RU206424U1 - Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему - Google Patents

Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему Download PDF

Info

Publication number
RU206424U1
RU206424U1 RU2021112468U RU2021112468U RU206424U1 RU 206424 U1 RU206424 U1 RU 206424U1 RU 2021112468 U RU2021112468 U RU 2021112468U RU 2021112468 U RU2021112468 U RU 2021112468U RU 206424 U1 RU206424 U1 RU 206424U1
Authority
RU
Russia
Prior art keywords
microcontainers
nanoobjects
cylindrical
motors
shaped
Prior art date
Application number
RU2021112468U
Other languages
English (en)
Inventor
Владимир Анатольевич Линьков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина"
Priority to RU2021112468U priority Critical patent/RU206424U1/ru
Application granted granted Critical
Publication of RU206424U1 publication Critical patent/RU206424U1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/222Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Полезная модель относится к малоразмерным исследовательским бинарным космическим аппаратам (БКА), предназначенным для поиска и сбора наноразмерных объектов внеземного происхождения, скопившихся в космических пылевых структурах, расположенных в окрестностях точек либрации (точек Лагранжа). БКА содержит два цилиндрообразные корпуса, в центрах торцов которых размещены телескопические штанги, на которых размещены четыре мультивекторных матричных ракетных двигателя (ММРД) с волнообразными цилиндрическими поверхностями для сканирования облачных структур, развертывания и свертывания гибкой солнечной батареи (СБ), интегрированной с планарными микроконтейнерами для хранения нанообъектов, собранных на поверхностях жестких микроподложек с помощью электрического и магнитного поля. Герметизация собранных нанообъектов осуществляется запайкой планарных микроконтейнеров герметизирующей пленкой с одновременным свертыванием в рулон СБ, транспортируемый на Землю для исследований с помощью флуоресцентных и электронных микроскопов. Техническим результатом является возможность активного раздельного сбора внеземных нанообъектов с различными физическими свойствами с помощью электрического и магнитного поля с последующей конвейерной герметизацией собранных нанообъектов при сканировании окрестностей точек либрации планет, входящих в Солнечную систему. 10 ил.

