RU2685981C1 - Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений - Google Patents

Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений Download PDF

Info

Publication number
RU2685981C1
RU2685981C1 RU2018130428A RU2018130428A RU2685981C1 RU 2685981 C1 RU2685981 C1 RU 2685981C1 RU 2018130428 A RU2018130428 A RU 2018130428A RU 2018130428 A RU2018130428 A RU 2018130428A RU 2685981 C1 RU2685981 C1 RU 2685981C1
Authority
RU
Russia
Prior art keywords
image
prediction
filter
filtering process
decoded image
Prior art date
Application number
RU2018130428A
Other languages
English (en)
Inventor
Акира МИНЕЗАВА
Сунити СЕКИГУТИ
Казуо СУГИМОТО
Юсуке ИТАНИ
Йосими МОРИЯ
Норимити ХИВАСА
Суити ЯМАГИСИ
Йосихиса ЯМАДА
Йосиаки КАТО
Кохтаро АСАИ
Токумити МУРАКАМИ
Original Assignee
Мицубиси Электрик Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43356106&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2685981(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Мицубиси Электрик Корпорейшн filed Critical Мицубиси Электрик Корпорейшн
Application granted granted Critical
Publication of RU2685981C1 publication Critical patent/RU2685981C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/48Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using compressed domain processing techniques other than decoding, e.g. modification of transform coefficients, variable length coding [VLC] data or run-length data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/63Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
    • H04N19/64Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by ordering of coefficients or of bits for transmission
    • H04N19/645Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by ordering of coefficients or of bits for transmission by grouping of coefficients into blocks after the transform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Abstract

Изобретение относится к области кодирования и декодирования изображений. Технический результат заключается в повышении точности обработки изображения. Технический результат достигается за счет процесса фильтрации, на котором выполняют процесс фильтрации над декодированным изображением, которое получено посредством суммирования изображения прогнозирования, которое сформировано посредством использования упомянутого параметра для формирования сигналов прогнозирования, и декодированного разностного изображения, полученного посредством восстановления сжатого разностного изображения, причем при выполнении процесса фильтрации определяют класс для каждого из пикселей, составляющих указанное декодированное изображение, в соответствии с множеством пороговых значений для выполнения процесса фильтрации над декодированным изображением на основании фильтра, полученного в соответствии с определенным классом. 4 н.п. ф-лы, 18 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к устройству кодирования изображений и способу кодирования изображений для кодирования со сжатием и передачи изображения, а также к устройству декодирования изображений и способу декодирования изображений для декодирования кодированных данных, передаваемых посредством устройства кодирования изображений, чтобы восстанавливать изображение.
Уровень техники
Традиционно, в соответствии со способами кодирования видео по международным стандартам, к примеру, MPEG и ITU-T H-26x, после того, как входной видеокадр разделяется на макроблоки, каждый из которых является пикселным блоком 16×16, и прогнозирование с компенсацией движения выполняется для каждого макроблока, сжатие информации выполняется посредством выполнения ортогонального преобразования и квантования для сигнала ошибки прогнозирования в единицах блоков.
Тем не менее, проблема состоит в том, что по мере того, как коэффициент сжатия становится высоким, эффективность сжатия уменьшается в результате ухудшения качества в качестве опорного изображения прогнозирования, которое используется при выполнении прогнозирования с компенсацией движения.
Чтобы разрешать эту проблему, в соответствии с таким способом кодирования, как MPEG-4 AVC/H.264 (см. непатентную ссылку 1), искажение в виде блочности, которое возникает в опорном изображении прогнозирования при квантовании коэффициентов ортогонального преобразования, пытаются удалять посредством выполнения процесса фильтрации блочности в контуре.
Фиг. 17 является блок-схемой, показывающей устройство кодирования изображений, раскрытое в непатентной ссылке 1.
В этом устройстве кодирования изображений, при приеме сигнала изображения, который является целью, которая должна быть кодирована, модуль 101 разделения на блоки разделяет сигнал изображения на макроблоки и выводит сигнал изображения в единицах макроблоков в модуль 102 прогнозирования в качестве разделенного сигнала изображения.
При приеме разделенного сигнала изображения из модуля 101 разделения на блоки, модуль 102 прогнозирования вычисляет сигнал ошибки прогнозирования посредством прогнозирования сигнала изображения каждого цветового компонента в каждом макроблоке в кадре или между кадрами.
