RU2691154C1 - Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов - Google Patents

Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов Download PDF

Info

Publication number
RU2691154C1
RU2691154C1 RU2018139371A RU2018139371A RU2691154C1 RU 2691154 C1 RU2691154 C1 RU 2691154C1 RU 2018139371 A RU2018139371 A RU 2018139371A RU 2018139371 A RU2018139371 A RU 2018139371A RU 2691154 C1 RU2691154 C1 RU 2691154C1
Authority
RU
Russia
Prior art keywords
alloy
magnesium
laser
grained
corrosion
Prior art date
Application number
RU2018139371A
Other languages
English (en)
Inventor
Сергей Алексеевич Божко
Сергей Сергеевич Манохин
Елена Григорьевна Колобова
Юрий Романович Колобов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority to RU2018139371A priority Critical patent/RU2691154C1/ru
Application granted granted Critical
Publication of RU2691154C1 publication Critical patent/RU2691154C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

Изобретение относится к способу формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов , в частности ультрамелкозернистых (далее УМЗ) и крупнозернистых (далее КЗ) магниевых сплавов системы Mg-Al. Способ включает подготовку поверхности УМЗ деформируемого магниевого сплава путем шлифовки и полировки заготовки до зеркального блеска. Подготовку поверхности крупнозернистого сплава осуществляют путем проведения предварительного отжига при температуре не ниже 400°С в течение 1,5 часов с последующей закалкой, после чего заготовку шлифуют и полируют до зеркального блеска. Далее проводят облучение поверхности наносекундным импульсным лазерным излучением в режиме сканирования с длиной волны лазера 1000 нм, длительностью лазерного импульса 100 нс, частотой лазерных импульсов 4000 импульсов, при мощности в 520 Вт, перекрытии пятна облучения на 90%, со скоростью сканирования 0,05 м/с и шагом сканирования 5 мкм. Технический результат состоит в повышении коррозионной стойкости сплава в среде, близкой к физиологической среде человека. 3 ил., 1 табл., 3 пр.