Description

Полезная модель относится к исследовательским малоразмерным бинарным космическим аппаратам (БКА), весом менее 1000 грамм, предназначенным для поиска и сбора в космическом пространстве наноразмерных объектов внеземного происхождения, скопления которых расположены в окрестностях точек либрации (точек Лагранжа) в виде пылевых облакоподобных структур (например, пылевые облака Кордылевского в системе Луна-Земля). Цель исследований - на основании изучения собранных БКА материалов внеземного происхождения, их физико-химического анализа и классификации, осуществление последующего синтеза подобных наночастиц с известными или новыми свойствами, не встречающимися на Земле.
Используемое в описании полезной модели словосочетание «бинарный космический аппарат» (БКА) понимается как космический аппарат, состоящий из двух корпусов и одной общей армированной гибкой ленточной солнечной батареи, расположенной между ними, разворачиваемый за счет разматывания солнечной батареи, смотанной в рулон, при реверсивном перемещении одного корпуса относительно другого в противоположные стороны и обратно, осуществляемом с помощью мультивекторных матричных ракетных двигателей (ММРД). Гибкая ленточная солнечная батарея (СБ) - это гибкая диэлектрическая ленточная подложка, на которую нанесен массив соединенных между собой тонкопленочных солнечных фотоэлементов в сочетании с микроконтейнерами для сбора нанообъектов. Точки либрации - это точки, где гравитационное и центробежное ускорения, воздействующие на помещенное в окрестностях точки тело, уравновешиваются, в связи с чем так называемые «малые тела» могут там накапливаться (Патент на изобретение RU 2691686 С1, 17.06.2019, G01N 1/02, B64G 4/00, Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации / Цыганков О.С.).
Нанообъекты - отдельные наночастицы размером в интервале 2-100 нанометров и системы наночастиц, образующие однородные или неоднородные многозвенные конструкции, размеры которых меньше 2000 нанометров. В зависимости от размера и материала из которого созданы нанообъекты, они могут обладать свойствами реагирования на магнитные или электрические поля, в зависимости от окружающих факторов изменять свою полярность мгновенно или сохранять ее постоянно, переходить из одного физического состояния в другое, например, от воздействия световых или рентгеновских фотонов, преобразовывать длины волн электромагнитного излучения (Патент на изобретение RU 2723899 С1, 18.06.2020, G01Q 60/24, B82Y 35/00, Сканирующий зонд атомно-силового микроскопа с отделяемым телеуправляемым нанокомпозитным излучающим элементом, легированным квантовыми точками, апконвертирующими и магнитными наночастицами структуры ядро-оболочка / Линьков В.А., Гусев С.И., Вишняков Н.В., Линьков Ю.В., Линьков П.В.).
Известен микроспутник с солнечной батареей, выполненной в виде гибкой подложки с нанесенными тонкопленочными солнечными фотоэлементами, намотанной при выведении вокруг корпуса микро-спутника и развертываемой с помощью пружин после выхода на заданную орбиту. Микро-спутник содержит: корпус спутника, механизм развертывания на базе торсионных пружин, солнечные батареи, выполненные из гибкой подложки с нанесенными тонкопленочными фотоэлементами, двигатели, антенны, солнечный датчик, конусный узел стыковки с другим спутником (Patent US 9758260 В2, Sep.12, 2017, B64G 1/22, B64G 1/10, low volume microSATELLITE WITH ELEXIBLE WINDED PANELS EXPANDABLE AFTER LAUNCH).
Недостатком устройства является отсутствие возможности активного раздельного сбора внеземных нанообъектов с различными физическими свойствами с помощью электрического и магнитного поля с последующей конвейерной герметизацией собранных нанообъектов при сканировании окрестностей точек либрации планет, входящих в Солнечную систему.
Известен бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации, содержащий два панелеобразные корпуса, соединенных с контейнерами, гибкую подложку с тонкопленочными солнечными фотоэлементами, которая выполнена в виде диэлектрической ленты с возможностью свертывания в рулон, с нанесенными информационными, силовыми, высоковольтными шинами, коллинеарной антенной, позиционной штрих-кодовой лентой, микроконтейнерами, в каждом из которых размещены пленочные электроды и жесткие диэлектрические микроподложки, также содержит два мультивекторных матричных ракетных двигателя, две выдвижные телескопические штанги, два линейных шаговых двигателя, три реверсивных шаговых двигателя, три катушки для размещения гибкой диэлектрической ленточной подложки и герметизирующей самоклеющейся пленки, прижимной электромагнит, два лазерных дальномера, две ПЗС-матрицы, два солнечных датчика, датчик штрих-кода, два дисковых токосъемника, два контроллера, два стабилизатора напряжения, приемопередатчик (Патент на полезную модель RU 202757 U1, 04.03.2021, B64G 1/22, В82В 1/00, бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации / Линьков В.А.).
Недостатком устройства является отсутствие возможности активного раздельного сбора внеземных нанообъектов с различными физическими свойствами с помощью электрического и магнитного поля с последующей конвейерной герметизацией собранных нанообъектов при сканировании окрестностей точек либрации планет, входящих в Солнечную систему.
Наиболее близким по технической сущности является бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации, содержащий два панелеобразные корпуса, соединенных с контейнерами, гибкую подложку с тонкопленочными солнечными фотоэлементами, которая выполнена в виде диэлектрической ленты с возможностью свертывания в рулон, с нанесенными информационными, силовыми, высоковольтными шинами, коллинеарной антенной, позиционной штрих-кодовой лентой, микроконтейнерами, в каждом из которых размещены пленочные электроды и жесткие диэлектрические микроподложки, также содержит два мультивекторных матричных ракетных двигателя, две выдвижные телескопические штанги, два линейных шаговых двигателя, три реверсивных шаговых двигателя, три катушки для размещения гибкой диэлектрической ленточной подложки и герметизирующей пленки, термоэлемент, два лазерных дальномера, две ПЗС-матрицы, два солнечных датчика, датчик штрих-кода, два дисковых токосъемника, два контроллера, два стабилизатора напряжения, приемопередатчик (Патент на изобретение RU 2744277 С1, 04.03.2021, B64G 1/22, бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации / Линьков В.А.).
Недостатком устройства является отсутствие возможности активного раздельного сбора внеземных нанообъектов с различными физическими свойствами с помощью электрического и магнитного поля с последующей конвейерной герметизацией собранных нанообъектов при сканировании окрестностей точек либрации планет, входящих в Солнечную систему.
Отличие предлагаемого технического решения от выше изложенных заключается во введении двух цилидрообразных корпусов, что позволило осуществить намотку гибкой солнечной батареи непосредственно вокруг корпусов без применения дополнительных катушек. Введение четырех ММРД с волнообразными цилиндрическими поверхностями генерирующих пакеты тяг с заданными комбинациями их величин и направлений, позволило осуществить реверсивное вращение двух корпусов в сочетании с реверсивным перемещением их относительно друг друга. Это позволило с помощью ММРД с волнообразными цилиндрическими поверхностями многократно разворачивать и сворачивать в рулон СБ. Введение четырех дискообразных сканирующих лазерных дальномеров, работающих с обзором горизонта в 360° градусов, размещенных на торцах цилиндрообразных корпусов, позволило постоянно отслеживать расстояние между верхними и нижними торцами корпусов и угол наклона оси симметрии одного корпуса относительно другого, а также постоянно отслеживать расстояние до рядом расположенных БКА при сканировании окрестностей точки либрации одновременно несколькими БКА. Введение плоских катушек, соединенных с шинами электропитания расположенных на дне микроконтейнеров, позволило сформировать массив притягивающих электромагнитных полей для сбора и накопления исследуемых нано объектов с магнитными свойствами. Введение цилиндрического термоэлемента, соединенного с выдвижной П-образной штангой, соединенной с прижимными линейными шаговыми двигателями, соединенными с плоскими шаговыми двигателями, позволило осуществить заварку одного или нескольких микроконтейнеров с собранными нанообъектами с равномерным прижатием термоэлемента к поверхностям завариваемых микроконтейнеров с нанесенными микрогранулами термоплавкого клея. Введение микрогранул термоплавкого клея, нанесенных на верхние части микроконтейнеров, позволило производить герметичное соединение материала герметизирующей пленки с материалом микроконтейнеров имеющих разные жаропрочные характеристики.
Техническим результатом является возможность активного раздельного сбора внеземных нанообъектов с различными физическими свойствами с помощью электрического и магнитного поля с последующей конвейерной герметизацией собранных нанообъектов при сканировании окрестностей точек либрации планет, входящих в Солнечную систему.
Технический результат предложенной полезной модели достигается совокупностью существенных признаков, а именно: бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в Солнечную систему, содержащий два корпуса, гибкую подложку с тонкопленочными солнечными фотоэлементами, которая выполнена в виде диэлектрической ленты с возможностью свертывания в рулон, с нанесенными информационными, силовыми, высоковольтными шинами, коллинеарной антенной, микроконтейнерами, в каждом из которых размещены пленочные электроды и жесткие диэлектрические микроподложки, также содержит мультивекторные матричные ракетные двигатели, выдвижные телескопические штанги, линейные шаговые двигатели, термоэлемент, герметизирующую пленку, солнечный датчик, два контроллера, два стабилизатора напряжения, приемопередатчик, четыре мультивекторных матричных ракетных двигателя с волнообразными цилиндрическими поверхностями, четыре линейных шаговых двигателя, четыре выдвижные телескопические штанги, четыре дискообразных сканирующих лазерных дальномера, первый и второй плоские шаговые двигатели, первый и второй прижимные линейные шаговые двигатели, термоэлемент, выполненный цилиндрическим, П-образную штангу, выдвижную П-образную штангу, микрогранулы термоплавкого клея, нанесенные на края микроконтейеров, первый и второй корпуса выполнены цилиндрообразными, на их торцах закреплены первый, второй, третий, четвертый дискообразные сканирующие лазерные дальномеры, на торцах третьего и четвертого из которых размещены статоры первого и второго плоских шаговых двигателей, поворачивающиеся роторы которых соединены с первым и вторым прижимными линейными шаговыми двигателями, а через центральные сквозные отверстия первого и второго плоских шаговых двигателей проходят выдвижные телескопические штанги, соединенные