RU2691686C1 - Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации - Google Patents

Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации Download PDF

Info

Publication number
RU2691686C1
RU2691686C1 RU2018112783A RU2018112783A RU2691686C1 RU 2691686 C1 RU2691686 C1 RU 2691686C1 RU 2018112783 A RU2018112783 A RU 2018112783A RU 2018112783 A RU2018112783 A RU 2018112783A RU 2691686 C1 RU2691686 C1 RU 2691686C1
Authority
RU
Russia
Prior art keywords
earth
moon
small spacecraft
orbit
station
Prior art date
Application number
RU2018112783A
Other languages
English (en)
Inventor
Олег Семёнович Цыганков
Original Assignee
Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" filed Critical Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2018112783A priority Critical patent/RU2691686C1/ru
Application granted granted Critical
Publication of RU2691686C1 publication Critical patent/RU2691686C1/ru

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

Группа изобретений относится к технологиям проведения исследований в космическом пространстве. Способ включает запуск с борта окололунной орбитальной станции (ООС) малого космического аппарата (МКА) на гало-орбиту вокруг одной из точек либрации и, через некоторое время полёта (дрейфа) по этой орбите, возвращение МКА к ООС и его захват роботом-манипулятором станции. Затем из шлюзового отсека ООС выносят гермоконтейнер со стерильными пробоотборниками и берут пробы-мазки с поверхностей МКА. Пробоотборники с мазками изолируют в гермоконтейнере и затем доставляют на Землю в возвращаемом модуле. Для осуществления данного способа предусмотрен соответствующий комплекс средств, в котором МКА и гермоконтейнер базируются на ООС. Техническим результатом является обеспечение эффективности, надежности и безопасности сбора и доставки на Землю проб космической пыли из окрестностей точек либрации. 2 н.п. ф-лы, 1 ил.

