RU2689334C1 - Способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе консервированной крови - Google Patents

Способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе консервированной крови Download PDF

Info

Publication number
RU2689334C1
RU2689334C1 RU2017143754A RU2017143754A RU2689334C1 RU 2689334 C1 RU2689334 C1 RU 2689334C1 RU 2017143754 A RU2017143754 A RU 2017143754A RU 2017143754 A RU2017143754 A RU 2017143754A RU 2689334 C1 RU2689334 C1 RU 2689334C1
Authority
RU
Russia
Prior art keywords
cryoprotector
ccs
ccc
values
determining
Prior art date
Application number
RU2017143754A
Other languages
English (en)
Inventor
Андрей Александрович Костяев
Надежда Станиславовна Федоровская
Сергей Вячеславович Утемов
Елена Александровна Перфилова
Константин Александрович Ветошкин
Филипп Сергеевич Шерстнев
Original Assignee
Федеральное государственное бюджетное учреждение науки "Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки "Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства" filed Critical Федеральное государственное бюджетное учреждение науки "Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства"
Priority to RU2017143754A priority Critical patent/RU2689334C1/ru
Application granted granted Critical
Publication of RU2689334C1 publication Critical patent/RU2689334C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Abstract

Изобретение относится к медицине, а именно к лабораторной диагностике. Способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе (ЛКФ) консервированной крови заключается в том, что у пациента до начала компонентной трансфузионной терапии эксфузируют порцию свежей аутокрови, стабилизируют раствором цитрата натрия, делят в пробирки на равные части, в контрольной пробе (КП) добавки криопротекторов исключают, в опытные пробы (ОП) добавляют по одной равной дозе тестируемых криопротекторов, перемешивают при плюс 37°С в течение 4 ч, капли приготовленных биологических жидкостей из ОП и КП наносят в объеме 4 мкл на предметные стекла, делают 2-3 мазка, высушивают на воздухе, фиксируют в 10% спирт-формалиновой смеси, лейкоциты окрашивают на кислую фосфатазу по методике азосочетания Берстона в модификации Ю.Ф. Руденса, И.М. Буйкиса, микроскопируют в проходящем свете, производят подсчет содержания ЛКФ в сегментоядерных (с/я) нейтрофилах и лимфоцитах с подсчетом среднего цитохимического коэффициента (СЦК); при совпадении значений показателей СЦК ОП и СЦК КП тестируемый криопротектор оценивают как оптимальный для конкретного больного и пригодным к использованию; при значениях СЦК ОП, отличных от СЦК КП, делают заключение как о непригодном к использованию криопротекторе. 1 табл., 3 пр.

