract description 19
- 229920002401 polyacrylamide Polymers 0.000 claims abstract description 14
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 claims abstract description 13
- 239000004202 carbamide Substances 0.000 claims abstract description 12
- 229920000642 polymer Polymers 0.000 claims abstract description 11
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims abstract description 10
- 235000017281 sodium acetate Nutrition 0.000 claims abstract description 10
- 239000001632 sodium acetate Substances 0.000 claims abstract description 10
- -1 polyoxychloride Polymers 0.000 claims abstract description 8
- 239000013505 freshwater Substances 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 7
- 238000006277 sulfonation reaction Methods 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 19
- 235000013877 carbamide Nutrition 0.000 abstract description 11
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 abstract description 8
- 238000010790 dilution Methods 0.000 abstract description 8
- 239000012895 dilution Substances 0.000 abstract description 8
- 230000035515 penetration Effects 0.000 abstract description 5
- 238000012216 screening Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract description 2
- 238000005755 formation reaction Methods 0.000 description 16
- 239000011148 porous material Substances 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 10
- 230000035699 permeability Effects 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 8
- 238000001879 gelation Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000269808 Sparus Species 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 150000003672 ureas Chemical class 0.000 description 2
- UUDAMDVQRQNNHZ-UHFFFAOYSA-N (S)-AMPA Chemical compound CC=1ONC(=O)C=1CC(N)C(O)=O UUDAMDVQRQNNHZ-UHFFFAOYSA-N 0.000 description 1
- KMZOJSINLAGOMV-UHFFFAOYSA-N (prop-2-enoylamino) propane-1-sulfonate Chemical compound CCCS(=O)(=O)ONC(=O)C=C KMZOJSINLAGOMV-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 241000380450 Danaus melanippus Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Изобретение относится к нефтегазодобывающей промышленности, в частности к способам разработки обводненной нефтяной залежи в низкопроницаемом терригенном коллекторе заводнением. В способе разработки обводненной нефтяной залежи с низкопроницаемым терригенным коллектором путем последовательной закачки в нагнетательные скважины экранирующих буферных оторочек и промежуточной оторочки низковязкой гелеобразующей композиции экранирующие буферные оторочки представляют собой водно-полимерный раствор, содержащий, масс. %: высокомолекулярный сульфонированный полиакриламид AN 125 со степенью сульфонирования 25% мол., м.м. 8 млн ед., 0,01-0,3, ацетат хрома 0,001-0,03, пресная вода остальное, а в качестве промежуточной оторочки низковязкой гелеобразующей композиции используют состав, содержащий, масс. %: хлорид или полиоксихлорид алюминия 2,0-10,0, ацетат натрия 0,25-5,0, карбамид 0,25-15,0, пресная или минерализованная вода остальное, каждую экранирующую буферную оторочку используют в объеме, равном 10-100% от объема промежуточной оторочки. Технический результат - повышение степени охвата пласта заводнением за счет обеспечения максимальной глубины проникновения в пласт промежуточной оторочки низковязкой гелеобразующей композиции с увеличенным временем гелеобразования и высокими структурно-механическими свойствами, что является следствием использования указанной совокупности оторочек с оптимизированными рецептурами. В результате достигается предотвращение разбавления гелеобразующей композиции пластовой и закачиваемой водой. 3 табл.
Description
Изобретение относится к нефтегазодобывающей промышленности, в частности, к способам разработки обводненной нефтяной залежи в низкопроницаемом терригенном коллекторе заводнением.
Известен способ разработки нефтяного месторождения путем закачки в нефтяной пласт гелеобразующего состава на основе солей алюминия и карбамида, причем в качестве солей алюминия используются жидкие алюмосодержащие отходы при следующих соотношениях, масс. %: жидкие алюмосодержащие отходы 20,0-75,0; карбамид 15,0-50,0; вода остальное (RU 2120544, 1998).
Недостатком известного способа является нестабильность качества получаемого геля из-за неоднородности применяемых алюмосодержащих отходов, а также использование высоких концентраций реагентов.