В частности, при выполнении прогнозирования с компенсацией движения между кадрами, модуль прогнозирования выполняет поиск вектора движения в единицах либо самих макроблоков, либо каждого из субблоков, на которые каждый макроблок более точно разделяется.
Модуль прогнозирования затем выполняет прогнозирование с компенсацией движения для опорного сигнала изображения, сохраненного в запоминающем устройстве 107, посредством использования вектора движения, чтобы формировать изображение прогнозирования с компенсацией движения, и определяет разность между сигналом прогнозирования, показывающим изображение прогнозирования с компенсацией движения, и разделенным сигналом изображения, чтобы вычислять сигнал ошибки прогнозирования.
Модуль 102 прогнозирования также выводит параметры для формирования сигналов прогнозирования, которые модуль прогнозирования определяет при получении сигнала прогнозирования, в модуль 108 кодирования переменной длины.
Например, параметры для формирования сигналов прогнозирования включают в себя фрагменты информации, такой как режим внутреннего прогнозирования, показывающий то, как выполнять пространственное прогнозирование в каждом кадре, и вектор движения, показывающий величину движения между кадрами.
При приеме сигнала ошибки прогнозирования из модуля 102 прогнозирования, модуль 103 сжатия квантует сигнал ошибки прогнозирования, чтобы обнаруживать сжатые данные после выполнения процесса DCT (дискретного косинусного преобразования) для сигнала ошибки прогнозирования, чтобы удалять корреляцию сигналов из этого сигнала ошибки прогнозирования.
При приеме сжатых данных из модуля 103 сжатия, модуль 104 локального декодирования выполняет обратное квантование сжатых данных и затем выполняет процесс обратного DCT для сжатых данных, обратно квантованных таким образом, чтобы вычислять сигнал ошибки прогнозирования, соответствующий сигналу ошибки прогнозирования, выводимому из модуля 102 прогнозирования.
При приеме сигнала ошибки прогнозирования из модуля 104 локального декодирования, сумматор 105 суммирует сигнал ошибки прогнозирования и сигнал прогнозирования, выводимый из модуля 102 прогнозирования, чтобы формировать локальное декодированное изображение.
Контурный фильтр 106 удаляет искажение в виде блочности, накладываемое на сигнал локального декодированного изображения, показывающий локальное декодированное изображение, сформированное посредством сумматора 105, и сохраняет сигнал локального декодированного изображения с удаленным искажением в запоминающем устройстве 107 в качестве опорного сигнала изображения.
При приеме сжатых данных из модуля 103 сжатия, модуль 108 кодирования переменной длины энтропийно кодирует сжатые данные, чтобы выводить поток битов, который является кодированным результатом.
При выводе потока битов, модуль 108 кодирования переменной длины мультиплексирует параметры для формирования сигналов прогнозирования, выводимых из модуля 102 прогнозирования, в поток битов и выводит этот поток битов.
В соответствии со способом, раскрытым в непатентной ссылке 1, контурный фильтр 106 определяет интенсивность сглаживания согласно информации, включающей в себя разрешение квантования, режим кодирования, степень варьирования вектора движения и т.д. для пикселов около границы блока DCT, чтобы предоставлять уменьшение искажения, возникающего на границе блока.
Как результат, качество опорного сигнала изображения может быть повышено, и эффективность прогнозирования с компенсацией движения в последующих процессах кодирования может быть повышена.
Напротив, проблема в способе, раскрытом в непатентной ссылке 1, состоит в том, что компоненты верхних частот сигнала теряются с увеличением коэффициента сжатия, при котором кодируется сигнал, и, следовательно, весь экран сглаживается слишком сильно, и кодированное видео становится размытым.
Чтобы разрешать эту проблему, непатентная ссылка 2 раскрывает технологию применения фильтра Винера в качестве контурного фильтра 106 и формирования этого контурного фильтра 106 таким образом, что искажение в зависимости от квадратической ошибки между сигналом изображения, который должен быть кодирован, который является сигналом исходного изображения, и опорным сигналом изображения, соответствующим этому сигналу изображения, минимизируется.
Фиг. 18 является пояснительным чертежом, показывающим принцип для того, чтобы повышать качество опорного сигнала изображения с использованием фильтра Винера в устройстве кодирования изображений, раскрытом в непатентной ссылке 2.