Description

Способ относится к области физического материаловедения, в частности к обработке поверхности ультрамелкозернистых (далее УМЗ) и крупнозернистых (далее КЗ) магниевых сплавов системы Mg-Al методами высокоэнергетических лазерных импульсов наносекундной длительности (далее НЛО) и может быть использован для обработки медицинских магниевых деформируемых сплавов, работающих в условиях непрерывной биорезорбции в живом организме. Результатом применения способа является формирование защитного модифицированного слоя на поверхности медицинского магниевого деформируемого сплава, повышающего коррозионную стойкость сплава в среде, близкой к физиологической среде человека.
Известен способ получения коррозионно-устойчивого поверхностного слоя на поверхности магниевых сплавов с использованием комбинации лазерного излучения и нанесения промежуточного покрытия методом термического напыления (CN106835129A, от 13.06.2017), в котором конечные изделия получают путем последовательной обработки лазером поверхности заготовки, последующим термическим напылением и завершающим этапом повторной лазерной обработки. Способ позволяет получать прутки изделия с повышенной коррозионной стойкостью. Недостатками аналога является использование сложного процесса обработки, необходимость проведения повторной обработки, а также метода нанесения покрытия, включающего прогрев заготовки, что может негативно сказаться на ее внутренней структуре.
Также известен аналог (CN1986841, от 06.27.2007), суть которого заключается в формировании мощных ударных воздействий на приповерхностные слои магниевых сплавов в результате воздействия лазерного луча, проходящего через оптически проницаемую среду. Такое воздействие позволяет значительно модифицировать структуру приповерхностных слоев заготовки, повышая тем самым ее коррозионную стойкость. Недостатком аналога является использование специально наносимых на поверхность покрытий, удерживающих слой воды в контакте с поверхностью, необходимый для дополнительной фокусировки лазерного луча.
Еще одним аналогичным решением является метод, описанный в патенте JP2010240717 (от 28.10.2010), который заключается в использовании для обработки поверхности импульсного лазерного облучения с большими энергиями в области 30 000 Дж/м2. Способ позволяет повысить коррозионную стойкость поверхности за счет изменения химических связей и образования защитных пленок. Недостатком метода является двухэтапная обработка и облучение поверхности большим числом импульсов более 7000 импульсов на единичную площадь, что не может не приводить к значительной проработке структуры в глубину заготовки и нежелательной деградации внутренней структуры заготовки.
За прототип взято техническое решение CN107164711 (от 06.27.2007), включающее предварительную подготовку поверхности магниевого сплава с помощью пескоструйной обработки для удаления слоя окисления и удаления ацетоном следов от масла, короткоимпульсное наносекундное лазерное облучение магниевых сплавов при следующих параметрах лазера: длина волны лазера составляет от 193 до 1070 нм, длительность лазерного импульса составляет от 50 нс до 100 мкс, мощность лазера составляет от 10 Вт до 500 Вт, частота лазерных импульсов составляет от 1 кГц до 1 МГц, т.е. от 1 тыс до 1 млн количества импульсов секунду, коэффициент перекрытия пятна сканирования составляет 20% - 80% , а скорость составляет от 20 мм / с до 3 м / с. После обработки лазером производят повторную очистку металла безводным спиртом.
Особенность способа заключается в формировании переплавленного слоя на поверхности крупнозернистого сплава и применении сканирующей системы наносекундной лазерной импульсной установки. При этом настройки параметров лазерного луча позволяют контролировать степень проплавки поверхности, что позволяет сохранить структурное состояние матрицы подложки. Способ позволяет получать защитный переплавленный слой на поверхности крупнокристаллических магниевых сплавов различного состава, который обладает повышенной коррозионной устойчивостью.
Недостатком прототипа является необходимость использования дополнительных процедур очистки поверхности, а также применимость метода только для крупнозернистых сплавов с размером зерна порядка 100 мкм. Сформированный переплавленный слой, как было представлено в описании изобретения (фиг.3), имеет микроструктурные параметры, а, следовательно, формирование таких слоев на ультрамелкозернистых сплавах может оказаться неэффективным из-за близости структурных параметров подложки и формируемого слоя. Кроме того, общеизвестно, что с уменьшением размера зерна сплавы становятся менее устойчивыми к перегревам и значения допустимых критических температур прогрева в ходе лазерного облучения необходимо снижать, а значит для ультрамелкозернистых материалов предложенный в прототипе метод может быть неприменим или менее эффективен, т.к. переплавка поверхностного слоя неизбежно приведет к деградации структуры подложки.
Общим недостатком известных способов является отсутствие указания на возможность использования обработанных магниевых сплавов в медицине.
Задачей предлагаемого изобретения является расширение ассортимента способов повышения коррозионной стойкости деформируемых сплавов магния системы Mg-Al, используемых для изготовления медицинских изделий.
Технический результат - повышение коррозионной стойкости путем формирования модифицированного сублимированного слоя на поверхности УМЗ и КЗ деформируемого магниевого сплава системы Mg-Al, что обеспечивает снижение скорости растворения, определяемой как убыль массы в г/сут, в 3-3,5 раза для УМЗ сплава и более чем в 10 раз для КЗ сплава.
Заявленный технический результат достигается предложенным способом, включающим подготовку поверхности деформируемого магниевого сплава и последующее облучение поверхности наносекундным импульсным лазерным излучением с длиной волны лазера 1000 нм, длительностью лазерного импульса 100 нс, частотой лазерных импульсов 4000 импульсов в секунду, в который внесены следующие новые признаки:
- подготовку поверхности ультрамелкозернистого сплава осуществляют путем шлифовки и полировки заготовки до зеркального блеска;
- подготовку поверхности крупнозернистого сплава для растворения крупных выделений бетта-фазы и фиксации твердого раствора сплава осуществляют путем проведения предварительного отжига при температуре не ниже 400°С в течение 1,5 часов с последующей закалкой, после чего заготовку шлифуют и полируют до зеркального блеска;
