RU2687343C1 - Способ получения композиционного материала - Google Patents

Способ получения композиционного материала Download PDF

Info

Publication number
RU2687343C1
RU2687343C1 RU2018110070A RU2018110070A RU2687343C1 RU 2687343 C1 RU2687343 C1 RU 2687343C1 RU 2018110070 A RU2018110070 A RU 2018110070A RU 2018110070 A RU2018110070 A RU 2018110070A RU 2687343 C1 RU2687343 C1 RU 2687343C1
Authority
RU
Russia
Prior art keywords
silicon carbide
pressure
deposition
temperature
reactor
Prior art date
Application number
RU2018110070A
Other languages
English (en)
Inventor
Евгений Акимович Богачев
Юрий Евгеньевич Скуратовский
Анатолий Николаевич Тимофеев
Иван Александрович Коломийцев
Иван Анатольевич Тимофеев
Алексей Яковлевич Сафонов
Original Assignee
Открытое акционерное общество "Композит"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Композит" filed Critical Открытое акционерное общество "Композит"
Priority to RU2018110070A priority Critical patent/RU2687343C1/ru
Application granted granted Critical
Publication of RU2687343C1 publication Critical patent/RU2687343C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Изобретение относится к производству высокотемпературных композиционных материалов, обладающих высокой окислительной стойкостью, и может быть использовано в теплонагруженных узлах ракетно-космической и авиационной техники, в автомобиле- и тракторостроении для изготовления узлов очистки выхлопных газов, подшипников скольжения и торцевых уплотнений. Способ получения композиционного материала, имеющего пористый волокнистый карбидокремниевый каркас, включает осаждение карбида кремния на упомянутый каркас из газовой фазы метилсилана CH3SiH3 при температуре 550-700°С и давлении 50-130 Па с периодической откачкой реактора в течение 1-60 с со снижением давления до 0,1 Па. Обеспечивается увеличение скорости осаждения карбида кремния из метилсилана и уменьшение сажеобразования.