с мультивекторными матричными ракетными двигателями с волнообразными цилиндрическими поверхностями, соединенные с цилиндрообразными корпусами, к боковым стенкам которых механически крепятся края герметизирующей пленки, наложенной с теневой стороны на полотно гибкой диэлектрической ленточной подложки, электропроводящие силовые шины которой соединены с тонкопленочными солнечными фотоэлементами и плоскими электромагнитными катушками, расположенными под жесткими диэлектрическими микроподложками, в центральных микроконтейнерах, высоковольтные шины соединены с пленочными электродами, расположенными в соседних от центральных микроконтейнерах, а информационная шина соединяет первый и второй контроллеры, размещенные в первом и втором цилиндрообразных корпусах, к торцам первого из которых прикреплена П-образная штанга с расположенными по середине солнечным датчиком, а второй корпус через первый и второй прижимные линейные шаговые двигатели, управляемые вторым контроллером, соединены с выдвижной П-образной штангой, проходящей через сквозное отверстие, расположенное по оси симметрии цилиндрического термоэлемента, для равномерного давления на запаиваемые герметизирующей пленкой микроконтейнеры с собранными нанообъектами.
Сущность полезной модели поясняется на Фиг. 1, где представлен бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в Солнечную систему, в момент развертывания гибкой ленточной СБ. На Фиг. 2 представлена структурная блок-схема бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в Солнечную систему. На Фиг. 3 представлен выносной элемент А (10:1) в увеличенном масштабе, поясняющий топологию расположения на гибкой диэлектрической ленточной подложки тонкопленочных солнечных фотоэлементов относительно расположению микроконтейнеров для сбора и последующей герметизации собранных нанообъектов.
Фиг. 4 - Этап отвода термоэлемента от корпуса и переход в исходное положение. Фиг. 5 - Этап прижатия цилиндрического термоэлемента к герметизирующей пленке и разогрев микрогранул термоплавкого клея на поверхности микроконтейнера. Фиг. 6 - Этап герметизации - надавливание цилиндрическим термоэлементом на участок с расплавленным термоплавким клеем и перемещение по заданному угловому сектору для сварки герметизирующей пленки с выступающими частями одного или нескольких микроконтейнеров.
На Фиг. 7, Фиг. 8 - схематично поясняются этапы развертывания БКА. На Фиг. 9 - этап сканирования окрестности точки либрации, сбор и герметизация собранных нанообъектов. На Фиг. 10, - этап свертывание БКА.
Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в Солнечную систему, содержит: (Фиг. 1, Фиг. 2) первый 1 и второй 2 цилиндрообразные корпуса, первый 3, второй 4, третий 5, четвертый 6 ММРД с волнообразными цилиндрическими поверхностями, первый 7, второй 8, третий 9, четвертый 10 линейные шаговые двигатели, первую 11, вторую 12, третью 13, четвертую 14 выдвижные телескопические штанги; первый 15, второй 16, третий 17, четвертый 18 дискообразные сканирующие лазерные дальномеры, первый 19 и второй 20 плоские шаговые двигатели, первый 21 и второй 22 прижимные линейные шаговые двигатели, цилиндрический термоэлемент 23, выдвижную П-образную штангу 24, герметизирующую пленку 25 (Фиг. 1), гибкую диэлектрическую ленточную подложку 26, тонкопленочные солнечные фотоэлементы 27, силовые шины 28, информационную шину 29, высоковольтную шину с положительной полярностью 30, высоковольтную шину с отрицательной полярностью 31, пленочные электроды 32 (Фиг. 3), плоские электромагнитные катушки 33, жесткие диэлектрические микроподложки 34, микроконтейнеры 35, солнечный датчик 36, П-образную штангу 37, первый 38 и второй 39 контроллеры, первый 40 и второй 41 стабилизаторы напряжения, высоковольтный источник питания 42, коллинеарную антенну 43, приемопередатчик 44, микрогранулы термоплавкого клея 45 (Фиг. 3). На фиг. 2, в границах замкнутых пунктирных линий, расположены элементы, конструктивно размещенные в первом 1 и втором 2 цилиндрообразных корпусах. λ1, λ2, λ3, λ4 - выделенные длинны волн электромагнитного излучения оптического диапазона, излучаемые первым 15, вторым 16, третьим 17, четвертым 18 дискообразными сканируемыми лазерными дальномерами.
Гибкая диэлектрическая ленточная подложка 26 (Фиг. 3) армирована диэлектрическими замкнутыми упорядоченными прямоугольными ребрами жесткости в виде бортиков, образующих на поверхности гибкой диэлектрической ленточной подложки 26 множество прямоугольных, открытых сверху планарных микроконтейнеров 35. В каждом микроконтейнере 35, размещенном вдоль краев гибкой диэлектрической ленточной подложки 26, размещен пленочный электрод 32, на который наложена жесткая диэлектрическая микроподложка 34. Жесткие диэлектрические микроподложки 34 выполнены шириной меньше радиуса цилиндрообразного корпуса 1 и 2 для уменьшения асимметрии формы рулона при проведении многослойной намотки. В зависимости от расположения пленочных электродов 34 в верхней или нижней части гибкой диэлектрической ленточной подложки 26 они соединены с высоковольтными шинами 30 и 31 с положительной и отрицательной полярностью. При включении высоковольтного источника питания 42 создается электрическое поле, которое притягивает к пленочным электродам 32 противоположно заряженные наночастицы, которые осаждаются, не достигнув их на жестких диэлектрических микроподложках 34. Микроконтейнеры 35 разделены на три класса: два - для сбора отрицательно и положительно заряженных нанообъектов, один - для сбора нанообъектов с магнитными свойствами. Притягивающее электрическое поле создается пленочными электродами 32, на которые подается высоковольтное напряжение, а магнитное поле создается с помощью плоских катушек 33, при протекании тока через которые создается электромагнитное поле, притягивающее ферромагнитные нанообъекты. Пленочные электроды 32 и плоские катушки 33 расположены под жесткими диэлектрическими подложками 34.
Для исключения попадания земных наночастиц планарные микроконтейнеры 35 сверху завариваются герметизирующей пленкой 25 в космосе и послойно, вместе с гибкой диэлектрической ленточной подложкой 26, на которой они нанесены, наматываются на второй цилиндрообразный корпус 2. Герметизирующая пленка 25 в исходном положении расположена с теневой стороны (с обратной стороны солнечных фотоэлементов) гибкой диэлектрической ленточной подложки 26 и повторяет ее геометрическую форму.
Для осуществления полезной модели могут быть использованы, например, известные технологии изготовления компонентов. В качестве мультивекторного матричного ракетного двигателя (ММРД) с волнообразной цилиндрической поверхностью может быть использована мультивекторная матричная ракетная двигательная система с цифровым управлением величины и направления тяги, которая состоит из плоской дискообразной с волнообразным внешним контуром монолитной термостойкой диэлектрической подложки с размещенными на ней квадратной матричной реверсивной структурой двигательных ячеек, соединенной с повторяющим ее контур цилиндрообразной полой с волнообразным профилем монолитной термостойкой диэлектрической подложкой с радиально-веерной ориентацией всех продольных осей конусообразных микропор на центры чередующихся сопряженных вогнутых и выпуклых полуокружностей, образующих в совокупности замкнутую волнообразную внешнею поверхность. Все конусообразные микропоры заполнены твердым топливом и ранжированы по объему в пропорциях последовательных степенях числа два (1-2-4-8-16-32), обеспечивающих генерацию множества разнонаправленных векторов тяги с прецизионным цифровым управлением в двоичном коде величиной тяги каждой ячейки (Патент на изобретение RU 2707474 С1, 26.11.2019, F02K 9/95, B64G 1/40, мультивекторная матричная ракетная двигательная система с цифровым управлением величиной и направлением тяги двигательных ячеек для малоразмерных космических аппаратов / Линьков В.А., Гусев С.И., Колесников С.В., Линьков Ю.В., Линьков П.В., Таганов А И.).
При изготовлении СБ могут быть использованы известные технологии изготовления гибких солнечных тонкопленочных батарей, выполненных на базе гибкой подложки с нанесенными тонкопленочными фотогальваническими элементами, изготовленными, по меньшей мере, из аморфного кремния (a-Si), теллурида кадмия (CdTe), арсенида галлия (GaAs) (Patent US 9758260 В2, Sep.12, 2017, B64G 1/22, B64G 1/10, LOW volume MICRO SATELLITE WITH ELEXIBLE WINDED PANELS EXPANDABLE AFTER LAUNCH).
Устройство работает следующим образом: после доставки БКА в точку либрации включаются первый 7, второй 8, третий 9, четвертый 10 линейные шаговые двигатели, осуществляющие выдвижение первой 11, второй 12, третей 13, четвертой 14 телескопических штанг, отводящие первый 3, второй 4, третий 5, четвертый 6 ММРД с волнообразной цилиндрической поверхностью от торцов первого 1 и второго 2 цилиндрообразных корпусов. Первый 21 и второй 22 прижимные линейные шаговые двигатели отводят цилиндрический термоэлемент 23 от цилиндрообразного корпуса 2 (Фиг. 4). Одновременно включаются первый 15, второй 16, третий 17, четвертый 18 дискообразные сканирующие лазерные дальномеры, работающие на выделенных длинах волн λ1, λ2, λ3, λ4, для исключения влияния помех от активных или пассивных источников. После проверки работоспособности первого 15, второго 16, третьего 17, четвертого 18 дискообразных сканирующих лазерных дальномеров включаются первый 3, второй 4, третий 5, четвертый 6 ММРД с волнообразными цилиндрическими поверхностями, которые создают вращение первого 1 и второго 2 цилиндрообразных корпусов, разматывая свернутую в рулон гибкую диэлектрическую ленточную подложку 26 СБ, с одновременным удалением одного цилиндрообразного корпуса от другого, растягивая полотно СБ в противоположные стороны для исключения провисания (Фиг. 8). После развертывания на требуемую длину (Фиг. 9) гибкой диэлектрической ленточной подложки 26 с тонкопленочными солнечными фотоэлементами 27 БКА переходит в режим ориентации и слежения за Солнцем. Поворот плоскостей гибкой диэлектрической ленточной подложки в направлении Солнца и одновременное оптимальное натяжение их осуществляется с помощью первого 3, второго 4 и третьего 5. четвертого 6 ММРД с волнообразными цилиндрическими поверхностями, осуществляющие сближение или удаление, или изменение угла наклона, соответственно, первого 1 или второго 2 цилиндрообразных корпусов. Согласно коду координат Солнца, полученных от солнечного датчика 36 и информации, поступающей с первого 15, третьего 17 и второго 16, четвертого 18 дискообразных сканирующих лазерных дальномеров о расстоянии и углах осей между первым 1 и вторым 2 цилиндрообразными корпусами, осуществляются синхронные угловые повороты первого 1 и второго 2 цилиндрообразных корпусов, без изменения расстояния между ними (Фиг. 9). На гибкой диэлектрической ленточной подложки 26, кроме тонкопленочных солнечных фотоэлементов 27 и соединяющих их силовых шин 28, также, нанесены коллинеарная антенна 43 и проводной двунаправленный канал связи в виде информационной шины 29 для обмена информацией между первым 38 и вторым 39 контроллерами.
Для втягивания пылеобразных структур, состоящих из нанообъектов, на гибкой диэлектрической подложке 26 размещены высоковольтные шины 30 и 31, соединенные с пленочными электродами 32 (Фиг. 3), расположенными под жесткими диэлектрическими микроподложками 34, на которых осаждаются противоположно заряженные нанообъекты, накапливаемые на дне микроконтейнера 35. Электрический ток, выработанный тонкопленочными солнечными фотоэлементами 27, поступает на плоские катушки 33, создающие магнитное поле для втягивания (забора) нанообъектов с магнитными свойствами, а также магнитных наночастиц в сочетании с нейтрально заряженными структурами (например, ферромагнитные наносферы, в порах которых расположены замерзшие коллоидные растворы). Электрический ток, выработанный тонкопленочными солнечными фотоэлементами 27, также поступает на входы первого 40 и второго 41 стабилизаторов напряжения, которые выдают стабилизированные напряжения для питания высоковольтного источника питания 42 и приемопередатчика 44, для зарядки аккумуляторов первого 38 и второго 39 контроллеров и обеспечения электропитанием всех датчиков и двигателей. Высоковольтное напряжение с источника высоковольтного питания 42 подается на высоковольтные шины с положительной 30 и отрицательной 31 полярностью, расположенные на гибкой подложке 26 для создания притягивающих электрических полей на дне каждого микроконтейнера 35.
По мере сканирования облачных структур происходит последовательная герметизация микроконтейнеров 35. Герметизация собранных нанообъектов происходит следующим образом. Цилиндрический термоэлемент 23 с помощью первого 21 и второго 22 прижимных линейных шаговых двигателей, работающих синхронно, прижимается параллельно к второму цилиндрическому корпусу 2, вторым 39 контроллером включается режим нагрева цилиндрического термоэлемента 23 и через герметизирующею пленку 25 (температура плавления которой ваше температуры плавления термоплавкого клея) нагревает микрогранулы термоплавкого клея 45 (Фиг. 3), напыленные на верхней части боковых стенок микроконтейнеров 35. В результате нагрева микрогранулы термоплавкого клея 45 плавятся, приобретая адгезионные свойства, склеивают поверхность микроконтейнеров 35 с поверхностью герметизирующей пленки 25 (Фиг. 5). Одновременно первый 19 и второй 20 плоские шаговые двигатели поворачивают цилиндрический термоэлемент 23 вокруг оси второго цилиндрообразного корпуса 2 на определенный угол и за определенный временной интервал, определяемые программой второго контроллера 39 для герметизации одной или нескольких линеек микроконтейнеров 35. После завершения цикла сегментной герметизации (сегментное термосклеивание с использованием температуры и давления) первый 19 и второй 20 плоские шаговые двигатели переводят цилиндрический термоэлемент 23 в исходное угловое положение, а первый 21 и второй 22 прижимные линейные шаговые двигатели отводят цилиндрический термоэлемент 23 от второго 2 цилиндрообразного корпуса (Фиг. 4) для подмотки гибкой диэлектрической ленточной подложки 26 и начала герметизации следующих микроконтейнеров 35.
На Фиг. 7 - Фиг. 8 - схематично поясняются этапы развертывания БКА. На Фиг. 9 - этап сканирования окрестности точки либрации сбор и герметизация собранных нанообъектов. На Фиг. 10 - этап свертывание БКА. Фиг. 7, первый этап - тестирование дальномеров и электронного оборудования. Фиг. 8, второй этап - выдвижение двигателей и ориентация положения БКА на Солнце. Фиг. 9, третий этап - развертывание гибкой подложки с размещенными фотоэлементами и микроконтейнерами для забора внеземных нанообъектов и перемещение БКА по окрестности точки либрации, а также сбор нанообъектов за счет притяжения их к поверхностям жестких диэлектрических микроподложек, расположенных в открытых микроконтейнерах, и последующая герметизация открытых частей микроконтейнеров с собранным наноматериалом запайкой герметизирующей пленкой. Схематически многослойное сканируемое пылеобразное облако изображено на заднем плане. Фиг. 10, четвертый этап - полное свертывание гибкой подложки в рулон и переход системы в энергоэкономичный режим ожидания транспортного космического аппарата для перемещения собранных нанообъектов в исследовательскую лабораторию электронной и зондовой микроскопии, расположенной на Земле или на орбитальной станции в космосе.
Предложенная конструкция бинарного космического аппарата для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в Солнечную систему, позволяет: развернуть и свернуть поисковое гибкое ленточное полотно большой площади между двумя растягивающими ее маневровыми ММРД с волнообразной цилиндрической поверхностью. Осуществить сочетание сканирования по поисковой траектории исследуемой пылеоблачной структуры с одновременным раздельным сбором нанообъектов с магнитными и немагнитными свойствами, попавшими в зону притяжения электрических и магнитных полей. Реализовать конвейерную герметизацию собранных на жесткие микроподложки нанообъектов, разделенных по классам и размещенных в соответствующих микроконтейнерах, в сочетании со свертыванием в компактный, транспортируемый рулон гибкого ленточного полотна, что ранее невозможно было осуществить с помощью известных конструкций малоразмерных космических аппаратов.

Claims (1)

  1. Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в Солнечную систему, содержащий два корпуса, гибкую подложку с тонкопленочными солнечными фотоэлементами, которая выполнена в виде диэлектрической ленты с возможностью свертывания в рулон, с нанесенными информационными, силовыми, высоковольтными шинами, коллинеарной антенной, микроконтейнерами, в каждом из которых размещены пленочные электроды и жесткие диэлектрические микроподложки, также содержит мультивекторные матричные ракетные двигатели, выдвижные телескопические штанги, линейные шаговые двигатели, термоэлемент, герметизирующую пленку, солнечный датчик, два контроллера, два стабилизатора напряжения, приемопередатчик, отличающийся тем, что содержит четыре мультивекторных матричных ракетных двигателя с волнообразными цилиндрическими поверхностями, четыре линейных шаговых двигателя, четыре выдвижные телескопические штанги, четыре дискообразных сканирующих лазерных дальномера, первый и второй плоские шаговые двигатели, первый и второй прижимные линейные шаговые двигатели, термоэлемент, выполненный цилиндрическим, П-образную штангу, выдвижную П-образную штангу, микрогранулы термоплавкого клея, нанесенные на края микроконтейеров, первый и второй корпуса выполнены цилиндрообразными, на их торцах закреплены первый, второй, третий, четвертый дискообразные сканирующие лазерные дальномеры, на торцах третьего и четвертого из которых размещены статоры первого и второго плоских шаговых двигателей, поворачивающиеся роторы которых соединены с первым и вторым прижимными линейными шаговыми двигателями, а через центральные сквозные отверстия первого и второго плоских шаговых двигателей проходят выдвижные телескопические штанги, соединенные с мультивекторными матричными ракетными двигателями с волнообразными цилиндрическими поверхностями, соединенные с цилиндрообразными корпусами, к боковым стенкам которых механически крепятся края герметизирующей пленки, наложенной с теневой стороны на полотно гибкой диэлектрической ленточной подложки, электропроводящие силовые шины которой соединены с тонкопленочными солнечными фотоэлементами и плоскими электромагнитными катушками, расположенными под жесткими диэлектрическими микроподложками, в центральных микроконтейнерах высоковольтные шины соединены с пленочными электродами, расположенными в соседних от центральных микроконтейнерах, а информационная шина соединяет первый и второй контроллеры, размещенные в первом и втором цилиндрообразных корпусах, к торцам первого из которых прикреплена П-образная штанга с расположенными по середине солнечным датчиком, а второй корпус через первый и второй прижимные линейные шаговые двигатели, управляемые вторым контроллером, соединены с выдвижной П-образной штангой, проходящей через сквозное отверстие, расположенное по оси симметрии цилиндрического термоэлемента, для равномерного давления на запаиваемые герметизирующей пленкой микроконтейнеры с собранными нанообъектами.
RU2021112468U 2021-04-27 2021-04-27 Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему RU206424U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021112468U RU206424U1 (ru) 2021-04-27 2021-04-27 Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021112468U RU206424U1 (ru) 2021-04-27 2021-04-27 Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему

Publications (1)

Publication Number Publication Date
RU206424U1 true RU206424U1 (ru) 2021-09-13

Family

ID=77746264

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021112468U RU206424U1 (ru) 2021-04-27 2021-04-27 Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему

Country Status (1)

Country Link
RU (1) RU206424U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU211253U1 (ru) * 2022-02-07 2022-05-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска, сбора и анализа внеземных флуоресцирующих нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2568898C1 (ru) * 2014-08-06 2015-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) Способ разделения полидисперсных частиц в микронном и наноразмерном диапазоне и устройство для его реализации
US9758260B2 (en) * 2012-08-08 2017-09-12 Effective Space Solutions R&D Ltd Low volume micro satellite with flexible winded panels expandable after launch
RU2691686C1 (ru) * 2018-04-09 2019-06-17 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации
RU202757U1 (ru) * 2020-10-26 2021-03-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9758260B2 (en) * 2012-08-08 2017-09-12 Effective Space Solutions R&D Ltd Low volume micro satellite with flexible winded panels expandable after launch
RU2568898C1 (ru) * 2014-08-06 2015-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) Способ разделения полидисперсных частиц в микронном и наноразмерном диапазоне и устройство для его реализации
RU2691686C1 (ru) * 2018-04-09 2019-06-17 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации
RU202757U1 (ru) * 2020-10-26 2021-03-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU211253U1 (ru) * 2022-02-07 2022-05-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Бинарный космический аппарат для поиска, сбора и анализа внеземных флуоресцирующих нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему

Similar Documents

Publication Publication Date Title
RU202757U1 (ru) Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации
EP3325347B1 (en) Large-area structures for compact packaging
RU2744277C1 (ru) Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек в окрестностях точек либрации
RU198984U1 (ru) Бинарный космический аппарат с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями
RU190778U1 (ru) Бинарный космический аппарат с реконфигурируемой антенной, совмещенной с гибкой ленточной солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями
RU206424U1 (ru) Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
RU206426U1 (ru) Бинарный космический аппарат для поиска и сбора внеземных нанообъектов с магнитными свойствами в окрестностях точек либрации
RU2761486C1 (ru) Бинарный космический аппарат для поиска и сбора внеземных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
WO2018195383A1 (en) Two-dimensional material with electroactivity and photosensitivity
RU2761686C1 (ru) Бинарный космический аппарат для поиска и сбора внеземных нанообъектов с магнитными свойствами в окрестностях точек либрации
RU2716728C1 (ru) Бинарный малоразмерный космический аппарат с реконфигурируемой антенной, совмещенной с гибкой развертываемой ленточной солнечной батареей
Arya Packaging and deployment of large planar spacecraft structures
RU207630U1 (ru) Бинарный космический аппарат для поиска и сбора внеземных излучающих нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
US10637391B2 (en) Autonomous solar tracking in flat-plate photovoltaic panels using kirigami-inspired microstructures
RU202750U1 (ru) Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек и апконвертирующих наночастиц в окрестностях точек либрации
RU2772290C1 (ru) Бинарный космический аппарат для поиска и сбора внеземных излучающих нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
RU2749431C1 (ru) Бинарный космический аппарат для поиска и сбора внеземных объектов со свойствами квантовых точек и апконвертирующих наночастиц в окрестностях точек либрации
RU211363U1 (ru) Бинарный космический аппарат для поиска и сбора внеземных флуоресцирующих нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
RU2798620C1 (ru) Бинарный космический аппарат для поиска и сбора внеземных низкотемпературных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
RU211253U1 (ru) Бинарный космический аппарат для поиска, сбора и анализа внеземных флуоресцирующих нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
RU200213U1 (ru) Бинарный космический аппарат со сканирующей антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями
RU217330U1 (ru) Бинарный космический аппарат для поиска и сбора внеземных низкотемпературных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
RU2797453C1 (ru) Бинарный космический аппарат для поиска и сбора внеземных криотемпературных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
RU218355U1 (ru) Бинарный космический аппарат для поиска и сбора внеземных криотемпературных нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему
RU2776624C1 (ru) Бинарный космический аппарат для поиска, сбора и анализа внеземных флуоресцирующих нанообъектов в окрестностях точек либрации планет, входящих в солнечную систему