Description

Изобретение относится к медицине, а именно к лабораторной диагностике, и может найти применение в онкологической, гематологической, хирургической практике и криомедицине с целью определения персонифицированного (соотносящегося с конкретным человеком) криопротектора для живых клеток по содержанию лейкоцитарной кислой фасфатазы (ЛКФ)* (* ЛКФ включает ряд изоферментов, которые ускоряют распад органических эфиров фосфорной кислоты в кислой среде.) консервированной крови и предупреждения развития посттрансфузионных осложнений протекторного генеза. Для осуществления способа у пациента до начала компонентной трансфузионной терапии эксфузируют порцию свежей ауто-крови, стабилизируют раствором цитрата натрия, делят в пробирки на равные части, в контрольной пробе (КП) добавки криопротекторов исключают, в опытные пробы (ОП) добавляют по одной равной дозе тестируемых криопротекторов, перемешивают при плюс 37°С в течение 4 ч, капли приготовленных биологических жидкостей (ПБЖ) из ОП и КП наносят в объеме 4 мкл на предметные стекла, делают 2-3 мазка, высушивают на воздухе, фиксируют в 10% спирт-формалиновой смеси 10 мин, промывают в проточной воде 1-2 мин и высушивают, готовят рабочий раствор с рН 5,2-5,4; инкубируют в рабочем растворе вертикально в термостате при температуре плюс 37°С 2-3 часа, стекла промывают в проточной воде, высушивают, лейкоциты окрашивают на кислую фосфатазу по методике азосочетания Берстона в модификации Ю.Ф. Руденса, И.М. Буйкиса**, микроскопируют в проходящем свете, производят подсчет содержания ЛКФ в сегментоядерных (с/я) нейтрофилах и лимфоцитах с подсчетом среднего цитохимического коэффициента (СЦК) по Кэплоу Л. (1955) в модификации Астальди и Верга (1957)** (** Определение уровня ЛКФ в крови имеет важное значение для диагностики состояния здоровья (Березов Т.Т., Коровкин Б.Ф. Биологическая химия: Учебник. 3-е изд., перераб. и доп. - Учеб. лит. Для студентов мед. вузов. - М.: Медицина, 1998. - С. 704).); при совпадении значений показателей СЦК ОП и СЦК КП тестируемый криопротектор оценивают как оптимальный для конкретного больного и пригодным к использованию; при значениях СЦК ОП, отличных от СЦК КП, делают заключение как о непригодном к использованию криопротекторе. Способ прост и доступен врачу по цитохимическим методам диагностики.
Уровень техники.
В современной клинической медицине постгрансфузионные реакции и осложнения рассматривают как один из универсальных механизмов патогенеза различных заболеваний, характеризующихся накоплением в тканях организма избытка токсических продуктов клеточного реагирования, маркерами которых служат качественные и полуколичественные характеристики определенных цитохимических ферментативных реакций в лейкоцитах крови до и после смешивания с криопротекторами. Эти процессы могут развиваться как по типу яркой реакции «на кончике иглы», так и скрытно развивающихся симптомов посттрансфузионных осложнений (Цитохимия замороженной клетки / Обозная Э.И., Пушкарь Н.С., Маркова О.П., Панков Е.Я.- Киев: Наук. Думка, 1981. - 176 с). Поэтому возникает проблема раннего выявления маркеров вредного влияния токсичных криопротекторов на организм пациентов для эффективного предупреждения посттрансфузионных осложнений протекторного генеза.
Известные методы биологического и биохимического исследования сыворотки крови (определение концентрации молекул средней массы, продуктов перекисного окисления липидов, билирубина и т.д.) имеют ряд недостатков:
- необходимость вводить криопротектор или гемоконсервант на его основе в периферическую вену больного, то есть производить инвазивную манипуляцию, которая может быть сопряжена с техническими трудностями, осложнениями технического характера или непереносимостью субъектом лекарственного препарата;
- необходимость использования лабораторных технологий и специальной биохимической лаборатории, оснащенной сложным оборудованием и реактивами, что делает анализы не всегда доступными и дорогими как для лечебно-профилактических учреждений, так и для пациентов.
Эти недостатки ограничивают количество и частоту необходимых исследований.
На основании предложенных в литературе лабораторных модификаций для оценки полноценности ядерных клеток крови на этапах низкотемпературного консервирования и прогнозирования предполагаемых результатов криогемотрансфузионной терапии широко используются технологии качественной и полуколичественной оценки цитохимических показателей активаторов жизненно важных клеточных ферментов в периферической крови доноров или больных (Березов Т.Т., Коровкин Б.Ф. Биологическая химия: Учебник. 3-е изд., перераб. и доп. - Учеб. лит. Для студентов мед. вузов. - М.: Медицина, 1998. - С. 704).
Исследованиями в уровне техники не обнаружено источников информации, раскрывающих способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе (ЛКФ) консервированной крови.
Целью изобретения является создание такого цитохимического способа, который бы позволял определить in vitro для конкретного пациента качественный криопротектор или гемоконсервант на его основе на этапе, предшествующем плановой трансфзии криоконсервированного компонента ауто-крови.
Раскрытие изобретения.
Техническим результатом изобретения является доступность, простота определения персонифицированного качественного криопротектора на доклиническом этапе криогемотрансфузионной терапии.
Технический результат в заявляемом способе определения персонифицированного качественного криопротектора осуществляется по содержанию ЛКФ в консервированной ауто-крови с помощью методики азосочетания Берстона в модификации Ю.Ф. Руденса и И.М. Буйкиса.