Description

Изобретение относится к производству высокотемпературных композиционных материалов с карбидокремниевой матрицей, в том числе обладающих высокой окислительной стойкостью, и может быть использовано в теплонагруженных узлах ракетно-космической и авиационной техники, в автомобиле- и тракторостроении для изготовления узлов очистки выхлопных газов, подшипников скольжения, торцевых уплотнений и пр.
Основным реагентом, используемым для получения высокотемпературных композитов с карбидокремниевой матрицей и покрытий из пиролитического карбида кремния, является метилтрихлорсилан CH3SiCl3 (МТС). Известно, что осаждение SiC из МТС проводят с достаточной скоростью в области температур 1000-1200°С или выше; при этом для получения композита используют градиент температуры и принудительную фильтрацию газа через каркас (D.P. Stinton, A.J. Caputo & R.A. Lowden. Synthesis of Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration. - Am. Ceram. Soc. Bull., vol. 65, No. 2, 1986, p.p. 347-350), импульсную подачу реагента (К. Sugiama, Y. Ohzawa. Pulse Chemical Vapour Infiltration of SiC in Porous Carbon or SiC Particular Preform Using an R.F. Heating System. - J. Mater. Sci., vol. 25, No. 10, 1990, p.p. 4511-4517).
Однако использование МТС для газофазного осаждения приводит, в зависимости от условий, к образованию примесей из углерода и кремния, что ухудшает прочностные и антиокислительные свойства композита. Состав, структура и скорость роста твердого продукта зависит от многих параметров: температуры, давления, общего расхода газа, соотношения "Н2:CH3SiCl3:инертный газ" в реакторе, соотношения реакционной поверхности к объему и других факторов. Карбид кремния из МТС образуется в результате многостадийного химического процесса в газовой фазе с образованием ряда газообразных промежуточных соединений. Таким образом, управление процессом с большим числом параметров, определяющих состояние системы, каким является осаждение SiC из МТС, представляет значительную сложность. Оптимизация процесса с целью получения монофазного продукта - чистого стехиометрического SiC - затруднена. Изменение концентрации хлороводорода и промежуточных соединений по глубине пористого пространства ухудшает однородность заполнения каркаса. Как используемый в качестве исходного реагента МТС, так и газообразные продукты реакции (НСl, побочные хлорсодержащие продукты SiHCl3, SiCl4) являются летучими агрессивными вредными веществами, что вызывает необходимость мер по утилизации непрореагировавшего исходного реагента и продуктов, защите конструкционных материалов установки.
С целью преодоления этих недостатков применения МТС разработан способ получения композитов с карбидокремниевой матрицей с использованием экологически чистого реагента - метилсилана (МС) CH3SiH3 (патент РФ №2130509), в соответствии с которым в способе получения композиционного материала, включающем осаждение из газовой фазы карбида кремния на пористый каркас, в качестве исходного реагента используют метилсилан CH3SiH3, процесс ведут при 650-800°С в присутствии инертного газа при давлении 0,5-5,0 кПа. Данный способ позволяет снизить температуру получения композитов, получать в качестве карбидокремниевого осадка стехиометрический β-SiC, исключить необходимость утилизации химически агрессивных непрореагировавшего исходного реагента и продуктов разложения (продуктами разложения МС являются только карбид кремния и водород). Однако из-за низкого концентрационного порога сажеобразования - гомогенного разложения МС в газовой фазе с образованием дисперсных частиц - в данном способе осаждение карбида кремния из газовой фазы ведут при разрежении 0,5-5 кПа и значительном разбавлении инертным газом, что приводит в случае проведения длительных режимов осаждения (до нескольких недель непрерывно) к огромным затратам инертного газа (водород, гелий), необходимости обеспечить его эффективное перемешивания с метилсиланом, высокой нагрузке на откачные средства из-за больших объемов прокачки.
Отказ от применения разбавления МС инертным газом реализован в способе, взятом за прототип (А.В. Лахин, Е.А. Богачев, А.В. Манухин, А.Н. Тимофеев.// Известия высших учебных заведений. Цветная металлургия. - 2006 .- №1.- С. 55-58). В данном способе из-за необходимости ввиду опасности сажеобразования обеспечения в проточном реакторе низкой парциальной концентрации МС процесс осаждение SiC ведут при температуре 590-680°С и давлении 50 Па без разбавления инертным газом, что приводит к низким скоростям осаждения карбида кремния и большим временным затратам. При использовании процесса в крупногабаритных реакторах (до 1 м в диаметре и более) оказывается, что даже при давлениях ниже 50 Па в неизбежно возникающих застойных зонах реактора цилиндрического типа время пребывания молекул МС резко увеличивается, что приводит к их распаду с образованием гомогенных зародышей дисперсных частиц нежелательных осадков состава SiC:H, которые далее способны провоцировать лавинообразное выпадение гомогенного SiC.
Требуемым техническим результатом изобретения является увеличение скорости осаждения карбида кремния из МС и устранение указанной выше причины сажеобразования. Поставленная цель достигается тем, что в способе получения композиционного материала с карбидокремниевой матрицей, имеющего пористый волокнистый каркас, включающим осаждение карбида кремния без применения газов-разбавителей на пористый волокнистый каркас из газовой фазы метилсилана CH3SiH3, осаждение карбида кремния проводят при температуре 550-700°С и давлении 50-130 Па с периодической откачкой реактора в течение 1-60 с (в зависимости от размера реактора и производительности откачных средств) со снижением давления до 0,1 Па. При этом превышение давления выше 130 Па приводит к сажеобразованию, несмотря на периодическую очистку реактора от зародышей гомогенного распада МС, а откачка ниже 0,1 Па неэффективна, поскольку лишь увеличивает временные затраты эвакуации реактора, качественно не изменяя уровень его очистки.
Предлагаемое изобретение иллюстрируется следующим примером.
Углеродный волокнистый каркас плотностью 0,8 г/см3 поместили в печь и нагрели до 640°С в среде, содержащей МС при давлении 120 Па. Измерение состава газов на выходе газового потока из печи, проведенное с помощью масс-спектрографа с датчиком в вакуумной системе печи, показало, что через 0,5 ч в смеси обнаружены частицы массой 44, соответствующие короткоживущим радикалам CH3SiH. Согласно данным литературы, именно эти частицы являются источником сажеобразования. Откачка реактора в течение 30 с до остаточного давления 0,1 Па позволило полностью очистить реактор, и уплотнение каркаса карбидом кремния при первоначальном давлении 120 Па было продолжено. За счет значительного увеличения давления процесса время насыщения пористого каркаса до плотности 1,6 г/см3 было уменьшено в 1,8 раза. При разгрузке реактора следы сажеобразования отсутствовали.

Claims (1)

  1. Способ получения композиционного материала, имеющего пористый волокнистый каркас, включающий осаждение карбида кремния на упомянутый каркас из газовой фазы метилсилана CH3SiH3, отличающийся тем, что осаждение карбида кремния проводят при температуре 550-700°С и давлении 50-130 Па с периодической откачкой реактора в течение 1-60 с со снижением давления до 0,1 Па.
RU2018110070A 2018-03-22 2018-03-22 Способ получения композиционного материала RU2687343C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018110070A RU2687343C1 (ru) 2018-03-22 2018-03-22 Способ получения композиционного материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018110070A RU2687343C1 (ru) 2018-03-22 2018-03-22 Способ получения композиционного материала

Publications (1)

Publication Number Publication Date
RU2687343C1 true RU2687343C1 (ru) 2019-05-13

Family

ID=66578753

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018110070A RU2687343C1 (ru) 2018-03-22 2018-03-22 Способ получения композиционного материала

Country Status (1)

Country Link
RU (1) RU2687343C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001083A1 (en) * 1990-07-13 1992-01-23 Olin Corporation Chemical vapor deposition (cvd) process for thermally depositing silicone carbide films onto a substrate
RU2130509C1 (ru) * 1998-01-26 1999-05-20 Открытое акционерное общество Научно-производственное объединение "Композит" Способ получения композиционного материала
WO2000019508A1 (en) * 1998-10-01 2000-04-06 Applied Materials, Inc. Silicon carbide deposition method and use as a barrier layer and passivation layer
RU2241068C1 (ru) * 2003-10-09 2004-11-27 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Способ получения композиционного материала

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001083A1 (en) * 1990-07-13 1992-01-23 Olin Corporation Chemical vapor deposition (cvd) process for thermally depositing silicone carbide films onto a substrate
RU2130509C1 (ru) * 1998-01-26 1999-05-20 Открытое акционерное общество Научно-производственное объединение "Композит" Способ получения композиционного материала
WO2000019508A1 (en) * 1998-10-01 2000-04-06 Applied Materials, Inc. Silicon carbide deposition method and use as a barrier layer and passivation layer
RU2241068C1 (ru) * 2003-10-09 2004-11-27 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Способ получения композиционного материала

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Лахин А.В. и др. Газофазное осаждение карбида кремния из метилсилана при относительно низких температурах и давлениях, Известия высших учебных заведений. Цветная металлургия, N1, 2006, c.55-58. *

Similar Documents

Publication Publication Date Title
Vignoles et al. CVD and CVI of pyrocarbon from various precursors
US4824711A (en) Ceramic honeycomb structures and method thereof
Durif et al. Open-celled silicon carbide foams with high porosity from boron-modified polycarbosilanes
DE102017204258B4 (de) Verfahren zur Herstellung eines porösen Körpers
US9493873B2 (en) Method for preparing a coating for protecting a part against oxidation
CN1699285A (zh) 一种制备高孔隙率多孔碳化硅陶瓷的方法
DE10057481A1 (de) Verfahren zur Herstellung von hochreinem, granularem Silizium
Cheng An inorganic–organic hybrid precursor strategy for the synthesis of zirconium diboride powders
RU2687343C1 (ru) Способ получения композиционного материала
US5472650A (en) Method of making chemical vapor infiltrated composites
RU2531503C1 (ru) Способ изготовления изделий из композиционного материала
US6489027B1 (en) High purity carbon fiber reinforced carbon composites and manufacturing apparatus for use thereof
Yang et al. Growth process and mechanism of SiC layer deposited by CVD method at normal atmosphere
DE69620577T2 (de) Chemische abscheidung von mullitschichten und mullitpulvern aus der gasphase
DE102015224120A1 (de) Wirbelschichtreaktor und Verfahren zur Herstellung von polykristallinem Siliciumgranulat
Tang et al. Effects of infiltration conditions on the densification behavior of carbon/carbon composites prepared by a directional-flow thermal gradient CVI process
US9779850B2 (en) Process for synthesizing carbon nanotubes on multiple supports
RU2130509C1 (ru) Способ получения композиционного материала
Kim et al. Improvement of nanoparticle filtration efficiency through synthesis of SiC whisker on graphite felt by the VS CVD mechanism
Wulan et al. The effect of mass ratio of ferrocene to camphor as carbon source and reaction time on the growth of carbon nanotubes
DE2744636A1 (de) Verfahren und vorrichtung zur herstellung von hochreinem siliciumcarbidpulver und seine verwendung
KR20200048314A (ko) 화학기상증착을 이용한 SiC 나노와이어 균일 성장에 의한 고밀도의 탄화규소 복합체 제조 방법 및 이의 의해 제조된 탄화규소 복합체
Cerio et al. Diamond growth using carbon monoxide as a carbon source
KR20180008512A (ko) 모노실란의 분해를 위한 공정 및 시설
Roman et al. The preparation of carbon reinforced silicon carbide composites using the isothermal forced flow chemical vapour infiltration technique