На Фиг. 18, сигнал s соответствует сигналу изображения, который должен быть кодирован, который вводится в модуль 101 разделения на блоки, показанный на Фиг. 17, и сигнал s' соответствует либо сигналу локального декодированного изображения, выводимому из сумматора 105, показанного на Фиг. 17, либо сигналу локального декодированного изображения, в котором искажение, возникающее на границе блока, уменьшается посредством контурного фильтра 106, раскрытого в непатентной ссылке 1.
Более конкретно, сигнал s' является сигналом, в котором искажение (шум) e при кодировании накладывается на сигнал s.
Фильтр Винера задается как фильтр, который применяется к сигналу s' таким образом, чтобы минимизировать это искажение (шум) e при кодировании с использованием критерия искажения в зависимости от квадратической ошибки. Типично, коэффициенты w фильтрации могут быть определены посредством использования следующего уравнения (1) как из матрицы Rs's' автокорреляции сигнала s', так и из матрицы Rss' взаимной корреляции между сигналами s и s'. Размер матриц Rs's' и Rss' соответствует числу отводов определенного фильтра.
Figure 00000001
Посредством применения фильтра Винера, имеющего коэффициенты w фильтрации, сигнал s"шляпка", качество которого повышено ("^", присоединенный к букве алфавита, упоминается как "шляпка", поскольку данная заявка является электронной заявкой на патент в Японии), обнаруживается в качестве сигнала, соответствующего опорному сигналу изображения. Устройство кодирования изображений, раскрытое в непатентной ссылке 2, определяет коэффициенты w фильтрации в каждом из двух или более различных чисел отводов для каждого полного кадра изображения, которое является целью, которая должна быть кодирована, и после определения фильтра, имеющего число отводов, которое оптимизирует объем кода коэффициентов w фильтрации и искажение (e'=s"шляпка"-s), которое вычисляется после того, как процесс фильтрации реализуется с использованием критерия искажения в зависимости от скорости передачи, дополнительно разделяет сигнал s' на множество блоков, имеющих определенный размер, выбирает, применять или нет фильтр Винера, имеющий оптимальное число отводов, которое определяется выше, к каждому блоку и передает информацию по активации/деактивации фильтра для каждого блока.
Как результат, дополнительный объем кода, требуемый для того, чтобы выполнять процесс фильтрации Винера, может быть уменьшен, и качество изображения прогнозирования может быть повышено.
Документы предшествующего уровня техники
Непатентные ссылки
Непатентная ссылка 1. Стандарты MPEG-4 AVC (ISO/IEC 14496-10)/H.ITU-T 264
Непатентная ссылка 2. T.Chujoh, G.Yasuda, N.Wada, T.Watanabe, T.Yamakage, "Block-based Adaptive Loop Filter", VCEG-AI18, Конференция ITU-T SG16/Q.6, июль 2008 года
Раскрытие изобретения
Поскольку традиционное устройство кодирования изображений имеет такую структуру, как указано выше, один фильтр Винера рассчитывается для всего кадра, который является целью, которая должна быть кодирована, информация, показывающая то, применять или нет процесс фильтрации Винера, применяется к каждому из блоков, которые составляют каждый кадр. Тем не менее, проблема состоит в том, что поскольку идентичный фильтр Винера применяется к любому блоку каждого кадра, возникает случай, когда фильтр Винера не всегда является оптимальным фильтром для каждого блока, и качество изображений не может быть повышено в достаточной степени.
Настоящее изобретение осуществлено, чтобы разрешать вышеуказанную проблему, и, следовательно, цель настоящего изобретения заключается в том, чтобы предоставлять устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений, которые позволяют повышать точность повышения качества изображений.
В соответствии с настоящим изобретением, предусмотрено устройство кодирования изображений, в котором модуль фильтрации включает в себя модуль классификации областей для извлечения оценочной величины каждой из областей, которые составляют локальное декодированное изображение, полученное посредством модуля локального декодирования, чтобы классифицировать каждую из областей на класс, которому область принадлежит, согласно оценочной величине, и модуль составления и обработки фильтра, для каждого класса, которому одна или более областей, из областей, которые составляют локальное декодированное изображение, принадлежат, формирования фильтра, который минимизирует ошибку, возникающую между вводимым изображением и локальным декодированным изображением в каждой из одной или более областей, принадлежащих классу, чтобы компенсировать искажение, накладываемое на одну или более областей, посредством использования фильтра.
