RU2691815C1 - СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ПОЛЯ ДОПУСКА ТЕМПЕРАТУРЫ ДЕФОРМАЦИИ - Google Patents

СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ПОЛЯ ДОПУСКА ТЕМПЕРАТУРЫ ДЕФОРМАЦИИ Download PDF

Info

Publication number
RU2691815C1
RU2691815C1 RU2018107958A RU2018107958A RU2691815C1 RU 2691815 C1 RU2691815 C1 RU 2691815C1 RU 2018107958 A RU2018107958 A RU 2018107958A RU 2018107958 A RU2018107958 A RU 2018107958A RU 2691815 C1 RU2691815 C1 RU 2691815C1
Authority
RU
Russia
Prior art keywords
wire
heating
deformation
khz
frequency
Prior art date
Application number
RU2018107958A
Other languages
English (en)
Inventor
Сергей Владимирович Алтынбаев
Алексей Рассказов
Олег Александрович Митяшкин
Джонатон Уолтер Томас Уэлст
Анастасия Альбертовна Игнатовская
Original Assignee
Хермит Эдванст Технолоджиз ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хермит Эдванст Технолоджиз ГмбХ filed Critical Хермит Эдванст Технолоджиз ГмбХ
Priority to RU2018107958A priority Critical patent/RU2691815C1/ru
Application granted granted Critical
Publication of RU2691815C1 publication Critical patent/RU2691815C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Abstract

Изобретение относится к способам обработки титановых сплавов давлением, содержащих алюминий, ванадий, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования, используемой для аддитивной технологии. Способ включает нагрев и деформацию заготовки путем волочения или прокатки. Нагрев заготовки проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева в зависимости от диаметра заготовки, а деформацию заготовки осуществляют при температуре Т=(450-850)°С с контролем допуска температуры нагрева заготовки ΔТ=±10°С. Приведены параметры установок индукционного нагрева в зависимости от диаметра заготовки. Повышается качество изготовленной проволоки, ее прочность и пластичность, снижаются затраты на изготовление. 3 з.п. ф-лы, 2 ил., 2 табл.