Новым в предлагаемом способе является то, что определение персонифицированного криопротектора проводят путем сравнительных исследований СЦК ОП на ЛКФ с 15% Гексаметиленбистетраоксиэтилмочевина (ГМБТОЭМ), 3,3% Глицерола (Гл), 10% Диметилсульфоксид (ДМСО), гемоконсервантом Тромбокриодмац (ТКД) или комбинированным гемоконсервантом на основе Инфукола, содержащего гидроксиэтилкрахмал (ГЭК), и 8% Диметилацетамид (ДМАЦ), со значениями СЦК КП. Пригодным к использованию (ПКИ) из числа тестируемых определяют криопротектор, у которого значения СЦК для с/я нейтрофилов и лимфоцитов ОП совпадают таковыми КП. Способ прост и доступен врачу клинической лабораторной диагностики.
Необходимое оборудование:
1. Предметные стекла,
2. Пробирки для крови на 20 мл с винтовой герметичной пробкой.
3. Световой микроскоп с проходящим светом,
4. Набор тест-доз различных криопротекторов или гемоконсервантов на их основе, разрешенных к клиническому применению МЗ России,
5. Система счетверенных контейнеров с интегрированным лейкоцитарным фильтром для получения лейкофильтрованных компонентов крови Leukotrap WB с пробоотборником для лабораторных исследований,
6. Набор реагентов для цитохимического определения ЛКФ.
Заявляемый способ осуществляют следующим образом. У пациента натощак до начала внутривенных трансфузий криоконсервированных компонентов крови (криогемотрансфузионной терапии) готовят в пробирках «линейку» с тест-дозами 15% ГМБТОЭМ, 3,3% глицерола, гемоконсерванта ТКД, 10% ДМСО или комбинированного гемоконсерванта на основе Инфукола, содержащего гидроксиэтилкрахмал (ГЭК), и 8% Диметилацетамида (ДМАЦ) по 1,5 мл в каждой; в пробоотборник эксфузируют 25 мл ауто-крови без консерванта, стабилизируют раствором цитрата натрия, эксфузат фасуют с помощью дозаторной пипетки в 6 меченных маркером пробирок по 4,0 мл в каждую; в пробирку №1 вносят 0,25 мл тест-дозы 15% ГМБТОЭМ, в пробирку №2 - 0,25 мл тест-дозы 3,3% Гл, в пробирку №3 - 0,25 мл тест-дозы ТКД, в пробирку №4 - 0,25 мл 10% ДМСО, в пробирку №5 - 0,25 мл гемоконсерванта на основе 55% ДМАЦ +5% ГЭК, в пробирку №6 с контрольной пробой крови (КП) криопротекторы не вносят; ПБЖ в пробирках №№1 - 6 герметизируют винтовыми пробками, перемешивают на шейкере при температуре плюс 37°С в течение 2-3 ч; капли приготовленных биологических жидкостей (ПБЖ) из ОП и КП наносят в объеме 4 мкл на предметные стекла с помощью дозаторных пипеток, делают 2-3 мазка, высушивают на воздухе, фиксируют в 10% спирт-формалиновой смеси 10 мин, промывают в проточной воде 1-2 мин и высушивают, готовят рабочий раствор с рН 5,2-5,4; инкубируют в рабочем растворе вертикально в термостате при температуре плюс 37°С 2-3 часа, стекла промывают в проточной воде, высушивают, лейкоциты окрашивают на кислую фосфатазу по методике азосочетания Берстона в модификации Ю.Ф. Руденса, И.М. Буйкиса**, микроскопируют в проходящем свете, производят подсчет содержания ЛКФ в сегментоядерных (с/я) нейтрофилах и лимфоцитах с подсчетом среднего цитохимического коэффициента (СЦК) по Кэплоу Л. (1955) в модификации Астальди и Верга (1957)**; при совпадении значений показателей СЦК ОП и СЦК КП тестируемый криопротектор оценивают как оптимальный для конкретного больного и пригодным к использованию; при значениях СЦК ОП, отличных от СЦК КП, делают заключение как о непригодном к использованию криопротекторе. Необходимое оборудование: чистые обезжиренные предметные стекла, пробирки для крови на 5 и 20 мл с винтовой герметичной пробкой, световой микроскоп с проходящим светом, набор тест-доз из различных криопротекторов или гемоконсервантов, разрешенных к клиническому применению МЗ России, набор реагентов для цитохимического определения КФ в лейкоцитах in vitro диагностики фирмы Диахим-ЦитоСтейн-ПАС (Россия).
В качестве иллюстрации работоспособности заявляемого способа отбора качественного криопротектора по содержанию показателей СЦК ЛКФ в ауто-крови приводим 3 примера (Табл. 1), которые подтверждают практическое применение данного способа.
Figure 00000001
Примечание: жирным шрифтом обозначены оптимальные значения СЦК ОП и СЦК КП.
Пример №1. По результатам исследований ауто-крови пациента П-ва признан оптимальным и ПКИ комбинированный криопротектор на основе 55% ДМАЦ и 5% ГЭК, у которого значения СЦК КФ для лейкоцитов совпадают с таковыми КП (соответственно, 0,61 и 1,72).
Пример №2. Результаты исследования крови донора Н-н показывают, что оптимальным и ПКИ является комбинированный криопротектор, содержащий 55% ДМАЦ + 5% ГЭК, у которого СЦК для с/я нейтрофилов и лимфоцитов аналогичен СЦК КЩ соответственно, 0,69 и 0,98).
Пример №3. Результаты исследования крови донора С-ва показывают, что из числа исследованных тест-доз криопротекторов ПКИ является 10% ДМСО, у которого СЦК для с/я нейтрофилов и лимфоцитов аналогичен СЦК КП (соответственно, 0,81 и 1,39). Представленные примеры иллюстрируют применимость предлагаемого способа определения персонифицированного криопротектора по содержанию ЛКФ в консервированной ауто-крови пациента. Способ дешев и может быть внедрен в практику центра, использующего трансфузии криоконсервированных компонентов крови.
Таким образом, благодаря использованию более чувствительного способа определения персонифицированного криопротектора по содержанию ЛКФ в ауто-крови удается оценить эффективность и снизить риски планируемой криогемотрансфузионной терапии протекторного генеза.
Предлагаемое изобретение отвечает критериям «новизна» и «изобретательский уровень», так как проведенные патентно-информационные исследования не выявили источников патентной и научно-технической литературы, которые бы порочили новизну предлагаемого способа, равно как и известных способов с существенными признаками предлагаемого технического решения. Техническим результатом использования является возможность проведения индивидуального скрининга криопротекторов на доклиническом этапе их применения.