Description

Группа изобретений относится к космическим технологиям, а именно к способам и средствам экспериментальных исследований в космическом пространстве, в частности, к способам и средствам забора и доставки на Землю проб космической пыли.
Космическая пыль межпланетного и межзвездного пространства является одним из важнейших объектов исследования. Космическая пыль, как природный дисперсный объект, может представлять собой смесь дисперсной фазы как неорганических частиц, так и частиц биологического происхождения. Важность исследования пылевой плазмы, особенно за пределами радиационных поясов Земли, стимулирует поиски способов и средств ее сбора и доставки в лаборатории на Земле.
В настоящее время наблюдается актуализация внимания к точкам либрации, где гравитационное и центробежное ускорения, воздействующие на помещенное в окрестностях точки тело, уравновешиваются, в связи с чем так называемые «малые тела» могут там накапливаться. Особый интерес вызывает открытие «облакоподобных пылевых образований Кордылевского» в окрестностях точек L4 и L5 системы Земля-Луна (Г.Л. Сучкин и др. Лагранжевы точки в проблеме поиска жизни во Вселенной. - В кн. Проблема поиска жизни во Вселенной. Москва, «Наука», 1986. С. 136-144).
Известно предложение «использовать окрестности лагранжевых точек в качестве мест дислокации спутников-либроидов с последующим взятием проб-мазков с их поверхности (О.С. Цыганков. Реальные шаги в область эмпирической экзобиологии: программа «Тест» / Авиапанорама, №3, 2014. С. 52). (Либроид - от лат. Librare - раскачивать, либрация - колебания).
Известен способ поиска и обнаружения микроорганизмов в космическом пространстве, заключающийся в том, что выполняют взятие проб с поверхности искусственного космического объекта посредством стерилизованного и гермоизолированного на Земле пробоотборника, после чего последний гермоизолируют в вакууме и возвращают на Землю, при этом пробы берут с поверхности объекта, размещенного в зонах эквидистантных точек либрации L4 и L5 в системе Земля-Луна (Патент RU 2603706, опубл. 27.11.2016, бюл. №33) (прототип).
В прототипе не представлены способы и средства обеспечения доставки тест-объекта в зону точки либрации, доступа к поверхности тест-объекта, а также доставки отобранной пробы на Землю. Указанные недостатки являются весьма существенными препятствиями для осуществления поставленной задачи.
Задачей изобретений является оптимизация способа забора и доставки на Землю космической пыли из окрестностей точек либрации системы Земля-Луна и комплекса средств для его реализации.
Техническим результатом изобретений является повышение технической и экономической эффективности, надежности и безопасности способа забора и доставки на Землю космической пыли из окрестностей точек либрации системы Земля-Луна и комплекса средств для его реализации путем использования окололунной орбитальной станции и базируемого на ней малого космического аппарата (МКА), а также возвращаемого на Землю модуля.
Технический результат изобретения достигается тем, что способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна содержит забор проб с поверхности искусственного тест-объекта, размещенного в зонах точек либрации, посредством стерилизованных и гермоизолированных на Земле пробоотборников, после чего последние изолируют в термоконтейнере, при этом забор проб производят с поверхностей МКА, который перед забором проб размещают вместе с термоконтейнером на окололунной орбитальной станции, шлюзуют, отделяют от упомянутой станции, инициируют его перелет с окололунной орбиты на гало-орбиту вокруг одной из точек либрации, поддерживают корректируемый полет-дрейф МКА по гало-орбите, затем осуществляют его переход с гало-орбиты на орбиту окололунной орбитальной станции, захват с помощью многофункционального робота-манипулятора и причаливание к упомянутой станции, при этом из шлюзового отсека окололунной орбитальной станции выносят термоконтейнер, извлекают из него стерильные пробоотборники, которыми берут пробы-мазки с поверхностей МКА, после чего изолируют пробоотборники в термоконтейнере, выполняют обратное шлюзование МКА и термоконтейнера, доставляют термоконтейнер с пробами на Землю в возвращаемом модуле.
Технический результат достигается тем, что в комплекс средств для реализации способа забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна, содержащий термоконтейнер со стерилизованными, изолированными на Земле пробоотборниками и искусственный тест-объект, введены окололунная орбитальная станция с возвращаемым на Землю модулем, состоящая из шлюзового отсека с выдвижным столом и устройствами фиксации малого космического аппарата, многофункциональный робот-манипулятор, а в качестве искусственного тест-объекта использован малый космический аппарат с двигательной установкой, системой управления, ресурсами для автономного функционирования, при этом малый космический аппарат и термоконтейнер размещены на упомянутой окололунной орбитальной станции.
Имели место попытки запуска спутников в окрестности точек либрации (например, ИС ЕЕ-С, США, 1978). Осуществление подобной миссии к точкам либрации системы Земля-Луна - технически и экономически чрезвычайно затратная акция, равноценная полету на окололунную орбиту. Очевидна целесообразность использовать для этого малые космические аппараты. Однако их применение для полетов в дальнем космосе является проблематичным. Гипотетически можно рассматривать миссии к точкам либрации малых аппаратов, стартующих с доступных геоцентрических орбит. Такие аппараты должны быть выполнены возвращаемыми на Землю или иметь отделяемые модули, гермозащищенные при проходе на спуске через атмосферу Земли. Основная проблема в осуществлении полетов малых аппаратов заключается в жестких ограничениях на массу потребляемого топлива для совершения маневров и возвращения к Земле. Частично острота этой проблемы может быть снижена использованием двигателей с высоким удельным импульсом (электроракетные двигательные установки), использованием солнечного паруса, попутных запусков.
Совместное Заявление ГК «РОСКОСМОС» и NASA о сотрудничестве в области исследования и освоения дальнего космоса, создании Международной окололунной посещаемой платформы Deep Space Gateway (https://roscosmos.ru/print/24136/). проект отечественной Лунной орбитальной станции (Авиапанорама. №4, 2016. С. 23) оптимизируют ситуацию, открывая возможности использования малых космических аппаратов в рамках эксплуатации околунной орбитальной станции.
Изобретение поясняется чертежом на фиг. 1, где:
1 - окололунная орбитальная станция;
2 - шлюзовой отсек;
3 - выдвижной стол;
4 - многофункциональный робот-манипулятор (МРМ);
5 - малый космический аппарат (МКА);
6 - термоконтейнер.
Комплекс средств для реализации способа забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна содержит термоконтейнер 6 со стерилизованными, изолированными на Земле пробоотборниками, окололунную орбитальную станцию 1 с возвращаемым на Землю модулем (не показан на фиг. 1), состоящую из шлюзового отсека 2 с выдвижным столом 3 и устройствами фиксации малого космического аппарата (на фиг. 1 не показаны). Кроме того, комплекс средств содержит многофункциональный робот-манипулятор (МРМ) 4 и искусственный тест-объект, в качестве которого используют малый космический аппарат (МКА) 5 с двигательной установкой, системой управления, ресурсами для автономного функционирования (на фиг. 1 не показаны). МКА 5 и термоконтейнер 6 размещают на окололунной орбитальной станции 1.
Способ забора и доставки на Землю космической пыли из окрестностей точек либрации осуществляется с помощью указанного выше комплекса средств следующим образом.
На Земле пробоотборники стерилизуют, помещают в стерилизованные полости, гермоизолируют в термоконтейнере 6. В модуле окололунной орбитальной станции 1 (или в грузовом корабле снабжения) доставляют на окололунную орбиту МКА 5 и термоконтейнер 6, устанавливают МКА 5 в шлюзовом отсеке 2 на выдвижной стол 3 и выполняют шлюзование, выдвигают стол 3 с размещенным на нем МКА 5, к последнему присоединяют МРМ 4, с помощью которого отделяют МКА 5 от стола 3 и помещают его в стартовую позицию для перелета на гало-орбиту, инициируют и выполняют перелет МКА 5 на гало-орбиту вокруг одной из точек либрации и далее поддерживают периодически корректируемый полет-дрейф МКА 5 по гало-орбите; в период полета по гало-орбите МКА 5 выдвижной стол 3 и шлюзовой отсек 2 приводят в исходное положение, выполнив промежуточное обратное шлюзование, и используют шлюзовой отсек 2 для других задач; по программе полета осуществляют переход МКА 5 с гало-орбиты на орбиту окололунной станции 1, подготавливают шлюзовой отсек 2, для чего космонавты устанавливают на стол 3 термоконтейнер 6, выполняют шлюзование и выдвигают стол 3 с размещенным на нем термоконтейнером 6, при этом выполняют захват МКА 5 посредством МРМ 4, с помощью последнего причаливают МКА 5 к окололунной станции 1 путем перемещения и установки МКА 5 на стол 3, упомянутым МРМ 4 захватывают и извлекают поочередно из термоконтейнера 6 стерильные пробоотборники, манипуляциями МРМ 4 выполняют взятие проб-мазков космической пыли с поверхности МКА 5 и изолируют пробоотборники, возвращая их в термоконтейнер 6 действиями МРМ 4, стол 3 вводят в шлюзовой отсек 2, выполняют обратное шлюзование МКА 5 и термоконтейнера 6, последней с пробами космонавты переносят в возвращаемый модуль (на фиг. 1 не показан) и доставляют на Землю.
Различные окололунные орбиты представляют определенный интерес из естественного побуждения изучать Луну не только в зонах проекции орбиты окололунной станции на поверхность Луны.
На современном этапе исследования и освоения космического пространства отмечается тенденция к активизации создания и использования малых космических аппаратов мини-размерности с научными, коммуникационными и двойного назначения задачами, преимущественно в околоземном пространстве.
МКА могут эффективно использоваться для широкого спектра задач на окололунных орбитах при условии их базирования на окололунной орбитальной станции, исключив таким образом из использования МКА перелет с большими затратами характеристической скорости по маршруту Земля - окололунные орбиты. Так, например, перелет с окололунной высокоэллиптической гало-орбиты (за которой признается ряд преимуществ для орбитальной станции), на низкую круговую орбиту (удобную для исследования поверхности Луны) (Yury Makushenko. The cislunur space port: approach for the crew delivery to the lunar surface) // IAC-17-A5/1/2), no затратам характеристической скорости становится высокоэкономичным по сравнению с перелетом Земля-Луна. Базирование МКА на окололунной станции открывает возможности для их дозаправки, полетного технического обслуживания, замены датчиковой аппаратуры, дооснащения, т.е. создавать их как многоразовые и многоцелевые аппараты с модернизационным потенциалом. Таким образом, МКА (аппараты-либроиды) могут быть пионерами в ряду космической техники аналогичного предназначения.

Claims (2)

1. Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна, включающий забор проб с поверхности искусственного тест-объекта, размещенного в зонах точек либрации, посредством стерилизованных и гермоизолированных на Земле пробоотборников, после чего последние изолируют в гермоконтейнере, отличающийся тем, что забор проб производят с поверхностей малого космического аппарата, который перед забором проб размещают вместе с гермоконтейнером на окололунной орбитальной станции, шлюзуют, отделяют от упомянутой станции, инициируют его перелет с окололунной орбиты на гало-орбиту вокруг одной из точек либрации, поддерживают корректируемый полет-дрейф малого космического аппарата по гало-орбите, затем осуществляют его переход с гало-орбиты на орбиту окололунной орбитальной станции, захват с помощью многофункционального робота-манипулятора и причаливание к упомянутой станции, при этом из шлюзового отсека окололунной орбитальной станции выносят гермоконтейнер, извлекают из него стерильные пробоотборники, которыми берут пробы-мазки с поверхностей малого космического аппарата, после чего изолируют пробоотборники в гермоконтейнере, выполняют обратное шлюзование малого космического аппарата и гермоконтейнера, доставляют гермоконтейнер с пробами на Землю в возвращаемом модуле.
2. Комплекс средств для реализации способа забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна, содержащий гермоконтейнер со стерилизованными, изолированными на Земле пробоотборниками и искусственный тест-объект, отличающийся тем, что в состав комплекса введены окололунная орбитальная станция с возвращаемым на Землю модулем, состоящая из шлюзового отсека с выдвижным столом и устройствами фиксации малого космического аппарата, многофункциональный робот-манипулятор, а в качестве искусственного тест-объекта использован малый космический аппарат с двигательной установкой, системой управления, ресурсами для автономного функционирования, при этом малый космический аппарат и гермоконтейнер размещены на упомянутой окололунной орбитальной станции.
RU2018112783A 2018-04-09 2018-04-09 Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации RU2691686C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018112783A RU2691686C1 (ru) 2018-04-09 2018-04-09 Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018112783A RU2691686C1 (ru) 2018-04-09 2018-04-09 Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации

Publications (1)

Publication Number Publication Date
RU2691686C1 true RU2691686C1 (ru) 2019-06-17

Family

ID=66947736

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018112783A RU2691686C1 (ru) 2018-04-09 2018-04-09 Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации

Country Status (1)

Country Link
RU (1) RU2691686C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744277C1 (ru) * 2020-10-22 2021-03-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации
RU202750U1 (ru) * 2020-11-02 2021-03-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек и апконвертирующих наночастиц в окрестностях точек либрации
RU2749431C1 (ru) * 2020-10-26 2021-06-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек и апконвертирующих наночастиц в окрестностях точек либрации
CN113358849A (zh) * 2021-05-20 2021-09-07 广东工业大学 一种模拟动态破岩采样非竖直安装系统及竖直安装系统
RU206424U1 (ru) * 2021-04-27 2021-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
RU206426U1 (ru) * 2021-04-21 2021-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных нанообъектов с магнитными свойствами в окрестностях точек либрации

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7681840B1 (en) * 2005-09-23 2010-03-23 Taylor Thomas C Space transportation node including tether system
RU2536746C2 (ru) * 2013-02-14 2014-12-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Устройство для отбора проб космонавтом с внешней поверхности космического объекта
RU2603706C1 (ru) * 2015-06-22 2016-11-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ поиска и обнаружения микроорганизмов в космическом пространстве

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7681840B1 (en) * 2005-09-23 2010-03-23 Taylor Thomas C Space transportation node including tether system
RU2536746C2 (ru) * 2013-02-14 2014-12-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Устройство для отбора проб космонавтом с внешней поверхности космического объекта
RU2603706C1 (ru) * 2015-06-22 2016-11-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ поиска и обнаружения микроорганизмов в космическом пространстве

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Дмитрий Новосельцев. О возможности отбора образцов космической пыли в точке либрации L1 системы Земля - Луна, их доставки на Землю и важности исследования данного вопроса [найдено 2019-04-15]. Найдено в Интернете, URL: https://naked-science.ru/article/column/o-vozmozhnosti-sbora-obrazcov. alizar 29 марта 2017 в 14:06. *
Лунная станция Deep Space Gateway: подготовка к полёту на Марс. Космонавтика, Транспорт, Будущее здесь [найдено 2019-04-15]. Найдено в Интернете, URL: https://habr.com/ru/post/402701/. *
По следам "Аполлона-18": есть ли что-то живое возле Луны? 15 ноября 2016. *
По следам "Аполлона-18": есть ли что-то живое возле Луны? 15 ноября 2016. Дмитрий Новосельцев. О возможности отбора образцов космической пыли в точке либрации L1 системы Земля - Луна, их доставки на Землю и важности исследования данного вопроса [найдено 2019-04-15]. Найдено в Интернете, URL: https://naked-science.ru/article/column/o-vozmozhnosti-sbora-obrazcov. alizar 29 марта 2017 в 14:06. Лунная станция Deep Space Gateway: подготовка к полёту на Марс. Космонавтика, Транспорт, Будущее здесь [найдено 2019-04-15]. Найдено в Интернете, URL: https://habr.com/ru/post/402701/. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744277C1 (ru) * 2020-10-22 2021-03-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации
RU2749431C1 (ru) * 2020-10-26 2021-06-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек и апконвертирующих наночастиц в окрестностях точек либрации
RU202750U1 (ru) * 2020-11-02 2021-03-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек и апконвертирующих наночастиц в окрестностях точек либрации
RU206426U1 (ru) * 2021-04-21 2021-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных нанообъектов с магнитными свойствами в окрестностях точек либрации
RU206424U1 (ru) * 2021-04-27 2021-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
CN113358849A (zh) * 2021-05-20 2021-09-07 广东工业大学 一种模拟动态破岩采样非竖直安装系统及竖直安装系统
CN113358849B (zh) * 2021-05-20 2022-09-20 广东工业大学 一种模拟动态破岩采样非竖直安装系统及竖直安装系统

Similar Documents

Publication Publication Date Title
RU2691686C1 (ru) Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации
Mazanek et al. Asteroid redirect mission concept: a bold approach for utilizing space resources
Mattingly et al. Mars sample return as a campaign
Castronuovo Active space debris removal—A preliminary mission analysis and design
Mori et al. Jovian trojan asteroid exploration by solar power sail-craft
Brophy et al. Asteroid return mission feasibility study
Mazanek et al. Asteroid redirect robotic mission: Robotic boulder capture option overview
Hirabayashi et al. Hayabusa2 Asteroid Sample Return Mission: Technological Innovation and Advances
Cichan et al. Mars base camp updates and new concepts
Mori et al. System designing of solar power sail-craft for Jupiter Trojan asteroid exploration
Brophy et al. Feasibility of capturing and returning small Near-Earth Asteroids
Colombo et al. Mission analysis and design for an active debris removal service for large constellations
Nock et al. Elements of a mars transportation system
Lopez et al. Extensibility of human asteroid mission to Mars and other destinations
RU2181094C1 (ru) Многофункциональный обслуживаемый космический аппарат и способ проведения многоцелевых научно-прикладных исследований с помощью этого космического аппарата
Davoodi et al. REARM: Re-entry hopper space-craft system on mars
McDonald et al. Extensibility of human asteroid mission to Mars and other destinations
FUNASE et al. Conceptual study on a Jovian Trojan asteroid sample return mission
Booth TechPort Abstracts
Hinton et al. 2nd Place Team 2021-2022 AIAA Undergraduate Space Design Competition: Martian Moons Exploration Excursion Vehicle
Smith A Manned Flyby Mission to Eros
Belyaev et al. Possible Technologies of Progress Transport Cargo Vehicle Control during Experiments in Free Flight
Yu et al. Solutions for Large-Scale and Low-Cost Access to Space in the Future
Walker The SIMONE Mission: low-cost Exploration of the Diverse NEO Population via Rendezvous with Microsatellites
van Pelt et al. Giant probes