Известен гелеобразующий состав для изоляции водопритока к скважинам и повышения нефтеотдачи, который содержит соли алюминия (2,5-20,0% масс.), ацетат натрия (2,0-10,0% масс.) и воду, и может содержать карбамид (до 30% масс.) и мелкодисперсный полиакриламид с диаметром частиц 40-80 мкм (до 2,5% масс.) (RU 2529975, 2014).
Недостатком данного гелеобразующего состава, не содержащего мелкодисперсный полиакриламид, является снижение его структурно-механических характеристик за счет разбавления водой при глубоком проникновении в водонасыщенный пласт, а также невозможность его использования из-за повышенной вязкости при содержании в нем мелкодисперсного полиакриламида, в низкопроницаемых пластах, что существенно ограничивает его область применения.
Наиболее «близким по технической сущности к заявляемому способу является способ разработки обводненной залежи путем закачки в нагнетательные скважины низковязкой гелеобразующей композиции в объеме не менее 25 м3, представляющей собой 5,0-30,0 масс. % раствор изолирующего состава ВИС-1 в пресной или минерализованной воде в объеме не менее 25 м3. При этом, с целью предотвращения разбавления низковязкой гелеобразующей композиции пластовой и закачиваемой водой при ее глубоком проникновении в водонасыщенный пласт, до и после нее закачивают экранирующую буферную оторочку раствора, содержащего 0,1-0,5 масс. % высокомолекулярного гидролизованного полиакриламида в пресной воде в количестве от 10 до 100% от объема низковязкой гелеобразующей композиции (RU 2475635, 2013).
Недостатком известного способа является низкая эффективность используемого гелеобразующего состава, обусловленная невысоким временем гелирования последнего. Высокая адсорбция полиакриламида на породе не позволяет использовать гелеобразующие составы на основе солей алюминия и карбамида с длительным временем гелеобразования вследствие разбавления состава при движении его по водонасыщенному пласту.
Таким образом, известный способ недостаточно эффективен.
Технической проблемой, на решение которой направлено данное изобретение, является повышение эффективности способа разработки обводненной нефтяной залежи.
Указанная техническая проблема решается описываемым способом добычи нефти из обводненной нефтяной залежи с низкопроницаемым терригенным коллектором путем последовательной закачки в нагнетательные скважины экранирующих буферных оторочек и промежуточной оторочки низковязкой гелеобразующей композиции, причем экранирующие буферные оторочки представляют собой водно-полимерный раствор следующего состава, масс. %:
высокомолекулярный сульфонированный | |
полиакриламид AN 125 со степенью сульфонирования 25% мольн., | |
м.м. 8 млн.ед. | 0,01-0,3 |
ацетат хрома | 0,001-0,03 |
пресная вода | остальное, |
низковязкая гелеобразующая композиция имеет состав, масс. %:
хлорид или | |
полиоксихлорид алюминия | 2,0-10,0 |
ацетат натрия | 0,25-5,0 |
карбамид | 0,25-15,0 |
пресная или минерализованная вода | остальное, |
каждую экранирующую буферную оторочку используют в объеме, равном 10-100% от объема промежуточной оторочки.
Полученный технический результат заключается в повышении степени охвата пласта заводнением, что является следствием использования предлагаемой совокупности оторочек с оптимизированными рецептурами, в т.ч. за счет обеспечения максимальной глубины проникновения в пласт промежуточной оторочки низковязкой гелеобразующей композиции с увеличенным временем гелеобразования и высокими структурно-механическими свойствами, а также указанного состава экранирующих оторочек. В результате достигается предотвращение разбавления гелеобразующей композиции пластовой и закачиваемой водой.
Сущность описываемого способа заключается в следующем.
По описываемому изобретению осуществляют разработку нефтяной залежи заводнением. До закачивания используемой системы оторочек и после окончания закачивания в нагнетательные скважины, традиционно, закачивают подтоварную воду. На первом этапе применения описываемого способа в нагнетательную скважину закачивают экранирующую буферную оторочку, в качестве которой используют раствор, содержащий высокомолекулярный сульфонированный полиакриламид (ВМСПАА) AN 125 в количестве 0,01-0,3 масс. % в пресной технической воде с добавлением 0,001-0,03 масс. % ацетата хрома. Затем закачивают промежуточную оторочку низковязкой гелеобразующей композиции (гелеобразующий состав), в качестве которой используют состав, содержащий, масс. %: хлорид или полиоксихлорид алюминия 2,0-10,0; ацетат натрия 0,25-5,0; карбамид 0,25-15,0; пресная или минерализованная вода - остальное, до 100 в объеме не менее 25 м3, а затем вновь экранирующую буферную оторочку - раствор, содержащий 0,01-0,3 масс. % ВМПАА AN 125 в пресной технической воде с добавлением 0,001-0,03 масс. % ацетата хрома. При этом каждую экранирующую буферную оторочку используют в объеме, равном 10-100% от объема применяемой промежуточной оторочки.
Для проведения способа используют:
1. Хлорид алюминия - кристаллический продукт белого или с желтоватым оттенком цвета, гигроскопичен, растворим в воде, спирте, эфире, хлороформе, выпускается по ГОСТ 3759-75.
2. Аква-Аурат 30 - полиоксихлорид алюминия - кристаллический порошок желтоватого цвета, массовая доля оксида алюминия не менее 30%, массовая доля хлора - не менее 35%, выпускается по ТУ 2163-069-00205067-2007.
3. Карбамид - кристаллический продукт белого цвета, массовая доля азота, в пересчете на сухое вещество, не менее 46,2%, выпускается по ГОСТ 2081-92.
4. Ацетат натрия - бесцветное кристаллическое вещество, допускаются оттенки от светло-желтого до светло-коричневого цвета, массовая доля основного вещества - не менее 50%, выпускается по ТУ 2432-043-07510508-2003.
5. Изолирующий состав ВИС-1, выпускается по ТУ 2484-087-17197708-2004, представляет собой композицию, полученную на основе солей алюминия, карбамида и поверхностно-активных веществ. Порошок светло-желтого цвета (сухая форма).
Содержит, % масс.:
Оксихлорид алюминия | - 30 |
Мочевина | - 68 |
ПАВ | - 2 |
6. ВМСПАА AN 125 - производится компанией «СНФ Восток», представляет собой сульфонированный полиакриламид, являющийся сополимером акриламида и акриламидопропилсульфоновой кислоты, степень сульфонирования 25% мольн., ориентировочный молекулярный вес 8 миллионов у.ед..
7. Хром(III) ацетат (хром(III) уксуснокислый), содержащий в растворе не менее 11,35% масс. хрома(III), выпускается по ТУ 0254-031-17197708-96 с изм. 1-3.
8. Минерализованная вода плотностью 1,211 г/см3, с содержанием катионов Са++ и Mg++ 25 800 мг/л.
9. Минерализованная вода плотностью 1,012 г/см3, с содержанием катионов Са++ и Mg++ 1000 мг/л.
10. Пресная вода.
Для иллюстрации описываемого способа проводят испытания образцов используемых оторочек.
Для этого готовят составы оторочки низковязкой гелеобразующей композиции с различными концентрациями компонентов.
Состав 1.
В стеклянном стакане на 250 мл в 195,0 г (97,5% масс.) минерализованной воды плотностью 1,211 г/см3 растворяют 4,0 г (2,0% масс.) полиоксихлорида алюминия (аква-аурата), 0,5 г (0,25% масс.) ацетата натрия и 0,5 г (0,25% масс.) карбамида. В результате, смешиваемые реагенты полностью растворяются в воде, при этом получается однородный полупрозрачный раствор низкой вязкости. Состав 2.
В стеклянном стакане на 250 мл в 170,0 г (85,0% масс.) минерализованной воды плотностью 1,012 г/см3 растворяют 16,0 г (8,0% масс.) полиоксихлорида алюминия (аква-аурата), 4,0 г (2,0% масс.) ацетата натрия и 10,0 г (5,0% масс.) карбамида. В результате, смешиваемые реагенты полностью растворяются в воде, при этом получается однородный полупрозрачный раствор низкой вязкости.
Состав 3.
В стеклянном стакане на 250 мл в 140,0 г (70,0% масс.) пресной воды растворяют 20,0 г (10,0% масс.) шестиводного хлорида алюминия, 10,0 г (5,0% масс.) ацетата натрия и 30,0 г (15,0% масс.) карбамида. В результате, смешиваемые реагенты полностью растворяются в воде, при этом получается однородный полупрозрачный раствор низкой вязкости.
Состав 4 (по известному способу).
В стеклянном стакане на 250 мл в 170,0 г минерализованной воды плотностью 1,012 г/см3 растворяют 15,0 г изолирующего состава ВИС-1. В результате, смешиваемый реагент полностью растворяется в воде, при этом получается однородный полупрозрачный раствор низкой вязкости.
Приготовленные составы нагревают в термошкафу в закрытых тефлоновых стаканах при температуре 85°C.
Состав гелеобразующей композиции (гелеобразующего состава), а также данные по времени образования геля при температуре 85°C и комплексной вязкости гелей при различном содержании реагентов в гелеобразующих составах представлены в таблице 1.
В результате нагрева получают неподвижный однородный гель. Время гелеобразования при одинаковой температуре исследования зависит от типа, концентрации реагентов и их соотношения. Так, из таблицы 1 следует, что, несмотря на одинаковую общую концентрацию реагентов, время образования геля у состава 2 в 3, 4 раза выше, чем у известного состава (состав 4).
Комплексная вязкость состава, содержащего ацетат натрия, (состав 2) также значительно выше, чем у известного состава (состав 4).
При закачке в пласт водных растворов ВМСПАА наблюдается значительная адсорбция полимера на поверхности поровых каналов, что значительно снижает эффективность технологии, т.к. после полной адсорбции полимера будет происходить смешение гелеобразующего состава с пластовой водой.
Объем адсорбированного полимера вычисляют следующим образом (Магадова Л.А., Губанов В.Б., ВуАнь. Фан. Разработка состава для технологии ПАВ-полимерного заводнения применительно к условиям месторождения Белый Тигр. Промышленный сервис. - 2016. - №3. - С. 21-25):
где:
ΔVп - объем адсорбированного ВМСПАА,
Vп 0 - закачиваемый объем раствора ВМСПАА,
Vп к - объем раствора ВМСПАА, прошедший через поровое пространство,
Rост - остаточный фактор сопротивления, полученный на основании фильтрационных исследований.
Объем оторочки раствора ВМСПАА в призабойной зоне пласта рассчитывают по формуле 2:
где:
Vот.- объем оторочки раствора ВМСПАА в призабойной зоне пласта, м3,
r - радиус распространения раствора, м; π=3,14;
h - эффективная нефтенасыщенная толщина пласта, м;
m - пористость пласта, доли ед.;
Sw - водонасыщенность.
Исходя из вышеописанных формул 1 и 2, объем оторочки раствора ВМСПАА с учетом его адсорбции в пористой среде определяется по формуле 3:
где Vот A - оторочки раствора ВМСПАА с учетом его адсорбции в пористой среде (равен объему адсорбированного полимера в пласте).
Таким образом, при закачке в продуктивный пласт раствора ВМСПАА объемом Vот A радиус распространения раствора ВМСПАА будет выражаться следующей формулой (4):
поэтому, чем ниже адсорбция полимера, тем ниже фактор остаточного сопротивления и тем выше радиус распространения раствора ВМСПАА.
Для снижения адсорбции ВМСПАА используется высокомолекулярный сульфонированный полиакриламид марки AN 125, а в раствор полимера добавляют сшиватель - ацетат хрома (АХ). Снижение адсорбции сшитого высокомолекулярного сульфонированного ПАА будет происходить за счет экранирования активных групп полимера.
Неоднородность пласта по проницаемости отражается на коэффициенте охвата пласта заводнением, снижение неоднородности продуктивного пласта достигается при применении технологий, суть которых заключается в селективной закачке в высокопроницаемые зоны продуктивного пласта тампонирующего состава, тем самым выравниваются проницаемости высоко- и низкопроницаемых зон. Степень тампонирования высокопроницаемой зоны пласта (уменьшение его проницаемости) определяется фактором остаточного сопротивления, представляющим собой отношение проницаемости высокопроницаемой зоны до воздействия к значению проницаемости после обработки составом.
В таблице 2 представлены данные по показателю - «фактор остаточного сопротивления», полученные при фильтрации несшитых и сшитых растворов ПАА низкой вязкости через насыпные модели (в водонасыщенные модели закачивают по одному поровому объему состава, используемого в эксперименте).
Для оценки влияния на тампонирующие свойства компонентного состава оторочки гелеобразующей композиции, а также предварительной и последующей закачки оторочек экранирующей буферной жидкости, представляющей собой сшитый раствор полиакриламида в пресной воде (ВМСПАА) проводят фильтрационные исследования для определения фактора остаточного сопротивления.
Методика исследований.
Готовят модели пласта, насыщенные минерализованной водой плотностью 1,012 г/см3 при 20°C, с вязкостью 1,024 мПа*с при 20°C и проницаемостью по минерализованной воде порядка 0,2 мкм2.
Согласно разработанной методике при температуре пористой среды 85°C в первую модель закачивают 0,15Vпор (порового объема) гелеобразующего состава (состав 2 из таблицы №1), а затем, закачав 0,2 Vпор воды, выдерживают модель при данной температуре для проведения процесса гелеобразования в течение 24 часов.
Во вторую модель при температуре пористой среды 85°C закачивают 0,15 Vпор гелеобразующего состава (состав 2 из таблицы №1), а затем, закачав 0>7 Vпор воды, выдерживают модель при данной температуре для проведения процесса гелеобразования в течение 24 часов.
В третью модель при температуре пористой среды 85°C закачивают 0,3%-ный раствор ВМСПАА (AN 125) с добавлением 0,01% ацетата хрома, затем гелеобразующий состав (состав 2 из таблицы №1) и снова 0,3%-ный раствор ВМСПАА (AN 125) с добавлением 0,01% ацетата хрома в объеме по 0,15Vпор каждого состава. То есть, в сумме закачивают 0,45Vпор различных водорастворимых составов. Далее, предполагая, что процесс продвижения водорастворимых составов внутри модели пласта, содержащей водную фазу, будет носить поршневой характер, закачивают в модель пласта 0,55Vпор воды. Тем самым, моделируя процесс продвижения пачки тампонирующих реагентов в пористой среде продуктивного коллектора, перемещают весь объем закачанных составов к выходу модели пласта. После выдержки в течение 24 часов для прохождения процесса гелеобразования, проводят фильтрацию минерализованной воды в том же направлении, в каком проводилась закачка составов, при разных расходах до стабилизации перепада давления. Определяют конечный коэффициент проницаемости по воде и фактор остаточного сопротивления.
В четвертую модель при температуре пористой среды 85°C закачивают 0,01%-ный раствор ВМСПАА (AN 125) с добавлением 0,03% ацетата хрома, затем гелеобразующий состав (состав 2 из таблицы №1) и снова 0,01%-ный раствор ВМСПАА (AN 125) с добавлением 0,03% ацетата хрома, в объеме по 0,15Vпор каждого состава. То есть в сумме закачали 0,45Vпор различных водорастворимых составов. Далее, предполагая, что процесс продвижения водорастворимых составов внутри модели пласта, содержащей водную фазу, будет носить поршневой характер, закачали в модель пласта 0,55Vпор воды. Тем самым, моделируя процесс продвижения пачки тампонирующих реагентов в пористой среде продуктивного коллектора, перемещают весь объем закачанных составов к выходу модели пласта. После выдержки в течение 24 часов для прохождения процесса гелеобразования, проводят фильтрацию минерализованной воды в том же направлении, в каком проводилась закачка составов, при разных расходах до стабилизации перепада давления. Определяют конечный коэффициент проницаемости по воде и фактор остаточного сопротивления.
Результаты фильтрационных исследований на водонасыщенных моделях терригенного пласта по оценке фактора остаточного сопротивления представлены в таблице 3.
Как следует из таблицы 3, при использовании гелеобразующего состава без экранирующей буферной оторочки происходит снижение фактора остаточного сопротивления при движении состава вглубь водонасыщенной модели. Так, в опыте 2 фактор остаточного сопротивления (5, 10) значительно ниже, чем в опыте 1 (27, 40). При этом полученные факторы остаточного сопротивления значительно выше, чем у известного способа с аналогичной общей концентрацией, что объясняется высокими структурно-механическими характеристиками описываемого гелеобразующего состава.
При использовании в качестве оторочек раствора ВМСПАА (AN 125) получен фактор остаточного сопротивления 18, 70 для раствора ВМСПАА (AN 125) в концентрации 0,3% масс. с добавлением ацетата хрома (АХ) 0,01% масс. и фактор остаточного сопротивления 9,56 для раствора ВМСПАА (AN 125) в концентрации 0,01% масс. с добавлением ацетата хрома 0,03% масс., что значительно выше, чем у состава с аналогичной общей концентрацией гелеобразующего состава по известному способу.
Диапазон концентрации ВМСПАА (AN 125) выбирают на основании следующих данных:
- минимальная концентрация ВМСПАА (AN 125) составляет 0,01% масс., ниже которого раствор ВМСПАА (AN 125) не будет препятствовать, за счет слишком низкой вязкости, разбавлению раствора гелеобразующего состава пластовой и закачиваемой водой, а максимальная концентрация (0,3 масс. %) ограничивается высокой вязкостью раствора полиакриламида и экономической целесообразностью.
- минимальная концентрация ацетата хрома составляет 0,001% масс., ниже которой раствор ВМСПАА (AN 125) не будет препятствовать, за счет слишком низкой вязкости разбавлению раствора гелеобразующего состава пластовой и закачиваемой водой, а максимальная концентрация (0,03 масс. %) ограничивается высокой вязкостью сшитого раствора полиакриламида и экономической целесообразностью.
Диапазон объема буферной пачки выбран на основании следующих данных:
- минимальное значение объема буферной пачки составляет 10% от объема гелеобразующего состава, ниже которого будет происходить разбавление раствора гелеобразующего состава пластовой и закачиваемой водой, а максимальный объем - 100% от объема гелеобразующего состава ограничивается экономической целесообразностью.
Минимальный объем используемого гелеобразующего состава -25 м3 выбран с учетом опыта применения аналогичных составов на практике, что составляет, примерно, 0,15Vпор для части пласта толщиной 1 м и радиусом 20 м, при пористости около 13,6% (такая пористость может быть характерна для низкопроницаемых терригенных коллекторов Западной Сибири).
Максимальный объем используемого гелеобразующего состава ограничивается экономической целесообразностью и составляет не более 0,6 Vпор.
Таким образом, описываемый способ позволяет повысить степень охвата пласта заводнением, что подтверждают данные фильтрационных исследований, представленных в таблице 3, моделирующих закачку описываемой системы оторочек в водонасыщенный пласт, а именно фактор остаточного сопротивления в экспериментах №3 и №4 составляет 18,70 и 9,56, соответственно, что показывает во сколько раз снизится проницаемость высокопроницаемых пропластков после воздействия системы оторочек. Полученные результаты доказывают эффективность данного способа.
Claims (5)
- Способ разработки обводненной нефтяной залежи с низкопроницаемым терригенным коллектором путем последовательной закачки в нагнетательные скважины экранирующих буферных оторочек и промежуточной оторочки низковязкой гелеобразующей композиции, отличающийся тем, что экранирующие буферные оторочки представляют собой водно-полимерный раствор следующего компонентного состава, масс. %:
-
высокомолекулярный сульфонированный полиакриламид AN 125 со степенью сульфонирования 25% мол., м.м. 8 млн ед. 0,01-0,3 ацетат хрома 0,001-0,03 пресная вода остальное, - а в качестве промежуточной оторочки низковязкой гелеобразующей композиции используют состав, содержащий, масс. %:
-
хлорид или полиоксихлорид алюминия 2,0-10,0 ацетат натрия 0,25-5,0 карбамид 0,25-15,0 пресная или минерализованная вода остальное, - каждую экранирующую буферную оторочку используют в объеме, равном 10-100% от объема промежуточной оторочки.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018118834A RU2693101C1 (ru) | 2018-05-22 | 2018-05-22 | Способ разработки обводненной нефтяной залежи |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018118834A RU2693101C1 (ru) | 2018-05-22 | 2018-05-22 | Способ разработки обводненной нефтяной залежи |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2693101C1 true RU2693101C1 (ru) | 2019-07-01 |
Family
ID=67251796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018118834A RU2693101C1 (ru) | 2018-05-22 | 2018-05-22 | Способ разработки обводненной нефтяной залежи |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2693101C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113931607A (zh) * | 2020-07-14 | 2022-01-14 | 中国石油化工股份有限公司 | 一种屏蔽暂堵剂的注入控制方法及其应用 |
RU2820437C1 (ru) * | 2022-12-19 | 2024-06-03 | Акционерное общество "Зарубежнефть" | Состав для изоляции водопритока к добывающим нефтяным скважинам |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4498539A (en) * | 1983-11-16 | 1985-02-12 | Phillips Petroleum Company | Selective plugging of highly permeable subterranean strata by in situ _gelation of polymer solutions |
RU2120544C1 (ru) * | 1996-08-06 | 1998-10-20 | Институт химии нефти СО РАН | Способ разработки нефтяного месторождения |
RU2475635C1 (ru) * | 2011-07-06 | 2013-02-20 | Владимир Витальевич Муляк | Способ разработки обводненной нефтяной залежи |
RU2485301C1 (ru) * | 2011-12-26 | 2013-06-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ добычи нефти |
RU2529975C1 (ru) * | 2013-06-28 | 2014-10-10 | Открытое акционерное общество "Российская инновационная топливно-энергетическая компания" (ОАО "РИТЭК") | Состав многофункционального реагента для физико-химических медотов увеличения нефтеотдачи (мун) |
RU2612693C1 (ru) * | 2016-02-12 | 2017-03-13 | Закрытое акционерное общество "ХИМЕКО-ГАНГ" | Способ ограничения водопритоков в добывающих скважинах без подъема глубинонасосного оборудования |
-
2018
- 2018-05-22 RU RU2018118834A patent/RU2693101C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4498539A (en) * | 1983-11-16 | 1985-02-12 | Phillips Petroleum Company | Selective plugging of highly permeable subterranean strata by in situ _gelation of polymer solutions |
RU2120544C1 (ru) * | 1996-08-06 | 1998-10-20 | Институт химии нефти СО РАН | Способ разработки нефтяного месторождения |
RU2475635C1 (ru) * | 2011-07-06 | 2013-02-20 | Владимир Витальевич Муляк | Способ разработки обводненной нефтяной залежи |
RU2485301C1 (ru) * | 2011-12-26 | 2013-06-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ добычи нефти |
RU2529975C1 (ru) * | 2013-06-28 | 2014-10-10 | Открытое акционерное общество "Российская инновационная топливно-энергетическая компания" (ОАО "РИТЭК") | Состав многофункционального реагента для физико-химических медотов увеличения нефтеотдачи (мун) |
RU2612693C1 (ru) * | 2016-02-12 | 2017-03-13 | Закрытое акционерное общество "ХИМЕКО-ГАНГ" | Способ ограничения водопритоков в добывающих скважинах без подъема глубинонасосного оборудования |
Non-Patent Citations (3)
Title |
---|
ТУ 2484-159-54651030-2014, Технические условия. Инновационный многофункциональный реагент ИМР, дата введения 02.07.2014 * |
ТУ 2484-184-54651030-2015, Технические условия. Изолирующий состав ВИС-1, дата введения 27.03.2015. ТУ 2484-159-54651030-2014, Технические условия. Инновационный многофункциональный реагент И * |
ТУ 2484-184-54651030-2015, Технические условия. Изолирующий состав ВИС-1, дата введения 27.03.2015. ТУ 2484-159-54651030-2014, Технические условия. Инновационный многофункциональный реагент ИМР, дата введения 02.07.2014. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113931607A (zh) * | 2020-07-14 | 2022-01-14 | 中国石油化工股份有限公司 | 一种屏蔽暂堵剂的注入控制方法及其应用 |
CN113931607B (zh) * | 2020-07-14 | 2024-05-17 | 中国石油化工股份有限公司 | 一种屏蔽暂堵剂的注入控制方法及其应用 |
RU2820437C1 (ru) * | 2022-12-19 | 2024-06-03 | Акционерное общество "Зарубежнефть" | Состав для изоляции водопритока к добывающим нефтяным скважинам |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8985212B1 (en) | Wellbore servicing compositions and methods of making and using same | |
EP0474284A1 (en) | Method for modifying the permeability of an underground formation | |
SA91120183B1 (ar) | رغوة لتحسين كفاءة الإزاحة في التكوينات التحت أرضية الحاملة للبترول | |
RU2693101C1 (ru) | Способ разработки обводненной нефтяной залежи | |
RU2610958C1 (ru) | Способ разработки нефтяной залежи | |
RU2689937C1 (ru) | Сухокислотный состав для кислотной обработки карбонатных и терригенных коллекторов и способ его применения | |
US20130081809A1 (en) | Process for producing mineral oil from an underground deposit | |
RU2475635C1 (ru) | Способ разработки обводненной нефтяной залежи | |
RU2487235C1 (ru) | Способ разработки обводненного карбонатного пласта | |
RU2057914C1 (ru) | Способ добычи нефти | |
RU2627802C1 (ru) | Состав для увеличения нефтеотдачи пластов | |
RU2597593C1 (ru) | Способ выравнивания профиля приемистости нагнетательных и ограничения водопритока в добывающих скважинах | |
RU2529975C1 (ru) | Состав многофункционального реагента для физико-химических медотов увеличения нефтеотдачи (мун) | |
RU2252238C1 (ru) | Пенообразующий состав для перфорации продуктивных пластов | |
RU2739272C1 (ru) | Способ повышения нефтеотдачи пласта | |
RU2562642C1 (ru) | Реагент для нефтедобычи и способ нефтедобычи с его использованием | |
WO2015065384A1 (en) | Wellbore servicing compositions and methods of making and using same | |
US3888309A (en) | Polymer waterflooding by controlling water hardness | |
RU2711202C2 (ru) | Способ ограничения водопритоков в газовых скважинах с аномально низким пластовым давлением | |
RU2451168C1 (ru) | Способ регулирования фронта заводнения нефтяных пластов | |
RU2627807C1 (ru) | Жидкость для глушения нефтегазовых скважин | |
RU2670298C1 (ru) | Блокирующий состав для изоляции зон поглощений при бурении и капитальном ремонте скважин | |
RU2256787C1 (ru) | Способ гидравлического разрыва пласта в сочетании с изоляцией водопритоков в добывающих скважинах с применением гелеобразующих жидкостей на углеводородной и водной основах | |
RU2109132C1 (ru) | Способ увеличения нефтеотдачи пластов | |
CA2843389A1 (en) | Process for producing mineral oil from an underground deposit |