Claims (1)

  1. Способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе (ЛКФ) консервированной крови, заключающийся в том, что у пациента до начала компонентной трансфузионной терапии эксфузируют порцию свежей аутокрови, стабилизируют раствором цитрата натрия, делят в пробирки на равные части, в контрольной пробе (КП) добавки криопротекторов исключают, в опытные пробы (ОП) добавляют по одной равной дозе тестируемых криопротекторов, перемешивают при плюс 37°С в течение 4 ч, капли приготовленных биологических жидкостей из ОП и КП наносят в объеме 4 мкл на предметные стекла, делают 2-3 мазка, высушивают на воздухе, фиксируют в 10% спирт-формалиновой смеси, лейкоциты окрашивают на кислую фосфатазу по методике азосочетания Берстона в модификации Ю.Ф. Руденса, И.М. Буйкиса, микроскопируют в проходящем свете, производят подсчет содержания ЛКФ в сегментоядерных (с/я) нейтрофилах и лимфоцитах с подсчетом среднего цитохимического коэффициента (СЦК) по Кэплоу Л. (1955) в модификации Астальди и Верга (1957); при совпадении значений показателей СЦК ОП и СЦК КП тестируемый криопротектор оценивают как оптимальный для конкретного больного и пригодным к использованию; при значениях СЦК ОП, отличных от СЦК КП, делают заключение как о непригодном к использованию криопротекторе.
RU2017143754A 2017-12-13 2017-12-13 Способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе консервированной крови RU2689334C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017143754A RU2689334C1 (ru) 2017-12-13 2017-12-13 Способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе консервированной крови