- лазерное облучение проводят при мощности в 520 Вт, перекрытии пятна облучения на 90%, со скоростью сканирования 0,05 м/с и шагом сканирования 5 мкм.
Предлагаемый способ позволяет сформировать на поверхности магниевого сплава системы Mg-Al свободное от выделений вторичной фазы покрытие – сублимированный слой с высокой химической однородностью и толщиной не более 10-15 мкм, который образуется на поверхности сплава, минуя стадию переплавки, обеспечивая таким образом практически нулевое температурное воздействие на подложку. Это обеспечивает изменение механизмов развития коррозии на поверхности сплава в среде, близкой к физиологической среде человека за счет повышения однородности элементного состава в объеме формируемого слоя, т.е. гомогенизации распределения химических элементов в сформированном слое, что приводит к снижению развития гальванической коррозии из-за удаления центров неоднородности. При этом, формируемая предлагаемым способом структура поверхности сплава в КЗ и УМЗ состояниях идентична, т.к. лазерное облучение не чувствительно к исходной структуре в таких масштабах.
Предлагаемое изобретение иллюстрируется изображениями, приведенными на фигурах 1-3.
На фигуре 1 изображена структура поверхности сплава МА5:
А - структура поверхности КЗ сплава МА5 до облучения
Б - структура поверхности КЗ сплава МА5 после облучения
В - структура поверхности УМЗ сплава МА5 до облучения
Г - структура поверхности УМЗ сплава МА5 после облучения
На фигуре 2 изображена типичная структура поверхности сплава МА5, полученная независимо от размера зерна после коррозионных испытаний в растворе, имитирующем биологическую среду:
А - вид поверхности сплава после коррозии без лазерной обработки;
Б – вид поверхности сплава после коррозии, где в нижней части снимка структура поверхности сплава после облучения, а в верхней части снимка структура поверхности сплава без облучения.
На фигуре 3 изображена графическая зависимость убыли массы на примере сплава МА5 после облучения лазером и растворения в растворе, имитирующем биологическую среду, где КЗ – сплав МА5 в крупнозернистом состоянии без лазерного облучения; КЗ+НЛО – сплав МА 5 в крупнозернистом состоянии после наносекундного лазерного облучения; УМЗ – сплав МА5 в ультрамелкозернистом состоянии без облучения; УМЗ+НЛО – сплав МА5 в ультрамелкозернистом состоянии после наносекундного лазерного облучения.
Пример реализации предлагаемого способа.
Шлифовку и полировку заготовки сплава МА5 до зеркального блеска осуществляют стандартным методом с использованием подходящих шлифовальных бумаг или абразивных кругов с зернистостью не ниже 1000, а также специализированных суспензий и полирующих смесей (алмазные пасты, суспензии на основе алмазного порошка или оксида алюминия и т.п.) Для достижения зеркальной поверхности также могут применяться иные методы обработки поверхности, не повреждающие внутренней структуры сплава. Например, для крупных заготовок можно использовать химическую полировку в сочетании с пескоструйной обработкой.
Облучение проводят в установке, способной выдавать лазерное излучение мощностью более 500 Вт и оснащенной системой разверстки пучка и его настройки, для осуществления сканирующего режима.
Оптимальные параметры лазерного излучения, необходимые для достижения заявленного результата представлены в таблице, и могут быть достигнуты на лазерных излучателях различной конструкции.
Figure 00000001
Примеры конкретного выполнения.
Пример 1
В качестве экспериментального материала как представитель наименее коррозионно-устойчивого сплава в группе деформируемых сплавов выбран УМЗ сплав магния МА5 с размером зерна менее 2 мкм.
Первым этапом поверхность заготовки с ультрамелкозернистой структурой подготавливают путем шлифовки и последующей полировки с использованием абразивных кругов и специализированных суспензий, для придания зеркальности поверхности.
Далее заготовку помещают на предметный столик лазерной установки и проводят облучение в режиме сканирования при мощности 520 Вт, длине волны лазера 1000 нм, длительности лазерного импульса 100 нс, частоте лазерных импульсов 4000 импульсов в секунду, скорости сканирования 0,05 м/с, с шагом сканирования 5 мкм и перекрытием пятна 90%.
Пример 2.
В качестве экспериментального крупнозернистого материала взята заготовка стандартного сплава МА5 марки МГ95, соответствующая стандарту ГОСТ 804 – 93, обработка была проведена в соответствии с примером 1, но перед обработкой заготовка была подвергнута отжигу при температуре не ниже 400°С в течение 1,5 часов с последующей закалкой. Предварительный отжиг необходим для растворения крупных выделений бетта-фазы и фиксации твердого раствора сплава, что позволяет повысить качество последующей обработки по предложенному способу и снизить скорость коррозии заготовки КЗ сплава магния МА5 более чем в 10 раз с 1,33 мг/сут. до 0,07 мг/сут. (фиг. 3).
Пример 3.
Испытания на коррозионную стойкость облученных и необлученных образцов УМЗ и КЗ магниевого сплава МА5 проводили в 0.9% растворе хлорида натрия с выдержкой в течение 30 суток при температуре 37°С. Через каждые 5 суток выдержки образцы промывали в дистиллированной воде, просушивали при температуре 80°С в течение 1 часа и взвешивали. Затем образцы погружали обратно в раствор до следующего извлечения.
Скорость коррозии заготовки УМЗ сплава магния МА5, обработанной способом по примеру 1, снижается более чем в 3 раза с 0,0035 мг/сут. до 0,0010 мг/сут. Скорость коррозии заготовки КЗ сплава магния МА5, обработанной способом по примеру 2, снижается более чем в 10 раз с 1,33 мг/сут. до 0,07 мг/сут. (фиг. 3). Что подтверждает достижение заявленного технического результата - формирование модифицированного сублимированного слоя высокой однородности по составу на поверхности сплава (фигуры 1 Б и 1 Г) после обработки заготовки сплава системы Mg-Al, минуя стадию переплавки, обеспечивая таким образом практически нулевое температурное воздействие на подложку. Предлагаемый способ может быть использован применительно к любому УМЗ или КЗ магниевому сплаву системы Mg-Al, так как лазерное излучение, используемое в данном способе, нечувствительно к элементному составу поверхности.