Поскольку модуль фильтрации в соответствии с настоящим изобретением включает в себя модуль классификации областей для извлечения оценочной величины каждой из областей, которые составляют локальное декодированное изображение, полученное посредством модуля локального декодирования, чтобы классифицировать каждую из областей на класс, которому область принадлежит, согласно оценочной величине, и модуль составления и обработки фильтра для, для каждого класса, которому одна или более областей, из областей, которые составляют локальное декодированное изображение, принадлежат, формирования фильтра, который минимизирует ошибку, возникающую между вводимым изображением и локальным декодированным изображением в каждой из одной или более областей, принадлежащих классу, чтобы компенсировать искажение, накладываемое на одну или более областей, посредством использования фильтра, предоставляется преимущество возможности повышать точность повышения качества изображений.
Article I. Краткое описание чертежей
Фиг. 1 является блок-схемой, показывающей устройство кодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения;
Фиг. 2 является блок-схемой, показывающей контурный фильтр 6 устройства кодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения;
Фиг. 3 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 6 устройства кодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения;
Фиг. 4 является пояснительным чертежом, показывающим пример классов, на которые четыре области (область A, область B, область C и область D), которые составляют локальное декодированное изображение, классифицируются;
Фиг. 5 является пояснительным чертежом, показывающим 16 блоков (K), которые составляют локальное декодированное изображение;
Фиг. 6 является пояснительным чертежом, показывающим пример потока битов, сформированного посредством узла 8 кодирования переменной длины;
Фиг. 7 является блок-схемой, показывающей устройство декодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения;
Фиг. 8 является блок-схемой, показывающей контурный фильтр 25 устройства декодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения;
Фиг. 9 является блок-схемой, показывающей контурный фильтр 25 устройства декодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения;
Фиг. 10 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 25 устройства декодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения;
Фиг. 11 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 6 устройства кодирования изображений в соответствии с вариантом 2 осуществления настоящего изобретения;
Фиг. 12 является пояснительным чертежом, показывающим пример выбора фильтра Винера для каждого из блоков (K), которые составляют локальное декодированное изображение;
Фиг. 13 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 25 устройства декодирования изображений в соответствии с вариантом 2 осуществления настоящего изобретения;
Фиг. 14 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 6 устройства кодирования изображений в соответствии с вариантом 3 осуществления настоящего изобретения;
Фиг. 15 является блок-схемой последовательности операций способа, показывающей процесс для первого кадра, выполняемого посредством контурного фильтра 6;
Фиг. 16 является блок-схемой последовательности операций способа, показывающей процесс для второго или последующего кадра, выполняемого посредством контурного фильтра 6;
Фиг. 17 является блок-схемой, показывающей устройство кодирования изображений, раскрытое в непатентной ссылке 1; и
Фиг. 18 является пояснительным чертежом, показывающим принцип для того, чтобы повышать качество опорного сигнала изображения с использованием фильтра Винера.
Осуществление изобретения
Далее, для того чтобы подробнее пояснять это изобретение, предпочтительные варианты осуществления настоящего изобретения описываются со ссылкой на прилагаемые чертежи.
Вариант 1 осуществления
Фиг. 1 является блок-схемой, показывающей устройство кодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения. На Фиг. 1 модуль 1 разделения на блоки выполняет процесс разделения сигнала изображения, который является вводимым изображением и который является целью, которая должна быть кодирована, на макроблоки и вывода сигнала изображения в единицах макроблоков в модуль 2 прогнозирования в качестве разделенного сигнала изображения.
При приеме разделенного сигнала изображения из модуля 1 разделения на блоки, модуль 2 прогнозирования выполняет процесс прогнозирования для разделенного сигнала изображения в кадре или между кадрами, чтобы формировать сигнал прогнозирования.
В частности, при выполнении прогнозирования с компенсацией движения между кадрами, модуль прогнозирования обнаруживает вектор движения в единицах макроблоков или каждого из субблоков, на которые макроблок более точно разделяется, как из разделенного сигнала изображения, так и из опорного сигнала изображения, показывающего опорное изображение, сохраненное в запоминающем устройстве 7, чтобы формировать сигнал прогнозирования, показывающий изображение прогнозирования, из вектора движения и опорного сигнала изображения.