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017143754A RU2689334C1 (ru) 2017-12-13 2017-12-13 Способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе консервированной крови

Publications (1)

Publication Number Publication Date
RU2689334C1 true RU2689334C1 (ru) 2019-05-27

Family

ID=66636704

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017143754A RU2689334C1 (ru) 2017-12-13 2017-12-13 Способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе консервированной крови

Country Status (1)

Country Link
RU (1) RU2689334C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2336466C2 (ru) * 2006-07-04 2008-10-20 Дагестанский государственный университет Способ подогрева воды для отопления и установка для его осуществления
RU2433173C1 (ru) * 2010-06-01 2011-11-10 Олег Германович Макеев Способ криоконсервации мультипотентных мезенхимальных стромальных клеток

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2336466C2 (ru) * 2006-07-04 2008-10-20 Дагестанский государственный университет Способ подогрева воды для отопления и установка для его осуществления
RU2433173C1 (ru) * 2010-06-01 2011-11-10 Олег Германович Макеев Способ криоконсервации мультипотентных мезенхимальных стромальных клеток

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.А.Костяев и др. Зависимость кристаллогенных свойств плазмы донорской крови от температуры замораживания и вида криопротектора / Медицина экстремальных ситуаций, 2013, N 1(43), стр. 91-96. *

Similar Documents

Publication Publication Date Title
Wong et al. The role of physical stabilization in whole blood preservation
Kumar et al. Intraoperative cell salvage in metastatic spine tumour surgery reduces potential for reinfusion of viable cancer cells
Kemal Laboratory manual and review on clinical pathology
Smith et al. Methods for collection, handling, and analysis of sea urchin coelomocytes
CN106538513A (zh) 一种人间充质干细胞保存运输液及其应用
Parida et al. Hematological and plasma biochemistry in Psammophilus blanfordanus (Sauria: Agamidae)
Quinn et al. Blood: tests used to assess the physiological and immunological properties of blood
CN109430252A (zh) 一种干细胞冻存液及其制作方法
Wiegmann et al. Influence of standard laboratory procedures on measures of erythrocyte damage
CN107912420A (zh) 一种细胞保存方法、保存液及保存液制备方法
CN105939601A (zh) 在室温稳定全血
Doostabadi et al. Microfluidic devices employing chemo‐and thermotaxis for sperm selection can improve sperm parameters and function in patients with high DNA fragmentation
Micakovic et al. Isolation of pure mitochondria from rat kidneys and western blot of mitochondrial respiratory chain complexes
RU2689334C1 (ru) Способ определения персонифицированного криопротектора по лейкоцитарной кислой фосфатазе консервированной крови
RU2676674C1 (ru) Способ выявления эффективного криопротектора по цитохимическому показателю содержания лейкоцитарной щелочной фосфатазы аутокрови
RU2686107C1 (ru) Способ подбора оптимального криопротектора по содержанию гликогена в лейкоцитах консервированной крови
RU2689328C1 (ru) Способ определения оптимального криопротектора по цитохимическому показателю содержания сукцинатдегидрогеназы в лейкоцитах ауто-крови
Kwasnik et al. Proteomes, their compositions and their sources
RU2527495C1 (ru) Способ нормализации антиагрегационной активности сосудистой стенки у новорожденных телят с железодефицитной анемией
Silvestris et al. Ovarian Stem Cells (OSCs) from the Cryopreserved Ovarian Cortex: A Potential for Neo-Oogenesis in Women with Cancer-Treatment Related Infertility: A Case Report and a Review of Literature
Boulton Blood transfusion; additional historical aspects. Part 2. The introduction of chemical anticoagulants; trials of ‘Phosphate of soda’
RU2679616C1 (ru) Способ приготовления тромбофибринового сгустка, обладающего ростстимулирующими свойствами
Wang et al. To study the effect of oxygen carrying capacity on expressed changes of erythrocyte membrane protein in different storage times
Debuque et al. Methods for axolotl blood collection, intravenous injection, and efficient leukocyte isolation from peripheral blood and the regenerating limb
Shams et al. The satellite cell colony forming cell assay as a tool to measure self-renewal and differentiation potential

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191214