Claims (1)

  1. Способ формирования коррозионно-устойчивого слоя на поверхности магниевого деформируемого сплава системы Mg-Al, включающий подготовку поверхности деформируемого магниевого сплава и последующее облучение поверхности наносекундным импульсным лазерным излучением в режиме сканирования с длиной волны излучения 1000 нм, длительностью лазерного импульса 100 нс и частотой лазерных импульсов 4000 импульсов, отличающийся тем, что облучение поверхности сплава осуществляют при мощности 520 Вт с перекрытием пятна облучения на 90%, скоростью сканирования 0,05 м/с и шагом сканирования 5 мкм, при этом подготовку поверхности ультрамелкозернистого магниевого деформируемого сплава осуществляют путем шлифовки и полировки заготовки до зеркального блеска, а подготовку поверхности крупнозернистого магниевого деформируемого сплава осуществляют путем проведения предварительного отжига при температуре не ниже 400°С в течение 1,5 часов с последующей закалкой, после чего заготовку шлифуют и полируют до зеркального блеска.
RU2018139371A 2018-11-08 2018-11-08 Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов RU2691154C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018139371A RU2691154C1 (ru) 2018-11-08 2018-11-08 Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018139371A RU2691154C1 (ru) 2018-11-08 2018-11-08 Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов

Publications (1)

Publication Number Publication Date
RU2691154C1 true RU2691154C1 (ru) 2019-06-11

Family

ID=66947707

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018139371A RU2691154C1 (ru) 2018-11-08 2018-11-08 Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов

Country Status (1)

Country Link
RU (1) RU2691154C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138283A (ja) * 1997-11-10 1999-05-25 Amada Co Ltd レーザによるマグネシュウムおよびマグネシュウム合金の加工方法
EP0956378B1 (en) * 1996-01-15 2003-04-02 The University Of Tennessee Research Corporation Laser induced improvement of surfaces
CN1986841A (zh) * 2006-11-03 2007-06-27 江苏大学 基于激光冲击强化技术提高镁合金耐腐蚀性的方法
RU2503740C2 (ru) * 2011-10-18 2014-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения композиционных покрытий методом коаксиальной лазерной оплавки
WO2014104902A1 (en) * 2012-12-31 2014-07-03 Plasma System S.A. Method for regenerating and/or increasing the durability of a mill roll
CN107164711A (zh) * 2017-04-14 2017-09-15 北京航空航天大学 一种短脉冲激光提高镁合金表面耐腐蚀性的方法
RU2016144116A (ru) * 2016-11-09 2018-05-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" СПОСОБ ВЫЯВЛЕНИЯ ПОВРЕЖДЕНИЙ ПРИ ЛАЗЕРНОЙ ОБРАБОТКЕ ПОВЕРХНОСТИ СПЛАВОВ СИСТЕМЫ Al-Mg

