RU2692832C1 - Passive wireless ultraviolet radiation sensor on surface acoustic waves - Google Patents

Passive wireless ultraviolet radiation sensor on surface acoustic waves Download PDF

Info

Publication number
RU2692832C1
RU2692832C1 RU2018123044A RU2018123044A RU2692832C1 RU 2692832 C1 RU2692832 C1 RU 2692832C1 RU 2018123044 A RU2018123044 A RU 2018123044A RU 2018123044 A RU2018123044 A RU 2018123044A RU 2692832 C1 RU2692832 C1 RU 2692832C1
Authority
RU
Russia
Prior art keywords
idt
channel
reflective
transceiver
acoustic
Prior art date
Application number
RU2018123044A
Other languages
Russian (ru)
Inventor
Геворк Яковлевич Карапетьян
Евгений Михайлович Кайдашев
Владимир Евгеньевич Кайдашев
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет"
Priority to RU2018123044A priority Critical patent/RU2692832C1/en
Application granted granted Critical
Publication of RU2692832C1 publication Critical patent/RU2692832C1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void

Abstract

FIELD: measuring equipment.
SUBSTANCE: invention relates to semiconductor devices for measuring ultraviolet radiation intensity. Sensor comprises housing with piezoelectric acoustic line inside, on ends of which there is sound absorber. On surface of acoustic line there are two transmit-receive interdigitated transducer (IDT) and two reflecting IDT. First transmit-receive IDT and the first reflecting IDT form a measuring channel, the second pair of the IDT is a reference channel. Distance between IDT in measurement channel is more than in reference one. Transmit-receive IDT are connected to antennas, which are half-wave vibrators. Measuring transmit-receive IDT is also connected to impedance. Impedance is an IDT arranged on a dielectric substrate, a photosensitive film is applied on the surface of the IDT, the conductivity of which depends on the intensity of the UV radiation.
EFFECT: high sensitivity and accuracy of measuring UV radiation intensity.
4 cl, 6 dwg, 3 tbl

Description

Изобретение относится к полупроводниковым приборам для измерения интенсивности ультрафиолетового излучения, действующим по принципу сравнения с эталонной электрической величиной, с использованием пьезоэлектрических преобразователей на поверхностных акустических волнах.The invention relates to semiconductor devices for measuring the intensity of ultraviolet radiation, operating according to the principle of comparison with a reference electrical quantity, using piezoelectric transducers on surface acoustic waves.

Датчики для измерения интенсивности ультрафиолетового излучения широко используются в бактерицидных лампах для обеззараживания воздуха, в устройствах для очистки воды, измерителях уровня ультрафиолетового излучения в обитаемых космических аппаратах и оптических устройствах связи.Sensors for measuring the intensity of ultraviolet radiation are widely used in bactericidal lamps for disinfecting air, in water purification devices, measuring the level of ultraviolet radiation in habitable spacecraft and optical communication devices.

Известен датчик ультрафиолетового излучения на основе полупроводниковых пленок (RU 2392693, МПК H01L 31/101, опубл. 20.06.2010) [1], который содержит кремниевую подложку, на одну из поверхностей которой нанесен титановый электрод, на поверхность которого нанесена пленка нитрида алюминия, на поверхность которой нанесен полупрозрачный электрод из платины. При попадании ультрафиолетового излучения (УФИ) на пленку нитрида алюминия через полупрозрачный электрод на электродах датчика появляется фотоэдс, или он может работать в режиме обратно включенного фотодиода, сопротивление которого зависит от мощности источника УФ. Такой способ индикации УФИ требует дополнительного источника напряжения, даже если он работает в режиме фотоэдс, так как необходимо преобразовать сигнал для передачи его по радиоканалу или необходимо подключать провода к датчику для снятия с него показаний, что является недостатком данного датчика. Тот же недостаток имеет датчик (US 9064987, МПК H01L 31/0232, опубл. 23.06.2015) [2], в котором в качестве чувствительного слоя используется пленка окиси цинка. Кроме того, наличие полупрозрачного электрода приводит к некоторому ослаблению УФИ, что снижает чувствительность датчика. Совсем избавиться от полупрозрачного электрода, а также непосредственно влиять на центральную частоту генератора передатчика для связи по радиоканалу предложено в работах (Wenbo Peng, Yongning Неа, Changbao Wen, Ke Ma "Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer" // Sensors and Actuators A 184 (2012) 34-40) [3], (Venkata Chivukula, Daumantas Ciplys, Michael Shur, and Partha Dutta "ZnO nanoparticle surface acoustic wave UV sensor" //APPLIED PHYSICS LETTERS 96, 233512, 2010) [4], (Wen-Che Tsai, Hui-ling Kao, Kun-Hsu Liao, Yu-Hao Liu, Tzu-Ping Lin, and Erik S. Jeng "Room temperature fabrication of ZnO/ST-cut quartz SAW UV photodetector with small temperature coefficient" // OPTICS EXPRESS, 9 Feb 2015 Vol. 23, No. 3, 2187) [5], (Sanjeev Kumar, Gil-Ho Kim, K. Sreenivas, R.P. "Tand on ZnO based surface acoustic wave ultraviolet photo sensor" // J. Electroceram (2009) 22, p. 198-202) [6], (Wang Wen-Bo, Gu Hang, He Xing-Li, Xuan Wei-Peng, Chen Jin-Kai, Wang Xiao-Zhi, and Luo Ji-Kui "Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors" // Chin. Phys. В Vol. 24, No. 5 (2015) 057701) [7], (US 7989851, МПК H01L 29/82, опубл.02.08.2011) [8], (US 6914279, МПК H01L 29/82, опубл. 07.05.2005) [9], (US 6621192, МПК H01L 41/08, опубл. 16.09.2003) [10]. Предложен датчик, содержащий пьезоподложку, на рабочей поверхности которой в одном акустическом канале расположены приемный и передающий встречно-штыревые преобразователи и пленка, чувствительная к УФИ, между ними [3, 4, 5] и акустический поглотитель на торцах подложки. Это позволяет по сдвигу центральной частоты передатчика измерять интенсивность УФИ без всяких других сигнал преобразующих схем, что упростит конструкцию датчиков УФИ и повысит их надежность. Принцип действия этих датчиков основан на изменении затухания и скорости поверхностных акустических волн (ПАВ) от интенсивности УФИ из-за акустоэлектронного взаимодействия ПАВ с электронами проводимости в полупроводниковом слое, находящимся на поверхности пьезоэлектрической подложки, вдоль которой распространяются ПАВ. Концентрация электронов, в свою очередь, зависит от интенсивности УФИ, что и позволяет судить о наличии и интенсивности УФИ. Так как при акустоэлектронном взаимодействии меняется скорость ПАВ, то это приводит изменению центральной частоты встречно-штыревого преобразователя [6, 7], если встречно-штыревые преобразователи (ВШП) нанесены на пленку оксида цинка, которая также обладает пьезоэлектрическими свойствами или к сдвигу частоты генерации [3, 4, 5, 8, 9, 10], если пленка, чувствительная к УФИ находится между приемным и передающим ВШП в ПАВ резонаторе. Так как скорость ПАВ зависит от температуры, то центральная частота ВШП или частота резонатора будет зависеть от температуры, что необходимо учитывать при измерении УФИ. Но сделать это не просто, потому что акустоэлектронное взаимодействие зависит от квадрата коэффициента электромеханической связи, который для термостабильных срезов кварца очень мал, что приводит к слабой зависимости скорости ПАВ, следовательно, и частоты от интенсивности УФИ. В подложках ниобата лития квадрат коэффициента электромеханической связи в 30 раз больше, но в нем скорость ПАВ зависит от температуры намного больше чем в кварце.A known ultraviolet radiation sensor based on semiconductor films (RU 2392693, IPC H01L 31/101, publ. 06/20/2010) [1], which contains a silicon substrate, on one of the surfaces of which a titanium electrode is deposited, on the surface of which an aluminum nitride film is applied, on the surface of which is deposited a translucent platinum electrode. When ultraviolet radiation (UV radiation) hits the aluminum nitride film through a translucent electrode, a photo emf appears on the sensor electrodes, or it can operate in the photodiode back-up mode, the resistance of which depends on the power of the UV source. This method of displaying UVBs requires an additional voltage source, even if it works in photo-emf mode, since it is necessary to convert the signal to transmit it over the air or to connect wires to the sensor to read it, which is a disadvantage of this sensor. The sensor has the same drawback (US 9064987, IPC H01L 31/0232, publ. 06/23/2015) [2], in which a zinc oxide film is used as a sensitive layer. In addition, the presence of a translucent electrode leads to some weakening of the UV radiation, which reduces the sensitivity of the sensor. It was suggested in the works (Wenbo Peng, Yongning Nea, Changbao Wen, Ke Ma) to completely get rid of the translucent electrode, as well as directly affect the center frequency of the transmitter generator for radio communication. Sensors and Actuators A 184 (2012) 34-40) [3], (Venkata Chivukula, Daumantas Ciplys, Michael Shur, and Partha Dutta "ZnO nanoparticle surface acoustic wave UV sensor" // APPLIED PHYSICS LETTERS 96, 233512, 2010) [ 4], (Wen-Che Tsai, Hui-ling Kao, Kun-Hsu Liao, Yu-Hao Liu, Tzu-Ping Lin, and Erik S. Jeng "SAW UV photodetector with small temperature coefficient "// OPTICS EXPRESS, 9 Feb 2015 Vol. 23, No. 3, 2187) [5], (Sanjeev Kumar, Gil-Ho Kim, K. Sreenivas, RP" Tand on ZnO based surfac e. acoustic wave ultraviolet photo sensor "// J. Electroceram (2009) 22, p. 198-202) [6], (Wang Wen-Bo, Gu Hang, He Xing-Li, Xuan Wei-Peng, Chen Jin-Kai , Wang Xiao-Zhi, and Luo Ji-Kui, "Transparent Zeno / glass Surface Sensors", // Chin. Phys. In Vol. 24, No. 5 (2015) 057701) [7], (US 7989851, IPC H01L 29/82, published 02.08.2011) [8], (US 6914279, IPC H01L 29/82, published 07.05.2005) [9], (US 6621192, IPC H01L 41/08, published September 16, 2003) [10]. A sensor containing a piezo-substrate, on the working surface of which in one acoustic channel are located receiving and transmitting interdigital transducers and a film sensitive to ultraviolet radiation signals, between them [3, 4, 5] and acoustic absorber on the ends of the substrate. This allows the transmitter center frequency to measure the intensity of the UV radiation without any other signal converting circuits, which will simplify the design of UV radiation sensors and increase their reliability. The principle of operation of these sensors is based on the change in attenuation and velocity of surface acoustic waves (SAW) on the intensity of UV radiation due to the acoustoelectronic interaction of surfactants with conduction electrons in the semiconductor layer located on the surface of the piezoelectric substrate, along which the surfactants propagate. The concentration of electrons, in turn, depends on the intensity of the UV rays, which makes it possible to judge the presence and intensity of UV rays. Since the acoustoelectronic interaction changes the surfactant velocity, this leads to a change in the center frequency of the interdigital transducer [6, 7], if the interdigital transducers (IDT) are deposited on a zinc oxide film, which also has piezoelectric properties or a generation frequency shift [ 3, 4, 5, 8, 9, 10], if the film sensitive to UV radiation is between the receiving and transmitting IDT in the SAW resonator. Since the rate of the surfactant depends on the temperature, the central frequency of IDT or the frequency of the resonator will depend on the temperature, which must be taken into account when measuring the UVR. But this is not easy to do, because the acoustoelectronic interaction depends on the square of the electromechanical coupling coefficient, which is very small for thermally stable sections of quartz, which leads to a weak dependence of the surfactant velocity, and hence the frequency, on the intensity of UVR. In lithium niobate substrates, the square of the electromechanical coupling coefficient is 30 times greater, but in it the rate of surfactant depends on temperature much more than in quartz.

Этот недостаток устранен в датчике физических величин (RU 2613590, МПК-2006.01 H01L 31/101, Н03Н 9/25, опубл. 17.03.2017) [11], содержащем пьезоэлектрическую подложку, на рабочей поверхности которой в одном акустическом канале находятся приемо-передающий однонаправленный ВШП и два отражательных ВШП, причем между отражательными ВШП на расстоянии не более длины ПАВ на центральной частоте ВШП параллельно поверхности расположена чувствительная к УФИ полупроводниковая пленка оксида цинка, нанесенная на диэлектрическую подложку, прозрачную для УФИ, которая лежит на опорах, находящихся по обе стороны от акустического канала на краях пьезоподложки между отражательными ВШП, а к приемо-передающему ВШП подсоединена приемо-передающая антенна.This disadvantage is eliminated in the sensor of physical quantities (RU 2613590, IPC-2006.01 H01L 31/101, Н03Н 9/25, publ. 03/17/2017) [11], containing a piezoelectric substrate, on the working surface of which there is a transmitter and receiver in one acoustic channel unidirectional IDT and two reflective IDT, and between reflective IDT at a distance of no more than the SAW length at the center frequency of the IDT, a UV-sensitive semiconductor zinc oxide film deposited on a dielectric substrate that is transparent to the UVI, which lies n supports located on either side of the acoustic channel at the edges between the reflective pezopodlozhki IDT, and a transmit-receive IDT connected transceiver antenna.

В такой конструкции сигналы, отраженные от ВШП до и после прохождения области под пленкой, будут существенно различаться при воздействии УФИ. В этом случае изменение скорости ПАВ не будет влиять на амплитуду отраженных импульсов, а, следовательно, влиять на точность измерения интенсивности УФИ. Однако такая конструкция имеет существенный недостаток, обусловленный наличием прозрачного окна в корпусе для УФИ, что усложняет конструкцию и надежность корпуса. Это связано с тем, что в СВЧ диапазоне, в котором предпочтительнее всего работать беспроводным пассивным датчикам с миниатюрными антеннами, корпус надо обязательно герметизировать, чтобы грязь и пыль не попали в акустический тракт, так как на СВЧ затухание ПАВ сильно зависит от его загрязнения.In this design, the signals reflected from IDT before and after passing through the area under the film will differ significantly when exposed to UVR. In this case, changing the speed of the surfactant will not affect the amplitude of the reflected pulses, and, consequently, affect the accuracy of measuring the intensity of UV radiation. However, this design has a significant drawback due to the presence of a transparent window in the housing for UVBs, which complicates the design and reliability of the housing. This is due to the fact that in the microwave range, in which it is preferable to work with wireless passive sensors with miniature antennas, the housing must be sealed so that dirt and dust do not get into the acoustic path, since the microwave attenuation of the surfactant strongly depends on its pollution.

Устранить указанные недостатки позволяет датчик (RU 2387051, МПК H01L 41/107, G01D 5/12 (2006.01), опубл. 20.04.2010) [12], который является ближайшим аналогом к заявляемому изобретению по назначению, выполнению и достигаемому результату и принят за прототип.To eliminate these drawbacks allows the sensor (RU 2387051, IPC H01L 41/107, G01D 5/12 (2006.01), publ. 04/20/2010) [12], which is the closest analogue to the claimed invention by purpose, performance and the achieved result and is adopted prototype.

Датчик-прототип, содержит герметичный корпус, внутри которого расположен пьезоэлектрический звукопровод, на рабочей поверхности которого в одном акустическом канале расположены отражательный и приемопередающий встречно-штыревой преобразователь, нагруженный на антенну через выводы в корпусе, которая расположена вне герметичного корпуса, и отражательные ВШП, расположенные по обе стороны от приемо-передающего ВШП, причем один из отражательных ВШП подсоединен к импедансу, величина которого чувствительна к температуре, давлению, влажности, ионизирующему излучению, электромагнитному излучению, в том числе и к УФИ, и образует вместе с приемо-передающим ВШП измерительный канал, другой отражательный ВШП образует с приемо-передающим ВШП опорный канал. При этом в измерительном канале коэффициент отражения ПАВ от отражательного ВШП зависит от величины импеданса, величина которого зависит от измеряемой физической величины, а в опорном канале - нет. Так как корпус герметичный, ВШП и подложка изолированы от окружающей среды, что повышает надежность датчика. Опрос датчика производится с помощью считывателя, посылающего опрашивающий электромагнитный импульс, который принимается антенной датчика и преобразуется в поверхностные акустические волны (ПАВ), которые, отражаясь от отражательного ВШП, принимаются приемо-передающим ВШП и снова преобразуются в электромагнитный сигнал, который принимается приемником считывателя. Величина этого сигнала, очевидно, зависит от коэффициента отражения, который, в свою очередь, зависит от величины импеданса, нагруженного на отражательный ВШП в измерительном канале. Этот импеданс, в свою очередь, зависит от измеряемой физической величины, например, интенсивности УФИ. В опорном канале величина сигнала, обусловленного отражением ПАВ от отражательного ВШП, не зависит от измеряемой физической величины. Тогда сравнивая импульсы, отраженные от опорного и измерительного канала, определяют измеряемую физическую величину.The sensor prototype contains a sealed enclosure inside which there is a piezoelectric acoustic conduit, on the working surface of which, in a single acoustic channel, there is a reflective and transceiver counter-whip transducer loaded onto the antenna through the terminals in the enclosure that is located outside the sealed enclosure, and reflective IDTs located on both sides of the receiving and transmitting IDT, with one of the reflective IDT connected to the impedance, the value of which is sensitive to temperature, pressure, wet ti, ionizing radiation, electromagnetic radiation, including and UVB, and forms together with the GSW transceiver measuring channel, the other reflective IDTs forms with the transceiver IDT reference channel. In this case, in the measuring channel, the reflection coefficient of the surfactant from reflective IDT depends on the magnitude of the impedance, the magnitude of which depends on the measured physical quantity, but not in the reference channel. Since the case is sealed, the IDT and the substrate are isolated from the environment, which increases the reliability of the sensor. The sensor is polled using a reader, sending a polling electromagnetic pulse, which is received by the sensor antenna and converted into surface acoustic waves (SAW), which are reflected from the reflective IDT, are received by the transceiver and IDT, and again converted into an electromagnetic signal, which is received by the receiver of the reader. The magnitude of this signal obviously depends on the reflection coefficient, which, in turn, depends on the magnitude of the impedance loaded on the reflective IDT in the measuring channel. This impedance, in turn, depends on the measured physical quantity, for example, the intensity of the UV radiation. In the reference channel, the magnitude of the signal due to the reflection of the surfactant from reflective IDT does not depend on the measured physical quantity. Then comparing the pulses reflected from the reference and measuring channel, determine the measured physical quantity.

Однако, при слабых изменениях коэффициента отражения, из-за изменения интенсивности, отношение амплитуд импульсов, принятых считывателем, будет изменяться очень слабо, что сделает невозможным определение интенсивности УФИ в условиях реальной помеховой обстановки и приводит к снижению чувствительности и точности измерения интенсивности УФИ. В прототипе под действием электромагнитных волн изменяется коэффициент отражения ПАВ от отражательного ВШП, поэтому коэффициент отражения электромагнитных волн от антенны определяется только коэффициентом отражения ПАВ от отражательного ВШП.However, with weak changes in the reflection coefficient, due to a change in intensity, the ratio of the amplitudes of the pulses received by the reader will change very little, making it impossible to determine the intensity of the UVR in a real disturbing environment and leads to a decrease in the sensitivity and accuracy of the UVI intensity measurement. In the prototype, under the action of electromagnetic waves, the reflection coefficient of the surfactant from reflective IDT changes, therefore the reflection coefficient of electromagnetic waves from the antenna is determined only by the reflection coefficient of the surfactant from reflective IDT.

Задача, на решение которой направлено изобретение, состоит в создании беспроводного УФИ, лишенного указанных недостатков.The problem to which the invention is directed, is to create a wireless UVI devoid of these shortcomings.

Поставленная задача решена за счет достижения нового технического результата - повышения чувствительности и точности измерения интенсивности УФИ за счет изменения согласования импеданса ПП ВШП с импедансом подключенной к нему антенны в зависимости от частоты считывающего сигнала, что приводит к увеличению изрезанности АЧХ, и как следствие, увеличению амплитуды импульса обратного преобразования Фурье.The task is solved due to the achievement of a new technical result - increasing the sensitivity and accuracy of measuring the intensity of UVBs by changing the impedance matching of the ACP IDP with the impedance of the antenna connected to it depending on the frequency of the readout signal, which leads to an increase in the irregularity of the frequency response, and as a result, an increase in amplitude pulse of the inverse Fourier transform.

Указанный технический результат достигается тем, что пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах содержит герметичный корпус, внутри которого расположен пьезоэлектрический звукопровод, на рабочей поверхности которого в одном акустическом канале расположены приемопередающий встречно-штыревой преобразователь (ВШП), подключенный через выводы в корпусе к антенне, первый однонаправленный отражательный ВШП, образующий с приемо-передающим ВШП измерительный канал, внешний импеданс, величина которого чувствительна к измеряемой величине интенсивности УФИ, и второй однонаправленный отражательный ВШП, который образует с приемо-передающим ВШП опорный канал, акустопоглотитель, нанесенный на торцы звукопровода.This technical result is achieved by the fact that the passive wireless sensor of ultraviolet radiation on surface acoustic waves contains a sealed housing, inside which is located a piezoelectric acoustic duct, on the working surface of which in one acoustic channel are located transceiver interdigitated transducer (IDT) connected antenna, the first unidirectional reflective IDT, which forms a measuring channel with external transceiver IDT, external impedance, led rank which is sensitive to the measured value of the intensity CFIs, and a second unidirectional reflective IDTs, which forms with the transceiver IDT perch channel akustopoglotitel supported on the ends of the acoustic line.

Согласно изобретению, внешний импеданс содержит встречно-штыревую структуру, расположенную на диэлектрической подложке, выполненную в виде двух вложенных друг в друга гребенчатых электродов, на поверхность которых нанесена фоточувствительная пленка, проводимость которой зависит от интенсивности УФИ, гребенчатые электроды через выводы в корпусе подключены к приемо-передающему однонаправленному ВШП, который вместе с одним из отражательных однонаправленных ВШП образует измерительный канал, параллельно которому введен опорный акустический канал, содержащий отражательный однонаправленный ВШП и однонаправленный приемо-передающий ВШП, соединенный через выводы в корпусе с антенной, обе антенны выполнены в виде полуволновых вибраторов, расположенных на одной прямой линии, причем расстояние между ВШП в опорном акустическом канале меньше расстояния между ВШП в измерительном акустическом канал, по меньшей мере, на длину отражательного ВШП. В предпочтительных вариантах выполнения:According to the invention, the external impedance contains an interdigital structure located on a dielectric substrate, made in the form of two comb-shaped electrodes nested into each other, on the surface of which a photosensitive film is applied, the conductivity of which depends on the intensity of the UV radiation, and the comb-shaped electrodes are connected to the receptacles -transmitting unidirectional IDT, which, together with one of the reflective unidirectional IDTs, forms the measuring channel, in parallel with which the reference acoustic is input A common channel containing reflective unidirectional transducer and unidirectional transceiver transducer connected via terminals in the housing with the antenna, both antennas are made in the form of half-wave vibrators located on the same straight line, and the distance between transducer in the reference acoustic channel is less than the distance between transducer in the measuring acoustic channel, at least the length of the reflective IDT. In preferred embodiments, execution:

- период гребенчатых электродов равен периоду ВШП;- the period of comb electrodes is equal to the period of IDT;

- диэлектрическая подложка выполнена из пьезоэлектрического материала;- dielectric substrate is made of a piezoelectric material;

- фоточувствительной пленка выполнена из оксида цинка.- photosensitive film made of zinc oxide.

Повышение чувствительности и точности измерения интенсивности УФИ происходит из-за того, что внешний импеданс, величина которого зависит от интенсивности УФИ подсоединен в измерительном канале к приемо-передающему, а не к отражательному ВШП.Increasing the sensitivity and accuracy of UV intensity measurements is due to the fact that the external impedance, the magnitude of which depends on the intensity of the UV radiation is connected in the measuring channel to the transceiver, and not to reflective IDT.

Сущность изобретения поясняется фигурами чертежей, где:The invention is illustrated by the figures of the drawings, where:

Фиг. 1. Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах, общий вид.FIG. 1. Passive wireless sensor of ultraviolet radiation on surface acoustic waves, general view.

Фиг. 2. Частотные зависимости параметра S11, где кривая 1 частотная зависимость параметра S11 измерительного канала при наличии УФИ, кривая 2 - частотная зависимость параметра S11 измерительного канала при отсутствии УФИ.FIG. 2. Frequency dependences of the parameter S 11 , where curve 1 is the frequency dependence of the parameter S 11 of the measuring channel in the presence of a PFI, curve 2 is the frequency dependence of the parameter S 11 of the measuring channel in the absence of a PFI.

Фиг. 3. Временная зависимость параметра S11, где кривая 1 - амплитуда Фурье-преобразования частотной зависимости параметра S11 при наличии УФИ, кривая 2 - амплитуда Фурье-преобразованию частотной зависимости параметра S11 при отсутствии УФИ, где кривая 3 - амплитуда Фурье-преобразования частотной зависимости параметра S11 в опорном канале.FIG. 3. The time dependence of the parameter S 11 , where curve 1 is the Fourier transform amplitude of the frequency dependence of the parameter S 11 in the presence of UVI, curve 2 is the Fourier transform amplitude of the frequency dependence of the parameter S 11 in the absence of UVI, where curve 3 is the Fourier transform amplitude of frequency dependences of the parameter S 11 in the reference channel.

Фиг. 4., Временная зависимость параметра S11, где кривая 1 - амплитуда Фурье-преобразования частотной зависимости параметра S11 при наличии УФИ, кривая 2 - амплитуда Фурье-преобразованию частотной зависимости параметра S11 при отсутствии УФИ, кривая 3 - амплитуда Фурье-преобразования частотной зависимости параметра S11 в опорном канале.FIG. 4. The time dependence of the parameter S 11 , where curve 1 is the Fourier transform amplitude of the frequency dependence of the parameter S 11 in the presence of UVI, curve 2 is the Fourier transform amplitude of the frequency dependence of the parameter S 11 in the absence of UVR, curve 3 is the Fourier transform amplitude of the frequency dependences of the parameter S 11 in the reference channel.

Фиг. 5 Временная зависимость параметра S11, где кривая 1 - амплитуда Фурье-преобразования частотной зависимости параметра S11 при наличии УФИ, кривая 2 - амплитуда Фурье-преобразованию частотной зависимости параметра S11 при отсутствии УФИ, где кривая 3 - амплитуда Фурье-преобразования частотной зависимости параметра S11 в опорном канале.FIG. 5 The time dependence of the parameter S 11 , where curve 1 is the Fourier transform amplitude of the frequency dependence of the parameter S 11 in the presence of UFI, curve 2 is the Fourier transform amplitude of the frequency dependence of the parameter S 11 in the absence of UFI, where curve 3 is the Fourier transform amplitude of the frequency dependence parameter S 11 in the reference channel.

Фиг. 6 Зависимость амплитуды Фурье-преобразования от интенсивности УФИ заявляемого пассивного беспроводного датчика ультрафиолетового излучения на поверхностных акустических волнах, где кривая 1 - импеданс выполнен на пьезоэлектрической подложке, кривая 2 - импеданс выполнен на диэлектрической подложке.FIG. 6 The dependence of the Fourier transform amplitude on the intensity of the UV radiation of the inventive passive wireless sensor of ultraviolet radiation on surface acoustic waves, where curve 1 is the impedance performed on a piezoelectric substrate, curve 2 is the impedance made on a dielectric substrate.

Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах (фиг. 1) содержит герметичный корпус 1, внутри которого расположен пьезоэлектрический звукопровод 2, на рабочей поверхности которого в одном акустическом канале расположены приемопередающий встречно-штыревой преобразователь (ВШП) 3, подключенный через выводы 4 в корпусе к антенне 5, первый однонаправленный отражательный ВШП 6, образующий с приемо-передающим ВШП 3 измерительный акустический канал. На торцы пьезоэлектрического звукопровода 2 нанесены акустопоглотители 7 Встречно-штыревая структура ВШС 8, выполнена в виде двух вложенных друг в друга гребенчатых электродов, расположенных на диэлектрической подложке 9, на поверхность ВШС 8 нанесена фоточувствительная пленка 10, проводимость которой зависит от интенсивности УФИ, гребенчатые электроды через выводы в корпусе подключены к приемо-передающему однонаправленному ВШП 3, Параллельно измерительному введен опорный акустический канал, содержащий отражательный однонаправленный ВШП 11 и однонаправленный приемо-передающий ВШП 12, соединенный через выводы в корпусе с антенной 13. Антенны 5 и 13 выполнены в виде полуволновых вибраторов, расположенных на одной прямой линии.A passive wireless ultraviolet radiation sensor on surface acoustic waves (Fig. 1) contains a sealed housing 1, inside which is located a piezoelectric transducer 2, on the working surface of which in one acoustic channel are located transceiver interdigitated transducer (IDT) 3 connected via pins 4 in housing to the antenna 5, the first unidirectional reflective IDT 6, which forms a measuring acoustic channel with the transmitting IDT 3. Acousto-absorbers 7 are applied on the ends of the piezoelectric Zvukovaya 2. The interdigital structure of VShS 8 is made in the form of two comb-shaped electrodes nested in each other located on a dielectric substrate 9, a photosensitive film 10 is applied on the surface of VShS 8, the conductivity of which depends on the intensity of the UFI, comb-shaped electrodes through the terminals in the housing are connected to the transceiver unidirectional IDT 3; Parallel to the measuring instrument, a reference acoustic channel is inserted, containing a reflective unidirectional WB 11 and the receiving-transmitting unidirectional IDT 12 connected through terminals in the housing with an antenna 13. Antennas 5 and 13 are in the form of half-wave dipoles disposed on one straight line.

При подаче на приемо-передающую антенну 5 считывающего электромагнитного импульса от опросного устройства, последний в ВШП 3 преобразуется в импульс ПАВ, который отражается от отражательного ВШП 6. ВШП 3 и ВШП 6 выполнены однонаправленными (RU 2195069 МПК Н03Н 9/145 опубл. 2002.12.20) [13], чтобы ПАВ излучались (принимались), преимущественно, в сторону (со стороны) отражательного ВШП 4, что приведет к уменьшению затухания отраженных от датчика электромагнитных импульсов, так как излучение ПАВ в противоположную сторону (в сторону поглотителя ПАВ) в 10 раз меньше, чем в сторону отражательного ВШП 3, что уменьшает потери энергии электромагнитного импульса на преобразование в ПАВ, распространяющихся в сторону отражательных ВШП. Чтобы ПАВ, излученные к торцам не искажали работу датчика (не приводили к ложным импульсам) на торце пьезоэлектрического звукопровода нанесен акустопоглотитель 7, который поглощает ПАВ и не дает им попасть снова на ВШП 3. Отраженные от отражательного ВШП импульсы ПАВ попадают обратно на приемо-передающий ВШП. Там они преобразуются в электрический сигнал, который наводит в антенне электромагнитный импульс, который излучается обратно на опросное устройство.When applying to the receiving-transmitting antenna 5 of the reading electromagnetic pulse from the interrogator, the latter transforms into the SPT 3 into a SAW pulse, which is reflected from the reflective IDT 6. The IDT 3 and IDT 6 are made unidirectional (RU 2195069 IPC H03H 9/145 publ. 2002.12. 20) [13], so that the surfactants are emitted (received), mainly towards the (from the side) reflective IDP 4, which will reduce the attenuation of the electromagnetic pulses reflected from the sensor, since the emission of the surfactant in the opposite direction (towards the surfactant absorber) 10 times smaller Than toward the reflective IDTs 3, which reduces the loss of electromagnetic pulse energy conversion in the SAW propagating in the direction of the reflective IDTs. So that surfactants emitted to the ends do not distort the sensor operation (they did not lead to spurious impulses), an acousto-absorber 7 was applied at the end of the piezoelectric acoustic duct, which absorbs the surfactant and prevents them from falling back into the IDT 3. The SAW pulses reflected from the reflective IDT are returned to the receiving-transmitting IDT. There they are converted into an electrical signal, which induces an electromagnetic pulse in the antenna, which is radiated back to the interrogator.

Так как считыватель при опросе датчика может находиться на разных расстояниях или могут поменяться условия распространения электромагнитных волн (дождь, туман), то амплитуда отраженного от датчика импульса будет зависеть от условий распространения и расстояния между считывателем и датчиком. Чтобы этого не происходило вводится параллельно измерительному каналу опорный акустический канал, состоящий из приемо-передающего ВШП 11. В этом же канале находится и отражательный ВШП 13. ВШП 12 соединен с приемо-передающей антенной 13, полуволновые вибраторы которой находятся на одной прямой линии с полуволновыми вибраторами в антенне 6, подсоединенной к приемо-передающему ВШП 3, соединенному с импедансом (фиг. 1). В этом случае между антеннами почти не существует связи, так как они излучают электромагнитные волны перпендикулярно полуволновым вибраторам. Так как ВШП 3 и ВШП 6 находятся в измерительном канале, можно считать, что измерительный и опорный каналы не связаны между собой и не будут влиять друг на друга. В опорном канале расстояние между ВШП 11 и ВШП 12 выбрано меньшим на длину ВШП 3 вдоль направления распространения ПАВ, чем расстояние между ВШП 3 и 4. Поэтому пик отражения от опорного канала появляется раньше пика отражения от измерительного канала. На фиг. 3 видно, что пик отражения от опорного канала 3 появляется раньше, чем пик отражения от измерительного канала, эти пики разделены во времени и их легко выделять и сравнивать. При изменении условий распространения электромагнитных волн между датчиком и считывателем отраженные сигналы могут меняться, но их отношение не будет зависеть от этих условий, так как при этом меняться будут одновременно пики отражения от опорного и измерительного каналов.Since the reader can be located at different distances when interrogating the sensor or the propagation conditions of electromagnetic waves (rain, fog) can change, the amplitude of the pulse reflected from the sensor will depend on the propagation conditions and the distance between the reader and the sensor. To prevent this from happening, a reference acoustic channel is introduced parallel to the measuring channel, consisting of a receiving and transmitting IDT 11. The reflecting IDT 13 is also in the same channel. IDT 12 is connected to the receiving and transmitting antenna 13, the half-wave vibrators of which are in one straight line with half-wave vibrators in the antenna 6 connected to the transceiver IDT 3 connected to the impedance (Fig. 1). In this case, there is almost no connection between the antennas, since they emit electromagnetic waves perpendicular to the half-wave vibrators. Since the IDT 3 and IDT 6 are located in the measuring channel, we can assume that the measuring and reference channels are not interconnected and will not affect each other. In the reference channel, the distance between IDT 11 and IDT 12 is selected smaller by IDT 3 along the SAW propagation direction than the distance between IDP 3 and 4. Therefore, the reflection peak from the reference channel appears earlier than the reflection peak from the measuring channel. FIG. 3, it can be seen that the peak of reflection from the reference channel 3 appears earlier than the peak of reflection from the measuring channel; these peaks are separated in time and can be easily identified and compared. When the propagation conditions of electromagnetic waves between the sensor and the reader change, the reflected signals may change, but their ratio will not depend on these conditions, since the peaks of reflection from the reference and measuring channels will also change at the same time.

Величина импеданса, состоящего из ВШС 8 с нанесенной на нее фоточувствительной пленкой 9, которые расположены на подложке 10, под действием УФИ меняет свое значение. Это приводит не только к изменению коэффициента отражения ПАВ от ВШП, но и степени его согласования с антенной 6. Очевидно, что на некоторых частотах в этом случае степень согласования увеличивается, а на некоторых - уменьшается, что и приводит к увеличению размаха колебаний на частотной зависимости параметра S11 (отношение отраженной от антенны датчика электромагнитной волны к падающей, см. фиг. 2), а, следовательно, и к увеличению коэффициента отражения электромагнитного сигнала от датчика. В этом случае, в отличие от подсоединения импеданса к отражательному ВШП, влияние изменения импеданса на коэффициент отражения электромагнитного сигнала от датчика увеличится. Из фиг. 3 видно, что при подсоединении внешнего импеданса к приемо-передающему ВШП величина импульсного отклика меняется в 2,05 раз (отношение площади кривой 1 к площади кривой 3) под воздействием УФИ, а при подсоединении внешнего импеданса к отражательному ВШП, как видно из фиг. 4, это отношение (отношение площади кривой 2 к площади кривой 3) под воздействием УФИ меняется всего в 1,46 раза. К тому же в этом случае с увеличением интенсивности УФИ амплитуда отраженных импульсов падает, в отличие от случая, когда импеданс подсоединен к приемо-передающему ВШП 3, где амплитуда отраженных импульсов растет с увеличением интенсивности УФИ.The magnitude of the impedance consisting of a VSH 8 with a photosensitive film 9 deposited on it, which are located on the substrate 10, changes its value under the action of the UVR. This not only leads to a change in the reflection coefficient of the surfactant from the IDT, but also the degree of its coordination with antenna 6. It is obvious that at some frequencies in this case the degree of matching increases, and at some frequencies it decreases, which leads to an increase in the range of oscillations at the frequency dependence parameter S 11 (the ratio of the electromagnetic wave reflected from the sensor antenna to the incident one, see Fig. 2), and, consequently, to an increase in the reflection coefficient of the electromagnetic signal from the sensor. In this case, in contrast to connecting impedance to reflective IDT, the effect of a change in impedance on the reflection coefficient of the electromagnetic signal from the sensor will increase. From FIG. 3 it can be seen that when external impedance is connected to the transceiver transceiver, the impulse response value changes 2.05 times (the ratio of the area of curve 1 to the area of curve 3) under the influence of UVR, and when external impedance is connected to reflective transducer, as can be seen from FIG. 4, this ratio (the ratio of the area of curve 2 to the area of curve 3) under the influence of UVB changes only 1.46 times. Moreover, in this case, with an increase in the intensity of the UVI, the amplitude of the reflected pulses falls, unlike in the case when the impedance is connected to the receiving and transmitting IDT 3, where the amplitude of the reflected pulses increases with the intensity of the UVI.

Период ВШС 8 равен периоду ВШП 3 и ВШП 4, а подложка 10 выполнена из того же пьезоэлектрического материала, что и пьезоэлектрический звукопровод 1, то влияние внешнего импеданса может усилиться за счет того, что ВШС 8 приобретает дополнительный активный импеданс за счет излучения ПАВ. В этом случае фоточувствительная пленка будет при облучении УФИ влиять на величину коэффициента отражения, а также на степень согласования приемо-передающего ВШП с антенной 6, поскольку величина импеданса будет уже и без наличия УФИ близка к сопротивлению излучения ВШП 3 и ВШП 4, ВШП 11 и ВШП 12. Наличие УФИ приведет лишь к большему рассогласованию импеданса ВШП с антенной. Если период ВШМ 8 отличен от периода ВШП 3 и и ВШП 4 или подложка будет не пьезоэлектрическая, что эквивалентно, то влияние на коэффициент отражения электромагнитных волн от датчика будет меньше, как показано на фиг. 5. Там видно, что отношение пика 1 отражения при наличии УФИ отличается от пика отражения 3 в 1,6 раза, что меньше по сравнению с таким же отношением, когда период ВШС 8 сравним с периодом ВШП 3 и ВШП 4, ВШП 11 и ВШП 12. Дело в том, что в случае отличия периода ВШС 8 от периода ВШП 3, ВШС 8 представляет собой емкость, и активное сопротивление в импедансе обуславливается только наличием фоточувствительной пленки. То же можно сказать, если ВШС расположена на диэлектрической (не пьезоэлектрической) подложке.The HSG 8 period is equal to the period of the IDT 3 and IDP 4, and the substrate 10 is made of the same piezoelectric material as the piezoelectric sound conduit 1, then the influence of external impedance may increase due to the fact that HShS 8 acquires additional active impedance due to the emission of a surfactant. In this case, the photosensitive film will, upon irradiation of the UVR, affect the magnitude of the reflection coefficient, as well as the degree of matching of the transceiver of the IDT with antenna 6, since the impedance value will be close to the radiation resistance of the IDT 3 and IDT 4 already without the presence of the UFI IDT 12. The presence of a PFI will only lead to a greater mismatch of the impedance of the IDT with the antenna. If the GSM 8 period is different from the IDT 3 and the IDT 4 or the substrate is not piezoelectric, which is equivalent, then the effect on the reflectance of electromagnetic waves from the sensor will be less, as shown in FIG. 5. It can be seen that the ratio of peak 1 reflection in the presence of UVRs differs from peak reflection 3 by 1.6 times, which is less compared to the same ratio when the period of HSS 8 is comparable to the period of IDT 3 and IDT 4 12. The fact is that in the case of a difference between the period of the VShS 8 and the period of the IDT 3, the VShS 8 is a capacitance, and the resistance in the impedance is caused only by the presence of a photosensitive film. The same can be said if the VSW is located on a dielectric (not piezoelectric) substrate.

При подсоединении внешнего импеданса к приемо-передающему ВШП 4 может показаться, что отражательный ВШП становится не нужным, так как импеданс влияет на коэффициент отражения и без него, однако без отражательного ВШП 4 электромагнитный сигнал, отраженный от антенны датчика, придет почти в одно и то же время, что и сигналы, отраженные от поверхностей, находящихся вблизи датчика. В этом случае будет невозможно разделить эти сигналы и произвести измерение интенсивности УФИ. При наличии отражательного ВШП 4 сигнал, отраженный от него, придет на несколько мкс позже, из-за того, что скорость ПАВ на пять порядков ниже, чем скорость электромагнитных волн, а расстояние между ВШП может составлять 6-20 мм. Это соответствует отражению электромагнитного сигнала от поверхностей, находящихся на расстоянии 600-1200 м от датчика. В этом случае величина отраженных от поверхностей сигналов будет сильно ослаблена. В тоже время сигнал, обусловленный отражением ПАВ от отражательного ВШП, будет значительно больше и его будет легко идентифицировать. Таким образом, без наличия отражательного ВШП 6 датчик будет неработоспособным.When external impedance is connected to the transceiver IDT 4, it may seem that the reflective IDT becomes unnecessary, since the impedance affects the reflection coefficient without it, but without reflective IDT 4 the electromagnetic signal reflected from the sensor antenna will come almost at one and the same same time as signals reflected from surfaces near the sensor. In this case, it will be impossible to separate these signals and measure the intensity of the UV radiation. In the presence of reflective IDP 4, the signal reflected from it will come a few microseconds later, because the SAW speed is five orders of magnitude lower than the speed of electromagnetic waves, and the distance between the IDT can be 6-20 mm. This corresponds to the reflection of an electromagnetic signal from surfaces located at a distance of 600-1200 m from the sensor. In this case, the magnitude of the signals reflected from the surfaces will be greatly weakened. At the same time, the signal caused by the reflection of surfactant from reflective IDT will be much larger and will be easily identified. Thus, without the presence of reflective IDT 6, the sensor will be inoperative.

Для оценки повышения точности заявляемого датчики проводились измерение интенсивности УФИ с помощью анализатора импеданса «Обзор-304». Этот прибор измерял частотную зависимость параметра S11 приемо-передающего ВШП. Далее производилось Фурье преобразование измеренной частотной характеристики и получался импульсный отклик датчика. ВШС подсоединялись к линии задержки с помощью малогабаритного коаксиального кабеля длиной 20 см, а сама ВШС закреплялась на оптической скамье и на нее через отверстие в металлической пластине подавалось УФИ от гелий-кадмиевого лазера (325 нм). Причем луч лазера был сфокусирован до диаметра 1.5 мм на расстоянии 12.3 см от линзы. Далее ВШС отодвигалась от линзы. При этом диаметр луча становился больше, но на ВШС он оставался неизменным из-за того, что непосредственно перед ней находилась металлическая пластина с отверстием диаметром 1.5 мм. Вследствие того, что диаметр луча увеличивался, интенсивность УФИ падала с увеличением расстояния до линзы. Это позволило менять интенсивность УФИ от 1312 mW/cm2 до 35.6 mW/cm2. Таким образом, можно было измерить зависимость коэффициента отражения ПАВ от отражательного ВШП, если ВШС подсоединялась к нему, и зависимость коэффициента передачи от приемо-передающего ВШП, если ВШС была к нему подсоединена, от интенсивности УФИ.To assess the increase in the accuracy of the claimed sensors, measurements were made of the intensity of UV radiation with the help of the Obzid-304 impedance analyzer. This device measured the frequency dependence of the parameter S 11 transceiver IDT. Next, the Fourier transform of the measured frequency response was performed and the impulse response of the sensor was obtained. The VShS was connected to the delay line using a 20 cm long compact coaxial cable, and the VShS itself was fixed on the optical bench and the UV radiation from a helium-cadmium laser (325 nm) was fed through the hole in the metal plate. Moreover, the laser beam was focused to a diameter of 1.5 mm at a distance of 12.3 cm from the lens. Next, the VSW was removed from the lens. At the same time, the beam diameter became larger, but at the VShS it remained unchanged due to the fact that a metal plate with a hole of 1.5 mm in diameter was directly in front of it. Due to the fact that the beam diameter increased, the intensity of the UV rays decreased with increasing distance to the lens. This allowed to change the intensity of the UV radiation from 1312 mW / cm 2 to 35.6 mW / cm 2 . Thus, it was possible to measure the dependence of the surfactant reflection coefficient on the reflective IDT, if the HS was connected to it, and the dependence of the transfer coefficient on the receive-transmit IDT, if the HS was connected to it, on the intensity of the UVR.

Однонаправленные ВШП 3, 4, и 11, 12 содержали по 18 активных и отражательных секций. Апертура ВШП была выбрана равной 1.72 мм, а расстояние между ВШП в измерительном канале было равно 18.7 мм, а в опорном канале - 12 мм. ВШП были расположены на пьезоэлектрическом звукопроводе из YX/127° - срезе ниобата лития.Unidirectional IDT 3, 4, and 11, 12 contained 18 active and reflective sections. The aperture of the IDT was chosen to be 1.72 mm, and the distance between the IDT in the measuring channel was 18.7 mm, and in the reference channel - 12 mm. The IDTs were located on a piezoelectric YX / 127 ° sound line - a cut of lithium niobate.

На фиг. 2 показана частотная зависимость параметра S11 когда ВШС с пленкой подсоединена к приемо-передающему ВШП и находится либо когда УФИ нет (кривая 2), либо под воздействием УФИ максимальной интенсивности, равной 1312 мВт/см2 (кривая 1). На фиг. 3 показан импульсный отклик датчика, представляющий Фурье преобразование приведенных выше частотных зависимостей. При этом внешний импеданс представляет собой ВШС 8 с тем же периодом что и ВШП 3 и 4, на которую нанесена фоточувствительная пленка оксида цинка толщиной 200 нм. ВШС 8 с пленкой 9 расположены на пьезоэлектрической подложке ниобата лития YX/127° - среза, т.е. подложка такая же, как и пьезоэлектрический звукопровод 2 датчика.FIG. 2 shows the frequency dependence of the parameter S 11 VSHS when the film is connected to the transceiver transmitting IDT and stored, or when no UVB (curve 2) or under the effect of UVB maximum intensity equal to 1312 mW / cm 2 (curve 1). FIG. 3 shows the impulse response of the sensor, representing the Fourier transform of the above frequency dependencies. In this case, the external impedance is a VSH 8 with the same period as the IDT 3 and 4, on which a photosensitive film of zinc oxide with a thickness of 200 nm is applied. HS 8 with a film 9 are located on a piezoelectric substrate of lithium niobate YX / 127 ° - cut, i.e. the substrate is the same as the piezoelectric transducer 2 sensor.

Для сравнения площадей импульсов, при отсутствии УФИ (кривая 1) и с УФИ (кривая 2) мы брали отношение площадей импульсов без УФИ, которые равны площадям импульса в опорном акустическом канале, к площадям импульсов при УФИ, соответственно. При этом площади импульсов при отсутствии УФИ (q0) были равны площади импульсов, отраженных в опорном акустическом канале (qопорн). Площади определялись как интегралы по времени, начиная с момента времени, где соответствующий пик отражения еще близок нулю (не более 0.01) и заканчивая моментом времени, где пик отражения уже близок нулю (не более 0.01).To compare the pulse areas, in the absence of a UVI (curve 1) and with a UVI (curve 2), we took the ratio of the pulse areas without UVI, which are equal to the pulse areas in the reference acoustic channel, to the pulse areas at UVI, respectively. In this case, the areas of the pulses in the absence of CFIs (q 0 ) were equal to the area of the pulses reflected in the reference acoustic channel (q reference ). The areas were defined as integrals over time, starting from the point in time where the corresponding reflection peak is still close to zero (no more than 0.01) and ending with the time point where the reflection peak is already close to zero (no more than 0.01).

В таблице 1 приведены расчеты площадей пиков отражения, когда внешний импеданс подсоединен к приемо-передающему ВШП.Table 1 shows the calculations of the areas of reflection peaks when the external impedance is connected to the transceiver.

Figure 00000001
Figure 00000001

Из таблицы 1 видно, что с увеличением интенсивности УФИ коэффициент отражения электромагнитного сигнала от датчика растет и принимает максимальное значение равное q10/q18=2.05 при интенсивности излучения равным 1312 мВт/см2.From table 1 it can be seen that with increasing UVI intensity, the reflection coefficient of the electromagnetic signal from the sensor increases and takes the maximum value equal to q1 0 / q1 8 = 2.05 when the radiation intensity is 1312 mW / cm 2 .

В таблице 2 показана изменения коэффициента отражения от датчика, когда внешний импеданс подсоединен к отражательному ВШП (см. фиг. 4, кривые 1 и 2)Table 2 shows the changes in the reflection coefficient from the sensor when the external impedance is connected to reflective IDT (see Fig. 4, curves 1 and 2)

Figure 00000002
Figure 00000002

Из таблицы 2 видно, что с увеличением интенсивности УФИ коэффициент отражения ПАВ от ВШП 4 падает и максимальное изменение составляет 1/0696=1,464, что меньше, чем в случае подсоединения внешнего импеданса к приемо-передающему ВШП 3.From Table 2 it can be seen that with increasing UVI intensity, the reflection coefficient of the surfactant from the IDT 4 decreases and the maximum change is 1/0696 = 1.464, which is less than in the case of connecting external impedance to the receiving-transmitting IDT 3.

В таблице 3 приведена зависимость коэффициента отражения от датчика, когда внешний импеданс, подсоединенный к приемо-передающему ВШП, расположен на пьезоэлектрической подложке, но период ВШС 8 отличается от периода ВШП, таким образом, что его рабочие частоты как ВШП лежат на 6 МГц ниже, чем у ВШП 3 и 4 датчика. Тогда ВШС без пленки можно рассматривать как емкость и пьезоэлектрические свойства подложки уже не имеют значения.Table 3 shows the dependence of the reflection coefficient from the sensor when the external impedance connected to the transceiver transceiver is located on the piezoelectric substrate, but the HSG 8 period differs from the IDT period, so that its operating frequencies as the IDT are lower by 6 MHz, than the VSP 3 and 4 sensors. Then a VSW without a film can be considered as the capacitance and the piezoelectric properties of the substrate no longer matter.

Figure 00000003
Figure 00000003

Из таблицы 3 видно, что с увеличением интенсивности УФИ коэффициент отражения электромагнитного сигнала от датчика растет как и для первого случая.From table 3 it can be seen that with increasing UVI intensity, the reflection coefficient of the electromagnetic signal from the sensor increases as in the first case.

На фиг. 6 приведены калибровочные кривые для датчика, в котором внешний импеданс с ВШС 8, имеющей период, равный периоду ВШП 3 и 4 (кривая 1), а также, для датчика, когда ВШС имеет период отличный от периода ВШП (кривая 2). Эти кривые представляет отношение амплитуды первично отраженного импульса без УФИ к амплитуде такого же импульса при различных интенсивностях УФИ. Видно, что в первом случае калибровочная кривая более сильно зависит от интенсивности излучения при слабых интенсивностях УФИ. Зная это отношение можно по этой кривой определить значение интенсивности УФИ. Так, например, если отношение q1i/q10=1.71, интенсивность УФИ равна 140 mW/cm2 (пунктирные линии на фиг. 6).FIG. 6 shows the calibration curves for the sensor, in which the external impedance with VShS 8, having a period equal to the period of the IDT 3 and 4 (curve 1), as well as for the sensor, when the HSV has a period different from the period of the IDT (curve 2). These curves represent the ratio of the amplitude of the primary reflected pulse without UVR to the amplitude of the same pulse at different UVI intensities. It can be seen that in the first case, the calibration curve depends more strongly on the radiation intensity at low UV radiation intensities. Knowing this relationship, it is possible to determine the intensity value of the UV radiation from this curve. For example, if the ratio q1 i / q1 0 = 1.71, the intensity of the UV radiation is 140 mW / cm 2 (dotted lines in Fig. 6).

Источники информации:Information sources:

1. RU 2392693, МПК H01L 31/101, опубл. 20.06.20101. RU 2392693, IPC H01L 31/101, publ. 06/20/2010

2. US 9064987, МПК-2014.01, H01L 31/0232, опубл. 23.06.20152. US 9064987, IPC-2014.01, H01L 31/0232, publ. 06.23.2015

3. Wenbo Peng, Yongning Неа, Changbao Wen, Ke Ma "Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer" // Sensors and Actuators A 184 (2012) 34-403. Wenbo Peng, Yongning Nea, Changbao Wen, Ke Ma, "Sensors and Actuators A 184 (2012) 34-40

4. Venkata Chivukula, Daumantas Ciplys, Michael Shur, and Partha Dutta "ZnO nanoparticle surface acoustic wave UV sensor" // APPLIED PHYSICS LETTERS 96, 233512, 20104. Venkata Chivukula, Daumantas Ciplys, Michael Shur, and Partha Dutta "ZnO nanoparticle surface acoustic wave UV sensor" // APPLIED PHYSICS LETTERS 96, 233512, 2010

5. Wen-Che Tsai,* Hui-ling Kao, Kun-Hsu Liao, Yu-Hao Liu, Tzu-Ping Lin, and Erik S. Jeng "Room temperature fabrication of ZnO/ST-cut quartz SAW UV photodetector with small temperature coefficient" // OPTICS EXPRESS, 9 Feb 2015 Vol. 23, No. 3,2187.5. Wen-Che Tsai, * Hui-ling Kao, Kun-Hsu Liao, Yu-Hao Liu, Tzu-Ping Lin, and Erik S. Jeng "SAW UV" photodetector with small temperature coefficient "// OPTICS EXPRESS, 9 Feb 2015 Vol. 23, No. 3.2187.

6. Sanjeev Kumar, Gil-Ho Kim, K. Sreenivas, R. P. "Tand on ZnO based surface acoustic wave ultraviolet photo sensor" // J Electroceram (2009) 22, p. 198-202.6. Sanjeev Kumar, Gil-Ho Kim, K. Sreenivas, R. P. "Tand on ZnO-based surface acoustic wave ultraviolet photo sensor" // J Electroceram (2009) 22, p. 198-202.

7. Wang Wen-Bo, Gu Hang, He Xing-Li, Xuan Wei-Peng, Chen Jin-Kai, Wang Xiao-Zhi, and Luo Ji-Kui "Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors" // Chin. Phys. В Vol. 24, No. 5 (2015) 057701.7. Wang Wen-Bo, Gu Hang, He Xing-Li, Xuan Wei-Peng, Chen Jin-Kai, Wang Xiao-Zhi, and Luo Ji-Kui "Transparent ZnO / glass surface acoustic wave based high-performance ultraviolet light sensors" // Chin. Phys. In Vol. 24, No. 5 (2015) 057701.

8. US 7989851, МПК-2006.01 H01L 29/82, опубл. 02.08.2011.8. US 7989851, IPC-2006.01 H01L 29/82, publ. 08/02/2011.

9. US 6914279, МПК-2006.01 H01L 29/82, опубл. 07.05.2005.9. US 6914279, IPC-2006.01 H01L 29/82, publ. 05/07/2005.

10. US 621192, МПК7 H01L 41/08, опубл. 16.09.2003.10. US 621192, IPC 7 H01L 41/08, publ. September 16, 2003.

11. RU 2613590, МПК-2006.01 H01L 31/101, H03H 9/25, опубл. 17.03.2017.11. RU 2613590, MPK-2006.01 H01L 31/101, H03H 9/25, publ. 03/17/2017.

12. RU 2387051, МПК H01L 41/107, G01D 5/12 (2006.01), опубл 20.04.2010 - прототип.12. RU 2387051, IPC H01L 41/107, G01D 5/12 (2006.01), published 04/20/2010 - a prototype.

13. RU 2195069, 7МПК H03H 9/145, опубл. 20.12.2002.13. RU 2195069, 7MPK H03H 9/145, publ. 12.20.2002.

Claims (4)

1. Пассивный беспроводной датчик ультрафиолетового излучения на поверхностных акустических волнах, содержащий герметичный корпус, внутри которого расположен пьезоэлектрический звукопровод, на рабочей поверхности которого в одном акустическом канале расположены приемо-передающий встречно-штыревой преобразователь (ВШП), подключенный через выводы в корпусе к антенне, первый однонаправленный отражательный ВШП, образующий с приемо-передающим ВШП измерительный канал, внешний импеданс, величина которого чувствительна к измеряемой интенсивности ультрафиолетового излучения (УФИ), и второй отражательный однонаправленный ВШП, который образует с приемо-передающим ВШП опорный канал, акустопоглотитель, нанесенный на торцы звукопровода, отличающийся тем, что внешний импеданс содержит встречно-штыревую структуру, расположенную на диэлектрической подложке, выполненную в виде двух вложенных друг в друга гребенчатых электродов, на поверхность которых нанесена фоточувствительная пленка, проводимость которой зависит от интенсивности УФИ, гребенчатые электроды через выводы в корпусе подключены к первому приемо-передающему однонаправленному ВШП, который вместе с одним из отражательных однонаправленных ВШП образует измерительный канал, параллельно которому введен опорный акустический канал, содержащий второй отражательный однонаправленный ВШП и второй однонаправленный приемо-передающий ВШП, соединенный через выводы в корпусе с антенной, обе антенны выполнены в виде полуволновых вибраторов, расположенных на одной прямой линии, причем расстояние между ВШП в опорном акустическом канале меньше расстояния между ВШП в измерительном акустическом канале, по меньшей мере, на длину отражательного ВШП.1. Passive wireless ultraviolet radiation sensor on surface acoustic waves, containing a sealed enclosure, inside which is located a piezoelectric acoustic conductor, on the working surface of which, in one acoustic channel, there is a transceiver transmitting interdigital transducer (IDT) connected through the terminals in the housing to the antenna, the first unidirectional reflective IDT, forming with the transceiver IDT measuring channel, external impedance, the value of which is sensitive to the measured intensity ultraviolet radiation (UV), and the second reflective unidirectional IDT, which forms a supporting channel with the transmitting and receiving IDT, acousto-absorber deposited on the ends of the acoustic duct, characterized in that the external impedance contains an interdigital structure located on the dielectric substrate, made in the form two comb electrodes nested into each other, on the surface of which a photosensitive film is applied, the conductivity of which depends on the intensity of UV radiation, the comb electrodes through the terminals in the bus is connected to the first transceiver unidirectional transducer, which, together with one of the reflective unidirectional transducer, forms a measuring channel, parallel to which a reference acoustic channel is inserted, containing the second reflective unidirectional transducer and the second unidirectional transceiver transceiver, connected via the terminals in the housing to the antenna, both antennas are made in the form of half-wave vibrators located on one straight line, and the distance between the IDT in the reference acoustic channel is less than the distance between IDT in an acoustic measuring channel, at least for the length of reflective IDTs. 2. Пассивный беспроводной датчик по п. 1, отличающийся тем, что период гребенчатых электродов равен периоду ВШП.2. Passive wireless sensor according to Claim. 1, characterized in that the period of the comb electrodes is equal to the period of the IDT. 3. Пассивный беспроводной датчик по п. 1, отличающийся тем, что диэлектрическая подложка выполнена из пьезоэлектрического материала.3. Passive wireless sensor according to Claim. 1, characterized in that the dielectric substrate is made of a piezoelectric material. 4. Пассивный беспроводной датчик по п. 1, отличающийся тем, что фоточувствительная пленка выполнена из оксида цинка.4. Passive wireless sensor according to Claim. 1, characterized in that the photosensitive film is made of zinc oxide.
RU2018123044A 2018-06-25 2018-06-25 Passive wireless ultraviolet radiation sensor on surface acoustic waves RU2692832C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018123044A RU2692832C1 (en) 2018-06-25 2018-06-25 Passive wireless ultraviolet radiation sensor on surface acoustic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018123044A RU2692832C1 (en) 2018-06-25 2018-06-25 Passive wireless ultraviolet radiation sensor on surface acoustic waves

Publications (1)

Publication Number Publication Date
RU2692832C1 true RU2692832C1 (en) 2019-06-28

Family

ID=67251728

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018123044A RU2692832C1 (en) 2018-06-25 2018-06-25 Passive wireless ultraviolet radiation sensor on surface acoustic waves

Country Status (1)

Country Link
RU (1) RU2692832C1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060049714A1 (en) * 2004-09-03 2006-03-09 James Liu Passive wireless acoustic wave chemical sensor
RU2387051C1 (en) * 2008-12-01 2010-04-20 Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования "Южный Федеральный Университет" Detector of physical value on surface acoustic waves
US20120051976A1 (en) * 2002-06-06 2012-03-01 Rutgers, The State University Of New Jersey Multifunctional biosensor based on zno nanostructures
RU2613590C1 (en) * 2015-11-09 2017-03-17 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Passive wireless surface acoustic wave ultraviolet radiation sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120051976A1 (en) * 2002-06-06 2012-03-01 Rutgers, The State University Of New Jersey Multifunctional biosensor based on zno nanostructures
US20060049714A1 (en) * 2004-09-03 2006-03-09 James Liu Passive wireless acoustic wave chemical sensor
RU2387051C1 (en) * 2008-12-01 2010-04-20 Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования "Южный Федеральный Университет" Detector of physical value on surface acoustic waves
RU2613590C1 (en) * 2015-11-09 2017-03-17 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Passive wireless surface acoustic wave ultraviolet radiation sensor

Similar Documents

Publication Publication Date Title
US7434989B2 (en) SAW temperature sensor and system
JP2792695B2 (en) Apparatus and method for measuring flow rate using surface acoustic waves
US6084503A (en) Radio-interrogated surface-wave technology sensor
JPH1019768A (en) Surface plasmon resonance sensor
RU2387051C1 (en) Detector of physical value on surface acoustic waves
EP1800100A2 (en) Mems saw sensor
CN201535702U (en) Wireless temperature sensor of acoustic surface wave
US20180209857A1 (en) Wireless temperature sensor based chip
JP2012255706A (en) Unpowered wireless sensor module, and wireless physical quantity detection system
US7100451B2 (en) Surface acoustic wave sensing system and method for measuring pressure and temperature
RU2585487C1 (en) Passive temperature sensor operating on surface acoustic waves
JPH01502052A (en) Optical sensors and optical fiber networks for optical sensors
RU2692832C1 (en) Passive wireless ultraviolet radiation sensor on surface acoustic waves
RU2613590C1 (en) Passive wireless surface acoustic wave ultraviolet radiation sensor
JP2005214713A (en) Humidity state detection system
US20220357483A1 (en) Optical detector including plasmonic metasurfaces and bulk acoustic wave resonators
US4195244A (en) CdS Solid state phase insensitive ultrasonic transducer
Abdelmejeed et al. A CMOS compatible GHz ultrasonic pulse phase shift based temperature sensor
US20120206996A1 (en) Transponder having coupled resonant modes and including a variable load
RU2550697C1 (en) Sensor based on surface acoustic waves to measure concentration of carbon dioxide
US11509285B2 (en) Wireless sensor system for harsh environment
RU2581570C1 (en) Passive wireless surface acoustic wave sensor for measuring concentration of carbon monoxide
US11156729B1 (en) Passive sensor for measuring ionizing radiation
RU2326404C2 (en) Device of identification at surface acoustic waves
RU180995U1 (en) PRESSURE SENSOR ON SURFACE ACOUSTIC WAVES