Description

Изобретение относится к способам обработки титановых сплавов давлением, содержащих алюминий, ванадий, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования (волочения или прокатки), используемой для аддитивной технологии.
Изобретение направлено на увеличение производительности, на снижение потерь готовой продукции, снижение затрат энергии на температурную обработку сплава и улучшение таких показателей при изготовлении проволоки для аддитивной технологии из (α+β)-титанового сплава как прочность и пластичность и исключение обрывов проволоки в процессе изготовления.
Титановый сплав (α+β)-класса, пригодный для применения в качестве проволоки для аддитивной технологии, представляет собой сплав Ti-Al-V, который номинально содержит мас. %: алюминий 5,50-6,76, ванадий 3,50-4,40, менее 0,20 мас. % кислорода, титан остальное Сплав используется для изготовления крупногабаритных сварных и сборных конструкций летательных аппаратов, для изготовления баллонов, работающих под внутренним давлением в широком интервале температур от -196°С до 450°С, и целого ряда других конструктивных элементов в авиакосмической промышленности. Для изготовление данных изделий с использованием аддитивной технологии, требуется проволока, имеющая повышенные свойства по однородности микроструктуры, фазовому составу, с минимальной анизотропией механических свойств по всей длине и без наличия сварных соединений и других дефектов.
Известен способ изготовления проволоки из α-титановых сплавов путем нагрева заготовки и прокатки в несколько проходов со скоростью в первом проходе не более 2 м/с, отличающийся тем, что, с целью увеличения производительности, нагрев производят до температуры, определяемой из зависимости Т=[(450-470)-20V1]°С, где V1 - скорость прокатки в первом проходе, а деформацию осуществляют в многовалковых калибрах с суммарной степенью 75-80%. (Патент RU №1476718, заявка 4292778/02 от 03.08.1987 г, МПК В21В 3/00).
Недостатком этого способа являются то, что в данной разработке использована многократная термообработка, получаемые при этом механические свойства проволоки не позволяют получить, из одной заготовки, провод без сварных соединений необходимой длины.
Известен способ получения проволоки из (α+β)-титановых сплавов, включающий нагрев, деформацию и отжиг (Волочение легких сплавов. Ерманок М.З., Ватрушин Л.С. М.: ВИЛС, 1999, с. 95-108).
Недостатком этого способа являются применение много переходной операции деформации, осуществляемой с нагревом, и применение энергоемких операций травления и вакуумного отжига, следствием которого является низкий уровень значений характеристик предела прочности на разрыв, что не позволяет, из одной заготовки, получение проволоки из титанового сплава ВТ6 с повышенными механическими свойствами одним куском необходимой длины для аддитивной технологии.
Известен способ изготовления высокопрочной проволоки из титана и титановых сплавов, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку (US 6077369 A, C22F 1/18,20.06.2000).
Недостатком этого способа является окисление и трещинообразование поверхности, формирование структурной неоднородности по длине проволоки и как следствие разброс и нестабильность механических свойств проволоки, что не позволяет получение структурированной проволоки из титанового сплава ВТ6 с повышенными механическими свойствами одним куском необходимой длины для аддитивной технологии.
Известен способ изготовления высокопрочной проволоки из (α+β)-титанового сплава мартенситного класса, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку, при этом после горячей деформации полученные заготовки отжигают на воздухе и механически обрабатывают, волочение проводят многократно с промежуточными отжигами в атмосфере воздуха, при этом, после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 мин при температуре (0,5÷0,7)Тпп °С с дальнейшим охлаждением до комнатной температуры. (Патент RU №2460825, заявка 2011140698 от 07.10.2011 г, МПК В21В 3/00).
Недостатками этого способа являются многостадийность и длительность процесса обработки заготовки и низкие механические свойства сплава по сравнению с предлагаемым способом. Данный способ не позволяет получить структурированную проволоку из титанового сплава ВТ6 с повышенными механическими свойствами одним куском необходимой длины для аддитивной технологии.
Наиболее близким техническим решением для описываемого ниже способа является способ изготовления проволоки из (α+β) - титановых сплавов, включающий нагрев заготовки и деформацию в несколько проходов, при этом в процессе деформации осуществляют охлаждение, причем при степени суммарной деформации до 50% охлаждение осуществляют до температуры деформации 640-670°С, при степени суммарной деформации более 50%, но менее 80% охлаждение осуществляют до температуры деформации более 670°С, но менее 700°С. (Патент RU №1520717, заявка 4309001 от 21.09.1987, МПК В21В 1/00).
Недостатком данного способа являются то, что механические свойства титанового сплава, полученные указанной обработкой, ниже, чем в предлагаемом способе, что не позволяет получение, из одной заготовки, структурированной проволоки из титанового сплава ВТ6 с повышенными механическими свойствами одним куском без обрыва, необходимой длины для аддитивной технологии.
Задачей данного изобретения является повышение качества проволоки из (α+β)-титанового сплава для аддитивной технологии, снижение затрат на ее изготовление.