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0956378B1 (en) * 1996-01-15 2003-04-02 The University Of Tennessee Research Corporation Laser induced improvement of surfaces
JPH11138283A (ja) * 1997-11-10 1999-05-25 Amada Co Ltd レーザによるマグネシュウムおよびマグネシュウム合金の加工方法
CN1986841A (zh) * 2006-11-03 2007-06-27 江苏大学 基于激光冲击强化技术提高镁合金耐腐蚀性的方法
RU2503740C2 (ru) * 2011-10-18 2014-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения композиционных покрытий методом коаксиальной лазерной оплавки
WO2014104902A1 (en) * 2012-12-31 2014-07-03 Plasma System S.A. Method for regenerating and/or increasing the durability of a mill roll
RU2016144116A (ru) * 2016-11-09 2018-05-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" СПОСОБ ВЫЯВЛЕНИЯ ПОВРЕЖДЕНИЙ ПРИ ЛАЗЕРНОЙ ОБРАБОТКЕ ПОВЕРХНОСТИ СПЛАВОВ СИСТЕМЫ Al-Mg
CN107164711A (zh) * 2017-04-14 2017-09-15 北京航空航天大学 一种短脉冲激光提高镁合金表面耐腐蚀性的方法

Similar Documents

Publication Publication Date Title
Du Plessis et al. Pore closure effect of laser shock peening of additively manufactured AlSi10Mg
Silva et al. Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium
Zhang et al. Influence of heat treatment on corrosion behavior of rare earth element Sc modified Al-Mg alloy processed by selective laser melting
Jia et al. Effect of laser shock peening on the mechanical properties of a near-α titanium alloy
Eshawish et al. Microstructure and mechanical properties of Ti-6Al-4V manufactured by selective laser melting after stress relieving, hot isostatic pressing treatment, and post-heat treatment
Walker et al. The effect of large-area pulsed electron beam melting on the corrosion and microstructure of a Ti6Al4V alloy
Rotshtein et al. Surface modification and alloying of aluminum and titanium alloys with low-energy, high-current electron beams
Zhou et al. Microstructure, mechanical performance, and corrosion behavior of additively manufactured aluminum alloy 5083 with 0.7 and 1.0 wt% Zr addition
Karimzadeh et al. Effect of heat treatment on corrosion behavior of Ti–6Al–4V alloy weldments
Karthik et al. Effect of multiple laser shock peening on microstructure, crystallographic texture and pitting corrosion of Aluminum-Lithium alloy 2060-T8
Shepard et al. Introduction of compressive residual stresses in Ti-6Al-4V simulated airfoils via laser shock processing
Mahmoodian et al. Severe plastic deformation of commercial pure titanium (CP-Ti) for biomedical applications: a brief review
RU2691154C1 (ru) Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов
Maleki et al. Assessing the efficacy of several impact-based mechanical techniques on fatigue behavior of additive manufactured AlSi10Mg
Soundarapandiyan et al. Effect of postprocessing thermal treatments on electron‐beam powder bed–fused Ti6Al4V
RU2281194C1 (ru) Способ восстановления эксплуатационных свойств деталей машин
Chakraborty Banerjee et al. Influence of laser processing parameters on microstructure and corrosion kinetics of laser-treated ZE41 magnesium alloy
Nikulin et al. Resistance of alloy Zr–2.5% Nb with ultrafine-grain structure to stress corrosion cracking
Mohammed et al. Influence of thermomechanical processing on biomechanical compatibility and electrochemical behavior of new near beta alloy, Ti-20.6 Nb-13.6 Zr-0.5 V
RU2620428C1 (ru) Способ получения покрытия на имплантатах из титана и его сплавов
RU2622466C1 (ru) Способ антикоррозионной обработки поверхности алюминия или алюминиевых сплавов
Meisner et al. Effect of nonmetallic and intermetallic inclusions on crater formation on the surface of TiNi alloys under the electron-beam impact
McClintock et al. Hardness and stability of a carburized surface layer on AISI 316L stainless steel after irradiation in a spallation neutron environment
Ahmadkhaniha et al. Effect of friction stir processing on the corrosion behavior of pure Mg
Myla et al. Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam