RU2686139C1 - Фильтрационная установка для физического моделирования процессов вытеснения нефти - Google Patents

Фильтрационная установка для физического моделирования процессов вытеснения нефти Download PDF

Info

Publication number
RU2686139C1
RU2686139C1 RU2018119260A RU2018119260A RU2686139C1 RU 2686139 C1 RU2686139 C1 RU 2686139C1 RU 2018119260 A RU2018119260 A RU 2018119260A RU 2018119260 A RU2018119260 A RU 2018119260A RU 2686139 C1 RU2686139 C1 RU 2686139C1
Authority
RU
Russia
Prior art keywords
model
reservoir
sections
oil
bulk
Prior art date
Application number
RU2018119260A
Other languages
English (en)
Inventor
Михаил Альбертович Мохов
Владимир Сергеевич Вербицкий
Алексей Викторович Деньгаев
Леонид Витальевич Игревский
Дмитрий Николаевич Ламбин
Вячеслав Валерьевич Грачев
Алексей Эдуардович Федоров
Анастасия Геннадьевна Ракина
Original Assignee
Публичное акционерное общество "Газпром"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Газпром" filed Critical Публичное акционерное общество "Газпром"
Priority to RU2018119260A priority Critical patent/RU2686139C1/ru
Application granted granted Critical
Publication of RU2686139C1 publication Critical patent/RU2686139C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/40Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for geology
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Algebra (AREA)
  • Paleontology (AREA)
  • Computational Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Изобретение относится к исследованию фильтрационно-емкостных свойств горных пород и может быть использовано в научно-исследовательских целях для моделирования фильтрационных процессов и прогнозирования коэффициентов вытеснения нефти при проектировании систем разработки конкретного месторождения. Установка содержит насос для подачи вытесняющего агента в кернодержатель с насыпной моделью пласта, выполненной в виде последовательно соединенных идентичных секций образцов пласта. Длину модели выбирают исходя из соблюдения условия подобия модели пласта и натурных соотношений параметров пласта. Секции образцов соединены между собой пустотелыми переходниками с внутренним диаметром, обеспечивающим сохранение линейной скорости фильтрации потока вытесняющим агентом по всей длине модели пласта с учетом формирования зоны смеси. На торцах секций установлены сеточные фильтры, каждая из секций снабжена термостатирующим бандажом, по всей длине насыпной модели установлены датчики дифференциального давления и температуры, выходной канал последней секции кернодержателя подсоединен к емкости для сбора нефти и вытесняющего агента. Бандаж выполнен в виде электрического ленточного нагревателя. Повышается точность моделирования гидродинамических пластовых условий с максимальным приближением к условиям натурального объекта, повышается точность оценки коэффициентов вытеснения нефти. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области исследования фильтрационно-емкостных свойств горных пород и может быть использовано в научно-исследовательских целях для моделирования фильтрационных процессов и прогнозирования коэффициентов вытеснения нефти при проектировании систем разработки конкретного месторождения.
Известен стенд для исследования процессов фильтрации углеводородных флюидов, включающий насыпную модель пласта, помещенную в термостатирующий блок, датчики давления и температуры, систему заполнения исследуемыми газами и жидкостями, блок создания рабочего давления и блок разделительных цилиндров, регулятор давления, газовый счетчик, вакуумный насос, систему регулирования и контроля параметров процессов фильтрации, а также детонационную камеру сгорания для исследования результатов теплового и ударно-волнового воздействия на модели нефтяных и газовых пластов (RU 72347, 2007).
Известный стенд позволяет моделировать процессы фильтрации нефтяных и газоконденсатных смесей в одномерной модели пласта, а так же тепловые и волновые методы воздействия на пласты, содержащие углеводородные флюиды.
Недостатком известного решения является узкий диапазон проводимых исследований, не рассчитанный на фильтрационные эксперименты, моделирующие процесс заводнения углеводородного месторождения.
Известен стенд для определения коэффициента вытеснения нефти водой в лабораторных условиях с использованием в качестве пористой среды для проведения фильтрационных экспериментов испытания единичный или составной образец породы правильной геометрической формы, приготовленный из керна изучаемого пласта и ориентированный параллельно напластованию, включающий кернодержатель, жидкостные контейнеры для вытесняющих реагентов, мерные бюретки для контроля вытесненной нефти, воздушный термостат для поддержания заданной температуры в процессе испытаний, манометры для измерения перепада давления на фиксированных участках образца в процессе испытаний (ОСТ 39-195-86 «Нефть. Метод определения коэффициента вытеснения нефти водой в лабораторных условиях»).
Недостатком известного стенда является низкие точность моделирования пластовых условий и достоверность соответствия полученных экспериментальных данных пластовым характеристикам, поскольку в процессе отбора и подготовки керна к проведению исследований происходит существенной изменение его важнейшей и определяющей характеристики - поверхностных свойств. Кроме того, используемые для исследования образцы породы керна имеют ограниченный размер, что также отражается на точности оценки коэффициента вытеснения нефти.
Из известных решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является установка для исследования и моделирования фильтрационных процессов, включающая насос для подачи рабочей жидкости в кернодержатель с секционной моделью пласта, состоящей из равных по длине секций, каждая из которых выполнена как внешняя полая цилиндрическая камера, выполненная с кольцевыми буртами на концах, по периметру которых размещены сквозные отверстия, на входной и выходной секциях модели пласта установлены фланцы с центральными капиллярными каналами, в верхней части каждой секции модели пласта установлены штуцера с датчиками давления и температуры, соединенные общим датчиком давления и температуры, внутри каждой секции модели пласта расположена манжета с возможностью размещения в ней образца керна, выполненная по длине с зазором большим, чем внешняя полая цилиндрическая камера, с кольцевыми буртами на концах для соединения секций модели пласта между собой посредством вставки бурта манжеты во внутреннее отверстие втулки, выполненной с верхним отверстием для установки в него датчиков давления и температуры (RU 160842, 2015).
Недостатком известного решения является низкая точность физического моделирования с целью исследования характера взаимодействия несмешивающихся жидкостей и оценки коэффициентов вытеснения, что обусловлено ограничением выбора длины секций модели пласта, поскольку конструирование секционной модели большой длины, например, длиной 2 метра и более, и состоящей из кернового материала, отобранного из скважины вдоль напластования, не представляется технически возможным.
Кроме того, структура пористой среды образца реального керна, как правило, сложна и индивидуальна для каждого образца и в значительной мере влияет на конечный результат эксперимента, что обуславливает необходимость выполнения нескольких одинаковых опытов для получения достоверного результата.
Технической проблемой, на решение которой направлено предлагаемое изобретение, является повышение точности моделирования гидродинамических пластовых условий с максимальным приближением к условиях натурального объекта и, соответственно, повышение точности оценки коэффициентов вытеснения нефти. Указанная техническая проблема решается тем, что фильтрационная установка для физического моделирования процессов вытеснения нефти содержит насос для подачи вытесняющего агента в кернодержатель с насыпной моделью пласта, выполненной в виде последовательно соединенных идентичных секций образцов пласта, при этом длину модели выбирают исходя из соблюдения условия подобия модели пласта и натурных соотношений параметров пласта, секции образцов соединены между собой пустотелыми переходниками с внутренним диаметром, обеспечивающим сохранение линейной скорости фильтрации потока вытесняющим агентом по всей длине модели пласта с учетом формирования зоны смеси, а на торцах секций установлены сеточные фильтры, каждая из секций снабжена термостатирующим бандажом, по всей длине насыпной модели установлены датчики дифференциального давления и температуры, выходной канал последней секции кернодержателя подсоединен к емкости для сбора нефти и вытесняющего агента.
В частном случае исполнения термостатирующий бандаж может быть выполнен в виде электрического ленточного нагревателя.
Достигаемый технический результат заключается в обеспечении совпадения безразмерных критериев подобия в эксперименте и натуре, в том числе размера зоны смеси вытесняющего и вытесняемого агентов при использовании широкого спектра вытесняющих агентов.
Сущность предлагаемой установки поясняется чертежами, где на фиг. 1 приведена принципиальная схема предлагаемой установки, на фиг. 2 показана единичная секция насыпной модели пласта.
Установка включает последовательно соединенные идентичные секции кернодержателя 1 насыпной модели пласта, соединенные между собой пустотелыми переходниками 2, диаметр которых выбирают из условия обеспечения сохранения линейной скорости фильтрации с учетом формирования зоны смеси. Рабочий агент поступает в модель пласта из емкости 3 при помощи двухплунжерного насоса 4. Отфильтрованная жидкость собирается в мерную емкость 5, позволяющую учитывать объем отфильтрованного флюида. Газовый демпфер 6, подключенный к баллону 7, создает противодавление в системе. Обвязка баллона позволяет проводить исследования по определению абсолютной проницаемости модели. Установка оснащена задвижками 8 и регулируемой задвижкой 9, установленной на выходном канале 10 последней секции кернодержателя 1.
Каждая секция модели 1 представляет собой трубу 11 (фиг. 2) из нержавеющей стали с внутренней винтовой нарезкой, закрытую с двух сторон крышками 12, которые при помощи фиксаторов 13 крепят на входе и выходе трубы 11 сеточные фильтры 14.
Фильтры 14 предназначены для предотвращения выноса фракций песка из полости трубы 11.
Каждая секция 1 кернодержателя снабжена термостатирующим бандажом в виде ленточного нагревателя 15, интенсивность нагрева которого регулируется трансформатором 16, подключаемым к электросети. На входном 17, выходном 10 каналах и между секциями 1 установлены датчики дифференциального давления 18 и температуры 19.