Технический результат, достигаемый в процессе решения задачи, заключается в снижении продолжительности полного цикла производства проволоки, в получении проволоки единым куском без сварных соединений, повышение прочности и пластичности титановой проволоки из (α+β)-титанового сплава, получение однородной, мелкозернистой структуры сплава, снижение анизотропии механических свойств по длине и сечению проволоки.
Технический результат достигается способом изготовления проволоки для аддитивных технологий из (α+β)-титановых сплавов, включающий нагрев и деформацию заготовки путем волочения или прокатки, отличающийся тем, что нагрев заготовки проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева в зависимости от диаметра заготовки, а деформацию заготовки осуществляют при температуре Тз=(450-850)°С с контролем допуска температуры нагрева заготовки ΔТ=±10°С,
при этом нагрев заготовки диаметром от 7,5 до 4,16 мм осуществляют с использованием трех установок индукционного нагрева, одна из которых имеет номинальную мощность N1=60 кВт и частоту f1=66 кГц, вторая - номинальную мощность N2=45 кВт и частоту f2=100 кГц, а третья - номинальную мощностью N3=35 кВт и частоту f3=440 кГц, нагрев заготовки диаметром от менее 4,16 до 2,39 мм осуществляют с использованием двух установок индукционного нагрева с номинальной мощностью N2=45 кВт и частотой f2=100 кГц и номинальной мощностью N3=35 кВт и частотой f3=440 кГц, а нагрев заготовки диаметром от менее 2,39 до 1,84 мм осуществляют с использованием одной установки индукционного нагрева с номинальной мощностью N3=35 кВт и частотой f3=440 кГц.
Кроме этого, проволоку изготавливают из титанового сплава, содержащего, мас. %:
алюминий 5,50-6,76,
ванадий 3,50-4,40,
железо ≤0,22,
углерод ≤0,05,
кислород 0,14-0,18,
азот ≤0,03,
водород ≤0,015,
титан - остальное., с допуском по диаметру -0,05/+0,01 мм, с остаточным напряжением, определяемым по отклонению от прямолинейности на образцах, отобранных в начале и конце проволоки, и составляющее не более 1,0 мм на 1 м проволоки, после ее изгиба по радиусу 150 мм.
Повышение прочности и пластичности титановой проволоки из (α+β)-титанового сплава, это свойства титанового сплава, которые необходимо получить в процессе изготовления проволоки, чтобы иметь возможность изготовить проволоку, из одной заготовки, одним куском без сварных соединений. Для сплавов титана характерно значительное увеличение сопротивления пластической деформации и потеря пластичности на начальных стадиях деформирования. Прочность и пластичность титановой проволоки из (α+β)-титанового сплава, в большей степени определяется температурой нагрева заготовки и скоростью пластической деформации. Особенно это проявляется при деформации α+β-титановых сплавов, имеющих повышенное содержание легирующих элементов, что способствует дополнительному упрочнению материала.
(α+β) - титановые сплавы имеют высокие прочностные характеристики и низкую пластичность в условиях температур ниже 450°С, что затрудняет деформацию заготовки. Увеличение температуры нагрева заготовки свыше 850°С, приводит к большому снижению прочности поволоки после деформации, что не позволяет сократить число проходов, при получении проволоки необходимого диаметра. В данном способе предлагается проводить нагрев заготовки индукционным способом. При индукционном нагреве проволоки из титанового сплава имеются трудности формирования равномерного температурного поля по глубине заготовки. Это обусловлено особенностями протекания высокочастотного тока по проводнику, низкой теплопроводностью титана, высоким уровнем тепловых потерь. Из-за скин-эффекта при индукционном нагреве тепловые источники распределены по сечению заготовки неравномерно: максимальное тепловыделение происходит на поверхности, с увеличением расстояния от поверхности интенсивность источников теплоты падает. Соответственно поверхностные слои имеют более высокую температуру, чем середина, причем эта разность температур тем больше, чем больше мощность, на которой осуществляется нагрев, и чем выше частота тока. По мере разогрева заготовки происходит рост тепловых потерь в окружающую среду. Расширение металла и фазовые (структурные) превращения распространяются с поверхности внутрь нагреваемой заготовки в течение определенного времени. Со стороны наружных расширяющихся слоев внутренние, непрогретые, слои, испытывают напряжения растяжения, а наружные со стороны внутренних - напряжения сжатия. Чтобы снизить полный цикл производства проволоки необходимо сократить число проходов, что приводит к увеличению степени деформации. Увеличение степени деформации до 50% возможно за один проход, возможно при быстром нагреве заготовки и равномерном распределения температуры по сечению, при нагреве заготовки до температур (450-850)°С. Нагрев предлагается производить одним или двумя, или тремя индукторами. Важным здесь является фактор распределения температурного поля по сечению провода. При высокой скорости деформации однородность температурного поля по сечению проволоки должна бать максимально равномерной.
Со временем, после прохождения заготовки индукторов, происходит ее охлаждение. При быстром охлаждения поверхности в глубине заготовки образуется зона, имеющая более высокую температуру, чем поверхность. Это явление имеет место для титановых сплавов, оно сильно проявляется из-за низкой теплопроводности и высокого уровня тепловых потерь. Охлаждаемые наружные слои, испытывают напряжения растяжения, а внутренние со стороны наружных - напряжения сжатия. Такое изменение напряжений может приводить не только к упругим, но и пластическим деформациям, что может привести к появлению микротрещин в поверхностном слое.
При индукционном нагреве одной установкой номинальной мощностью N=(50-80) кВт и частотой f=(40-80) кГц, разность температур внутренних и внешних слоев металла приводит к локальным изменениям в структуре титана, а также к возникновению остаточных напряжений и образованию микротрещин на поверхности на начальных стадиях деформации, в дальнейшем с уменьшением диаметра, приводит к порыву проволоки. Чтобы избежать такого явления нагрев проводят более длительное время для выравнивания температурного поля по сечению заготовки. Это приводит к значительному снижению скорости деформации. Использование трех индукторов нагрева, на максимальных диаметрах заготовки, имеющих различные мощности и частоты, позволяют снизить градиент температур по сечению заготовки. При индукционном нагреве проволоки из титанового сплава тепло поверхностного слоя идет на нагрев внутренних слоев. Дополнительный нагрев поверхностного слоя при N=(10-40) кВт и частотой f=(300-500) кГц, позволяет поддерживать температуру тонкого поверхностного слоя на заданном уровне, образование мельчайших микротрещин, которые выходят на поверхность, не происходит. Итак, тепловая энергия поверхностного слоя, полученная на индукционных установках, имеющих меньшую частоту переменного магнитного поля, и ушедшая на разогрев внутренних слоев компенсируется дополнительным нагревом поверхностного слоя установками индукционного нагрева имеющих большую частоту.
Во время деформации проволоки происходит захолаживание ее поверхностных слоев, особенно в зонах контакта поверхности проволоки с поверхностями волок или роликов, имеющих значительно более низкую температуру. Охлаждение поверхностных слоев проволоки затрудняет обеспечение равномерной деформации, как по сечению проволоки, так и по длине. Неравномерная деформация проволоки приведет к растрескиванию поверхностных слоев проволоки. Экспериментально было установлено, что в предлагаемом способе, при нагреве заготовки индукционным способом, для обеспечения более равномерного температурное поля по объему заготовки, нагрев необходимо производить одним или двумя, или тремя индукторами нагрева в зависимости от диаметра заготовки. Предлагаемый способ нагрева заготовки позволяет производить деформацию заготовки при температуре (450-850)°С,
Повышенное содержание алюминия в титане, особенно при значениях более 5,5%, увеличивает прочностные характеристики и снижает пластичность сплава в условиях температур ниже 450°С. Поэтому важным становится проведение деформации заготовки при температуре в поле допуска ΔТ±10°С. Контроль поля допуска в узком диапазоне температур позволяет избежать снижения температуры или ее повышения за пределы оптимальных значений. Особенно это актуально на последнем проходе, когда проходит окончательное получение равномерного распределения мелкозернистой структуры. Авторами в процессе многочисленных экспериментальных исследований установлено, что проведение температурной деформации в поле допуска ΔТ±10°С позволяет получить мелкозернистую структуру и гарантировано избежать появления дефектов в сплаве.
Нагрев заготовки индукционным способом из титановых сплавов и проведение деформации при температуре Тз=(450-850)°С, в поле допуска температуры деформации ΔТ±10°С, используя одну или две или три установки с номинальной мощностью N=(50-80) кВт и частотой f=(40-80) кГц, и/или номинальной мощностью N=(30-60) кВт и частотой f=(80-300) кГц, и/или номинальной мощностью N=(10-40) кВт и частотой f=(300-500) кГц, позволяет формировать предельно равномерное температурное поле по длине и по сечению заготовки, избежать недогрева заготовки, достигнуть необходимой пластичности, и избежать появление деформационных микро разрывов, исключить перегрев заготовки и увеличение зернистости и неоднородности структуры, повысить качество проволоки, добиться высокой точности и скорости управления температурным нагревом заготовки.
Экспериментально, в зависимости от диаметра заготовки проволоки, определены мощности и частоты нагрева заготовок из титана и количество одновременно используемых индукторов нагрева и предельные значения температуры деформации заготовки. Необходимо отметить, что в зависимости от конкретных требований к качеству проволоки по микроструктуре, количество одновременно используемых индукторов нагрева представленные в таблице 1 могут меняться.
Figure 00000001
Контроль температуры при нагреве заготовки проводится пирометрами на каждом индукторе с точностью измерения температуры 0,1°С.
Реализация способа.
Реализация способа проводилась в три этапа. На первом этапе изготавливались заготовки для прокатки или волочения, на втором этапе проводилось изготовление проволоки волочением или прокаткой, на третьем этапе проводилось исследование образцов проволоки. Ниже представлена часть вариантов реализации предлагаемого способа изготовления проволоки из (α+β)-титанового сплава для аддитивной технологии с индукционным нагревом. Все заготовки были изготовлены из одного слитка.
Этап изготовление заготовки.
Методом тройного вакуумного дугового переплава получали слиток из титанового сплава ВТ6 диаметром 450 мм; далее обтачивали до 420 мм; нагревали до температуры 850°С в газовой печи и ковали на диаметр 115 мм. Полученную заготовку обтачивали для удаления альфированного слоя, затем нагревали до температуры 900°С и проводили горячую прокатку в бухту на диаметр 8,0 мм. Далее проводили отжиг на воздухе при температуре 700°С в течении 2-х часов с охлаждением на воздухе.
Этап проведение исследований.
Проводились следующие виды исследования поволоки. Определялись механические свойства, исследовалась структура сплава. Исследования механических свойств проводились на проволоке, вырезанной из конца бухты, или из конца проволоки в месте обрыва. Полученная проволока подвергалась растяжению на разрывной машине INSTRON 5969. Длина образца проволоки для растяжения составляла 600 мм. Скорость растяжения проволоки составляла 10 мм/мин. Основные механические характеристики проволоки представлены в табл. 2. Остаточное напряжение определялось на образцах, отобранных в начале и конце проволоки. Образец длиной 950 мм изгибался по радиусу 150 мм, после этого измерялась прямолинейность проволоки в соответствии с ГОСТ 26877-2008. Исследование структуры (α+β)-титанового сплава проводили на образцах проволоки полученных после проведения всего цикла получения готового провода и пригодного для аддитивной технологии. На фиг. 1 представлена характерная структура сплава ВТ6 полученная на проволоке, изготовленной на оптимальных режимах (Пример 1.), на фиг. 2 представлена структура сплава ВТ6 полученная на проволоке, которая порвалась (Пример 3.). Изображение получено на растровом электронном микроскопе модели MIRA3 TESCAN, напряжение 15 кВ, увеличение 5kx., α - фаза титанового сплава темные области, β-фаза - светлые области. Результаты исследований представлены в табл. 2
Этап изготовления проволоки.
Пример 1. Деформацию заготовки с диаметра 7,5 мм до диаметра 1,84 мм проводили за 5 проходов. Нагрев заготовки проводился до температуры 650°С. Деформацию проводили волочением, нагрев заготовки проводили одним или двумя, или тремя индукторами, на режимах, которые не выходили за предельные значения (табл. 1). Нагрев заготовок диаметром от 7,5 до 4,16 мм проводили тремя индукторами с номинальной мощностью N1=60 кВт и частотой f1=66 кГц, с номинальной мощностью N2=45 кВт и частотой f2=100 кГц, номинальной мощностью N3=35 кВт и частотой f3=440 кГц. Нагрев заготовок диаметром от менее 4,16 мм до 2,39 мм проводили двумя индукторами с номинальной мощность N2=45 кВт и частотой f2=100 кГц, с номинальной мощностью N3=35 кВт и частотой f3=440 кГц. Нагрев заготовок диаметром от менее 2,39 мм до 1,84 мм проводили на одной установке с номинальной мощностью N3=35 кВт и частотой f3=440 кГц для заготовок. Скорость деформации (V) заготовки выбирали на каждом проходе, в зависимости от диаметра (d) заготовки:
V=40 м/мин для диаметра d=(от 7,5 до 5,56) мм,
V=50 м/мин для диаметра d=(от менее 5,56 до 4,16) мм,
V=55 м/мин для диаметра d=(от менее 4,16 до 3,14) мм,
V=60 м/мин для диаметра d=(от менее 3,14 до 2,39) мм,
V=70 м/мин для диаметра d=(от менее 2,39 до 1,84) мм,
Результаты испытаний проволоки представлены в (табл. 2).
Пример 2. Деформация заготовки на диаметре 3,14 мм проводилась при температуре нагрева заготовки 430°С, что ниже оптимальной на 20°С. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки на начальной стадии прохода. Концы проволоки были сварены, температура нагрева заготовки была повышена в область оптимальных температур до 470°С. В дальнейшем при проходах при данной температуре обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 3. Деформация заготовки на диаметр 2,39 мм проводилась при температуре нагрева заготовки 865°С, что выше оптимальной на 15°С. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки на начальной стадии прохода. Концы проволоки были сварены, температура нагрева заготовки была снижена в область оптимальных температур до 830°С. В дальнейшем при проходах при данной температуре обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 4. Деформация проволоки на диаметре 5,56 мм. проводилась при мощности индукционного нагревателя N1=45 кВт, что меньше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в середине прохода, концы проволоки были сварены. Мощность N1 была увеличена до оптимальных значений. N1=55 кВт. В дальнейшем при проходах при данных параметрах мощности N1 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 5. Деформация проволоки на диаметре 5,56 мм проводилась при мощности индукционного нагревателя N1=85 кВт, что выше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в начале прохода, концы проволоки были сварены. Мощность N1 была уменьшена до оптимальных значений. N1=75 кВт. В дальнейшем при проходах при данных параметрах мощности N1 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 6. Деформация проволоки на диаметр 5,56 мм проводилась на частоте индукционного нагревателя f1=90 кГц, что выше оптимальной на 10 кГц Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f1 была уменьшена до оптимальных значений f1=75 кГц. В дальнейшем при проходах при данных параметрах частоты тока f1 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 7. Деформация проволоки на диаметр 5,56 мм проводилась на частоте индукционного нагревателя f1=30 кГц, что ниже оптимальной на 10 кГц. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f1 была увеличена до оптимальных значений f1=45 кГц. В дальнейшем при проходах при данных параметрах частоты тока f1 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 8. Деформация проволоки на диаметре 4,16 мм проводилась при мощности индукционного нагревателя N2=25 кВт, что меньше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в середине прохода, концы проволоки были сварены. Мощность N2 была увеличена до оптимальных значений. N2=35 кВт. В дальнейшем при проходах при данных параметрах мощности N2 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 9. Деформация проволоки на диаметре 4,16 мм проводилась при мощности индукционного нагревателя N2=65 кВт, что выше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в начале прохода, концы проволоки были сварены. Мощность N2 была уменьшена до оптимальных значений. N2=55 кВт. В дальнейшем при проходах при данных параметрах мощности N2 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 10. Деформация проволоки на диаметр 4,16 мм проводилась на частоте индукционного нагревателя f2=70 кГц, что ниже оптимальной на 10 кГц. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f2 была увеличена до оптимальных значений f2=85 кГц. В дальнейшем при проходах при данных параметрах частоты тока f2 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 11. Деформация проволоки на диаметр 4,16 мм проводилась на частоте индукционного нагревателя f2=310 кГц, что выше оптимальной на 10 кГц. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f2 была уменьшена до оптимальных значений f2=290 кГц. В дальнейшем при проходах при данных параметрах частоты тока f2 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 12. Деформация проволоки на диаметре 2,39 мм проводилась при мощности индукционного нагревателя N3=8 кВт, что меньше оптимальной на 2 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в середине прохода, концы проволоки были сварены. Мощность N3 была увеличена до оптимальных значений. N3=12 кВт. В дальнейшем при проходах при данных параметрах мощности N3 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 13. Деформация проволоки на диаметре 2,39 мм проводилась при мощности индукционного нагревателя N3=45 кВт, что выше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в начале прохода, концы проволоки были сварены. Мощность N3 была уменьшена до оптимальных значений. N3=35 кВт. В дальнейшем при проходах при данных параметрах мощности N3 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 14. Деформация проволоки на диаметр 2,39 мм проводилась на частоте индукционного нагревателя f3=510 кГц, что выше оптимальной на 10 кГц Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f3 была уменьшена до оптимальных значений f3=490 кГц. В дальнейшем при проходах при данных параметрах частоты тока f3 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 15. Деформация проволоки на диаметр 2,39 мм проводилась на частоте индукционного нагревателя f3=290 кГц, что ниже оптимальной на 10 кГц Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f3 была увеличена до оптимальных значений f3=310 кГц. В дальнейшем при проходах при данных параметрах частоты тока f3 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).
Пример 16. Деформацию заготовки с диаметра 7,5 мм до диаметра 1,84 мм проводили за 5 проходов. Нагрев заготовки проводился до температуры 650°С. Температуру нагрева заготовки контролировали и поддерживали в интервале (640-660)°С (ΔТ=±10°С). Остальные параметры процесса изготовления проволоки были как в примере 1. Полученные результаты по прочности выше, примерно на (10-15) % чем в примере 1, структура сплава мелкозернистая, имеет более равномерное распределение зерен по объему сплава, проволока на (20-23) % более прямолинейная. Результаты испытаний проволоки представлены в (табл. 2).
Пример 17. Деформацию заготовки с диаметра 7,5 мм до диаметра 1,84 мм проводили за 5 проходов. Нагрев заготовки проводился до температуры 650°С. Температуру нагрева заготовки контролировали и поддерживали в интервале (635-665)°С (ΔT=±15). Остальные параметры процесса изготовления проволоки были как в примере 1. Полученные результаты по прочности аналогичны параметрам в примере 1, структура сплава мелкозернистая, имеет равномерное распределение зерен по объему сплава, проволока имеет прямолинейность аналогичную примеру 1. Данный режим прохода проволоки не выявил преимуществ по сравнению с проходом, когда не контролируется интервал температуры при нагреве заготовки. Результаты испытаний проволоки представлены в (табл. 2).
Figure 00000002
Figure 00000003
Представленные в таблице 2 данные показывают, что предлагаемый способ изготовления проволоки из (α+β)-титанового сплава для аддитивной технологии с индукционным нагревом позволяет получить проволоку, имеющую повышенные прочностные и пластические свойства, с однородной, мелкозернистой структурой, необходимой длины одним куском без сварных соединений. Нагрев заготовки при волочении или прокатке до температуры Тз=(450-850)°С, в поле допуска температуры нагрева заготовки ΔТ±10°С, позволяет получить мелкозернистую структура сплава обладающую высокой прочностью и пластичностью, на (10-20)% улучшить механические свойства и повысить структурную однородность проволоки.
Таким образом, предлагаемый способ получения проволоки из (α+β)-титанового сплава позволяет произвести проволоку без сваривания отдельных кусков, обладающую стабильно высоким уровнем прочности, пластичности и однородности по всей длине, что является одним из главных условий для проволоки, используемой в аддитивных технологиях.

Claims (12)

1. Способ изготовления проволоки для аддитивных технологий из (α+β)-титановых сплавов, включающий нагрев и деформацию заготовки путем волочения или прокатки, отличающийся тем, что нагрев заготовки проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева в зависимости от диаметра заготовки, а деформацию заготовки осуществляют при температуре Тз=(450-850)°С с контролем допуска температуры нагрева заготовки ΔТ=±10°С, при этом нагрев заготовки диаметром от 7,5 до 4,16 мм осуществляют с использованием трех установок индукционного нагрева, одна из которых имеет номинальную мощность N1=60 кВт и частоту f1=66 кГц, вторая - номинальную мощность N2=45 кВт и частоту f2=100 кГц, а третья - номинальную мощностью N3=35 кВт и частоту f3=440 кГц, нагрев заготовки диаметром от менее 4,16 до 2,39 мм осуществляют с использованием двух установок индукционного нагрева с номинальной мощностью N2=45 кВт и частотой f2=100 кГц и номинальной мощностью N3=35 кВт и частотой f3=440 кГц, а нагрев заготовки диаметром от менее 2,39 до 1,84 мм осуществляют с использованием одной установки индукционного нагрева с номинальной мощностью N3=35 кВт и частотой f3=440 кГц.
2. Способ по п. 1, отличающийся тем, что проволоку изготавливают из титанового сплава, содержащего, мас. %:
алюминий 5,50-6,76,
ванадий 3,50-4,40,
железо ≤0,22,
углерод ≤0,05,
кислород 0,14-0,18,
азот ≤0,03,
водород ≤0,015,
титан - остальное.
3. Способ по п. 1, отличающийся тем, что проволоку изготавливают с допуском по диаметру -0,05/+0,01 мм.
4. Способ по п. 1, отличающийся тем, что проволоку изготавливают с остаточным напряжением, определяемым по отклонению от прямолинейности на образцах, отобранных в начале и конце проволоки, и составляющим не более 1,0 мм на 1 м проволоки, после ее изгиба по радиусу 150 мм.
RU2018107958A 2018-03-05 2018-03-05 СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ПОЛЯ ДОПУСКА ТЕМПЕРАТУРЫ ДЕФОРМАЦИИ RU2691815C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018107958A RU2691815C1 (ru) 2018-03-05 2018-03-05 СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ПОЛЯ ДОПУСКА ТЕМПЕРАТУРЫ ДЕФОРМАЦИИ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018107958A RU2691815C1 (ru) 2018-03-05 2018-03-05 СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ПОЛЯ ДОПУСКА ТЕМПЕРАТУРЫ ДЕФОРМАЦИИ

Publications (1)

Publication Number Publication Date
RU2691815C1 true RU2691815C1 (ru) 2019-06-18

Family

ID=66947603

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018107958A RU2691815C1 (ru) 2018-03-05 2018-03-05 СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ПОЛЯ ДОПУСКА ТЕМПЕРАТУРЫ ДЕФОРМАЦИИ

Country Status (1)

Country Link
RU (1) RU2691815C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231150A (ja) * 1985-04-04 1986-10-15 Kobe Steel Ltd Ti合金線材の製造方法
SU1520717A1 (ru) * 1987-09-21 2001-09-20 Б.А. Никифоров СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВЫХ СПЛАВОВ
US20110232349A1 (en) * 2003-05-09 2011-09-29 Hebda John J Processing of titanium-aluminum-vanadium alloys and products made thereby
RU2575276C2 (ru) * 2010-07-19 2016-02-20 ЭйТиАй ПРОПЕРТИЗ, ИНК. Обработка альфа/бета титановых сплавов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231150A (ja) * 1985-04-04 1986-10-15 Kobe Steel Ltd Ti合金線材の製造方法
SU1520717A1 (ru) * 1987-09-21 2001-09-20 Б.А. Никифоров СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВЫХ СПЛАВОВ
US20110232349A1 (en) * 2003-05-09 2011-09-29 Hebda John J Processing of titanium-aluminum-vanadium alloys and products made thereby
RU2575276C2 (ru) * 2010-07-19 2016-02-20 ЭйТиАй ПРОПЕРТИЗ, ИНК. Обработка альфа/бета титановых сплавов

Similar Documents

Publication Publication Date Title
CN103695609B (zh) 用于铜包铝复合扁排性能调控的高频感应退火装置及工艺
MX2013000393A (es) Enderezamiento por estiramiento en caliente de titanio alfa/beta procesado de alta resistencia.
EP4023354B1 (en) Preparation method for coated alloy wire
CN111360074B (zh) 一种异质片层结构中/高熵合金箔材的制备方法
Wang et al. Influence of processing parameters on microstructure and tensile properties of TG6 titanium alloy
Jian et al. Gradient microstructure and mechanical properties of Ti-6Al-4V titanium alloy fabricated by high-frequency induction quenching treatment
Furushima et al. Effects of oxidation and surface roughening on drawing limit in dieless drawing process of SUS304 stainless steel microtubes
CN103556094B (zh) 利用精锻机锻造生产tc4钛合金棒材的方法
RU2681040C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ИНДУКЦИОННЫМ НАГРЕВОМ
RU2690905C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ДОПУСКА ТЕМПЕРАТУРЫ И ВЫСОКОЙ СТЕПЕНЬЮ ДЕФОРМАЦИИ
RU2751067C2 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ
RU2690264C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С УДАЛЕНИЕМ ПОВЕРХНОСТНОГО СЛОЯ
RU2655482C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ИНДУКЦИОННЫМ НАГРЕВОМ И КОНТРОЛЕМ ПРОЦЕССА МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ
RU2751066C2 (ru) Способ изготовления проволоки из (α+β)-титанового сплава для аддитивной технологии
RU2751068C2 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ
RU2691815C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ПОЛЯ ДОПУСКА ТЕМПЕРАТУРЫ ДЕФОРМАЦИИ
RU2690262C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (a+b)- ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ
RU2690263C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ВЫСОКОЙ СКОРОСТЬЮ И СТЕПЕНЬЮ ДЕФОРМАЦИИ
RU2690869C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ИНДУКЦИОННЫМ НАГРЕВОМ И С ВЫСОКОЙ СТЕПЕНЬЮ ДЕФОРМАЦИИ
RU2751070C2 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ
RU2750872C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛИНОЙ МЕНЕЕ 8500 м ДЛЯ АДДИТИВНЫХ ТЕХНОЛОГИЙ
CN113493886B (zh) 一种采用自由锻和脉冲电流辅助挤压相结合提高钛合金棒材组织均匀性的成形方法
RU2682071C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) -
RU2682069C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-
RU2681038C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20220316

Effective date: 20220316