Перед запуском установки в работу предварительно рассчитывают количество идентичных секций, отвечающих условию обеспечения подобия насыпной модели пласта натурным (реальным) условиям.
Показателем подобия являются безразмерные критерии П1 и П2.
Для обеспечения подобия необходимо выполнение соотношений:
Figure 00000001
и
Figure 00000002
где: m - пористость, К - проницаемость, σ - межфазное натяжение.
Так для гидрофильных несцементированных песков, как известно, приближенное моделирование реализуется при выполнении следующих условий:
П1≤0.5 П2≥0.5 106
Преобразование этих условий позволило определить минимальную допустимую длину составной секционной насыпной модели:
Figure 00000003
где:
k - проницаемость образца, Д;
m - пористость, %;
Lmin - длина составной модели, см.
После подбора длины модели осуществляют расчет скорости фильтрации флюида в единичной секции образца при требуемых скоростях нагнетания.
Длина единичной секции должна удовлетворять условию возможности осуществления формирования пористой среды заданных параметров, с одной стороны, и минимизации количества секций, с другой.
Расстояние между секциями выбирают минимально возможным.
Зная скорость фильтрации и расстояние между секциями 1 насыпной модели, подбирается диаметр пустотелого переходника, обеспечивающий сохранение линейной скорости фильтрации потока вытесняющего агента с учетом формирования зоны смеси.
Подготовку каждой секции насыпной модели осуществляют до монтирования всей установки следующим образом.
Производят набивку каждой секции 1 кернодержателя заранее подготовленным материалом - молотым промытым песком, помол выбирают исходя из требуемой конечной проницаемости модели. Затем на сухой модели определяют абсолютную проницаемость по газу для каждой секции путем пропускания сквозь нее газа из баллона 7. После определения газопроницаемости заполненная песком секция 1 взвешивается и вакуумируется в течение 5-6 часов. После удаления воздуха, вход первой секции 1 соединяют с емкостью 3, наполненной водой заданной минерализации, и осуществляют насыщение пористой среды водой. При известной плотности воды находят поровый объем модели и вычисляют коэффициент открытой пористости каждой секции.
После выхода установки на стабильный расход воды рассчитывают коэффициент проницаемости водонасыщенной модели по воде при комнатной температуре.
Для создания нефте-, водонасыщенной пористой среды после насыщения водой каждый элемент пористой среды размещают вертикально. После чего при комнатной температуре через верхнее входное отверстие в секцию производится закачка углеводородной модельной жидкости (нефти, керосина и проч.) при перепаде давления не менее 2,0 МПа до тех пор, пока на выходе содержание воды в выходящей жидкости не станет практически равной нулю.
Количество вышедшей из модели воды замеряется, и определяется остаточная водонасыщенность модели (Sw R). Затем определяется коэффициент фазовой проницаемости по нефти при остаточной воде. Таким образом, получают модель нефтенасыщенного пласта с остаточной водой.
Проведение испытаний на установке осуществляют следующим образом.
После подготовки каждой секции насыпной модели установка собирается и опрессовывается. При необходимости за несколько часов до эксперимента включается система термостатирования для достижения необходимых температурных значений. Установка считается полностью герметичной, если в течение часа отклонения манометра, фиксирующего давление опрессовки, остается неизменным.
Вытеснение нефти из нефте-, водонасыщенного образца производят путем подачи на входной канал 17 образца пористой среды 1 воды из емкости 3 с постоянной заданной скоростью, обеспечиваемой двухплунжерным насосом. Нагнетание при выбранной скорости проводят непрерывно до полного обводнения выходящей жидкости. Обводненность контролируют при помощи мерной емкости 5, установленной на выходе из установки. По текущим значениям вышедшей углеводородной фазы определяют накопленные значения коэффициента вытеснения нефти, в том числе в момент прорыва воды (появления первых следов водной фазы в выходящей продукции). После полного обводнения продукции (98%) необходимо остановить установку, опорожнить рабочую емкость 5 от остатков воды, наполнить иным вытесняющим агентом (водный раствор полиакриламида и проч. агенты, предусмотренные моделируемыми условиями) и повторить вышеописанный алгоритм.
В процессе вытеснения непрерывно фиксируют показания датчиков давления и температуры, в том числе в момент прорыва воды (появления первых следов водной фазы в выходящей продукции). На основании полученных в каждом эксперименте результатов рассчитывают коэффициент вытеснения нефти и строят графики зависимости текущего значения коэффициента вытеснения от относительного накопленного объема закачки.
Таким образом, предлагаемое техническое решение расширяет возможности исследований при моделировании процессов нефте- и газодобычи и может быть использовано при поиске оптимальных методов увеличения коэффициента извлечения жидких углеводородов.
Использование насыпной модели, сформированной предлагаемым образом, обеспечивает возможность сравнения полученных результатов в зависимости от объема закачки вытесняющего агента при заданной начальной проницаемости модели. При этом отпадает необходимость в проведении повторных опытов для повышения достоверности исследования.

Claims (2)

1. Фильтрационная установка для физического моделирования процессов вытеснения нефти, характеризующаяся тем, что она содержит насос для подачи вытесняющего агента в кернодержатель с насыпной моделью пласта, выполненной в виде последовательно соединенных идентичных секций образцов пласта, при этом длину модели выбирают исходя из соблюдения условия подобия модели пласта и натурных соотношений параметров пласта, секции образцов соединены между собой пустотелыми переходниками с внутренним диаметром, обеспечивающим сохранение линейной скорости фильтрации потока вытесняющим агентом по всей длине модели пласта с учетом формирования зоны смеси, а на торцах секций установлены сеточные фильтры, каждая из секций снабжена термостатирующим бандажом, по всей длине насыпной модели установлены датчики дифференциального давления и температуры, выходной канал последней секции кернодержателя подсоединен к емкости для сбора нефти и вытесняющего агента.
2. Фильтрационная установка по п.1, отличающаяся тем, что термостатирующий бандаж выполнен в виде электрического ленточного нагревателя.
RU2018119260A 2018-05-25 2018-05-25 Фильтрационная установка для физического моделирования процессов вытеснения нефти RU2686139C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018119260A RU2686139C1 (ru) 2018-05-25 2018-05-25 Фильтрационная установка для физического моделирования процессов вытеснения нефти

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018119260A RU2686139C1 (ru) 2018-05-25 2018-05-25 Фильтрационная установка для физического моделирования процессов вытеснения нефти

Publications (1)

Publication Number Publication Date
RU2686139C1 true RU2686139C1 (ru) 2019-04-24

Family

ID=66314521

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018119260A RU2686139C1 (ru) 2018-05-25 2018-05-25 Фильтрационная установка для физического моделирования процессов вытеснения нефти

Country Status (1)

Country Link
RU (1) RU2686139C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358815A (zh) * 2020-03-06 2021-09-07 中国石油天然气股份有限公司 一种化学剂性能评价装置和方法
CN113700474A (zh) * 2020-05-22 2021-11-26 中国石油化工股份有限公司 驱油用组合式物理模拟大模型实验装置及方法
RU209988U1 (ru) * 2020-12-29 2022-03-24 Акционерное общество "Всероссийский нефтегазовый научно-исследовательский институт имени академика А.П. Крылова" (АО "ВНИИнефть") Система для определения свойств переходной зоны при смешивающемся вытеснении нефти газом
CN114352243A (zh) * 2020-09-27 2022-04-15 中国石油天然气股份有限公司 岩心驱替实验装置
RU2778624C1 (ru) * 2021-11-25 2022-08-22 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Кернодержатель для физического моделирования массообменных процессов при исследовании вытеснения нефти газом

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1624140A1 (ru) * 1988-10-17 1991-01-30 Специальное Конструкторское Бюро Геофизического Приборостроения Института Геологии Ан Азсср Устройство дл исследовани процесса капилл рного вытеснени нефти из пористой среды
SU1774232A1 (en) * 1989-12-07 1992-11-07 Vnii Neftegaz Filtering process studying plant
RU16968U1 (ru) * 1999-08-16 2001-02-27 ОАО "Томскгазпром" Устройство для моделирования газоконденсатнонефтяного месторождения
RU160842U1 (ru) * 2015-10-26 2016-04-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Секционная модель пласта
CN206864059U (zh) * 2017-05-22 2018-01-09 西南石油大学 一种可拆卸可视化驱油演示装置
RU176699U1 (ru) * 2017-07-10 2018-01-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волжский государственный университет водного транспорта" (ФГБОУ ВО "ВГУВТ") Сепаратор нефтесодержащих вод

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1624140A1 (ru) * 1988-10-17 1991-01-30 Специальное Конструкторское Бюро Геофизического Приборостроения Института Геологии Ан Азсср Устройство дл исследовани процесса капилл рного вытеснени нефти из пористой среды
SU1774232A1 (en) * 1989-12-07 1992-11-07 Vnii Neftegaz Filtering process studying plant
RU16968U1 (ru) * 1999-08-16 2001-02-27 ОАО "Томскгазпром" Устройство для моделирования газоконденсатнонефтяного месторождения
RU160842U1 (ru) * 2015-10-26 2016-04-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Секционная модель пласта
CN206864059U (zh) * 2017-05-22 2018-01-09 西南石油大学 一种可拆卸可视化驱油演示装置
RU176699U1 (ru) * 2017-07-10 2018-01-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волжский государственный университет водного транспорта" (ФГБОУ ВО "ВГУВТ") Сепаратор нефтесодержащих вод

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358815A (zh) * 2020-03-06 2021-09-07 中国石油天然气股份有限公司 一种化学剂性能评价装置和方法
CN113700474A (zh) * 2020-05-22 2021-11-26 中国石油化工股份有限公司 驱油用组合式物理模拟大模型实验装置及方法
CN113700474B (zh) * 2020-05-22 2024-05-31 中国石油化工股份有限公司 驱油用组合式物理模拟大模型实验装置及方法
CN114352243A (zh) * 2020-09-27 2022-04-15 中国石油天然气股份有限公司 岩心驱替实验装置
RU209988U1 (ru) * 2020-12-29 2022-03-24 Акционерное общество "Всероссийский нефтегазовый научно-исследовательский институт имени академика А.П. Крылова" (АО "ВНИИнефть") Система для определения свойств переходной зоны при смешивающемся вытеснении нефти газом
RU2778624C1 (ru) * 2021-11-25 2022-08-22 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Кернодержатель для физического моделирования массообменных процессов при исследовании вытеснения нефти газом
RU2784688C1 (ru) * 2022-05-05 2022-11-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Стенд для физического моделирования процесса ликвидации водопроявлений

Similar Documents

Publication Publication Date Title
RU2686139C1 (ru) Фильтрационная установка для физического моделирования процессов вытеснения нефти
CN105891248A (zh) 一种高温高压岩石物性及渗流机理核磁共振在线测试装置
CN104897543A (zh) 多相渗透仪及岩石渗透特性测定方法
CN206410978U (zh) 一种致密岩石气相相对渗透率测量装置
CN104568678A (zh) 高温高压高含硫气藏气液硫相渗曲线测试装置及方法
US9714896B2 (en) System and methodology for determining properties of a substance
CN108361007B (zh) 低渗油藏多层注采物理模拟装置及方法
CN113075109B (zh) 地下储气库储层干化盐析堵塞伤害实验模拟系统及方法
CN108827853B (zh) 基于核磁共振的致密储层岩电测量装置及测量方法
CN109520884B (zh) 测量同向渗吸与反向渗吸采出量的实验装置及实验方法
CN109932272B (zh) 一种co2驱替实验系统及实验方法
CN113218843A (zh) 一种声电渗等多功能三轴实验系统及方法
CN112485282B (zh) 含气体水合物沉积物土水特征曲线的测量系统及其方法
RU2655034C1 (ru) Устройство для исследования внутрипластового горения и парогравитационного дренажа
RU72347U1 (ru) Стенд для исследования процессов фильтрации углеводородных флюидов
Ghezzehei et al. Measurements of the capillary pressure-saturation relationship of methane hydrate bearing sediments
CN113433050A (zh) 一种高温高压气-水-液硫三相相渗测试装置及方法
Malkovsky et al. New methods for measuring the permeability of rock samples for a single-phase fluid
RU158561U1 (ru) Устройство для определения фазовых проницаемостей
CN108761046B (zh) 一种岩石-流体交互作用模拟实验系统
RU2258213C1 (ru) Установка для испытаний фильтрующих материалов
CN111693676B (zh) 一种多孔介质中原油泡点压力测定系统及方法
SU791949A1 (ru) Устройство дл исследовани процесса капилл рного вытеснени нефти из образца породы водой
RU2747948C1 (ru) Способ определения коэффициента извлечения нефти в режиме истощения в низкопроницаемых образцах горных пород
SU941561A1 (ru) Способ определени коэффициента вытеснени нефти и газа пород-коллекторов