После формирования сигнала прогнозирования модуль прогнозирования затем выполняет процесс вычисления сигнала ошибки прогнозирования, который является разностью между разделенным сигналом изображения и сигналом прогнозирования.
Кроме того, при формировании сигнала прогнозирования, модуль 2 прогнозирования определяет параметры для формирования сигналов прогнозирования и выводит параметры для формирования сигналов прогнозирования в узел 8 кодирования переменной длины.
Например, параметры для формирования сигналов прогнозирования включают в себя фрагменты информации, к примеру, режим внутреннего прогнозирования, показывающий то, как выполнять пространственное прогнозирование в кадре, и вектор движения, показывающий величину движения между кадрами.
Модуль обработки прогнозирования состоит из модуля 1 разделения на блоки и модуля 2 прогнозирования.
Модуль 3 сжатия выполняет процесс выполнения процесса DCT (дискретного косинусного преобразования) для сигнала ошибки прогнозирования, вычисленного посредством модуля 2 прогнозирования, чтобы вычислять DCT-коэффициенты при квантовании DCT-коэффициентов, чтобы выводить сжатые данные, которые являются DCT-коэффициентами, квантованными таким образом, в узел 4 локального декодирования и узел 8 кодирования переменной длины. Модуль 3 сжатия составляет модуль сжатия разностных изображений.
Узел 4 локального декодирования выполняет процесс выполнения обратного квантования сжатых данных, выводимых из модуля 3 сжатия, и выполнения процесса обратного DCT для сжатых данных, обратно квантованных таким образом, чтобы вычислять сигнал ошибки прогнозирования, соответствующий сигналу ошибки прогнозирования, выводимому из модуля 2 прогнозирования.
Сумматор 5 выполняет процесс суммирования сигнала ошибки прогнозирования, вычисленного посредством узла 4 локального декодирования, и сигнала прогнозирования, сформированного посредством модуля 2 прогнозирования, чтобы формировать сигнал локального декодированного изображения, показывающий локальное декодированное изображение.
Модуль локального декодирования состоит из узла 4 локального декодирования и сумматора 5.
Контурный фильтр 6 выполняет процесс выполнения процесса фильтрации для компенсации искажения, накладываемого на сигнал локального декодированного изображения, сформированный посредством сумматора 5, чтобы выводить сигнал локального декодированного изображения, фильтрованный таким образом, в запоминающее устройство 7 в качестве опорного сигнала изображения при выводе информации по фильтру, который контурный фильтр использует при выполнении процесса фильтрации, в узел 8 кодирования переменной длины. Контурный фильтр 6 составляет модуль фильтрации.
Запоминающее устройство 7 является носителем записи для сохранения опорного сигнала изображения, выводимого из контурного фильтра 6.
Узел 8 кодирования переменной длины выполняет процесс энтропийного кодирования сжатых данных, выводимых из модуля 3 сжатия, информации фильтра, выводимой из контурного фильтра 6, и параметров для формирования сигналов прогнозирования, выводимых из модуля 2 прогнозирования, чтобы формировать поток битов, показывающий эти кодированные результаты. Узел 8 кодирования переменной длины составляет модуль кодирования переменной длины.
Фиг. 2 является блок-схемой, показывающей контурный фильтр 6 устройства кодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения.
На Фиг. 2, запоминающее устройство 11 кадров является носителем записи для сохранения только одного кадра сигнала локального декодированного изображения, сформированного посредством сумматора 5.
Модуль 12 классификации областей выполняет процесс извлечения оценочной величины каждой из областей, которые составляют локальное декодированное изображение, показанное посредством одного кадра сигнала локального декодированного изображения, сохраненного в запоминающем устройстве 11 кадров, чтобы классифицировать каждую из областей на класс, которому область принадлежит, согласно оценочной величине.
Модуль 13 составления и обработки фильтра выполняет процесс формирования, для каждого класса, которому одна или более областей, включенных в области, которые составляют локальное декодированное изображение, принадлежат, фильтра Винера, который минимизирует ошибку, возникающую между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в каждой из одной или более областей, которые принадлежат классу, и использования фильтра Винера, чтобы компенсировать искажение, накладываемое на область.
Модуль 13 составления и обработки фильтра также выполняет процесс вывода информации фильтра по фильтру Винера в узел 8 кодирования переменной длины.
Далее поясняется работа устройства кодирования изображений.
При приеме сигнала изображения, который является целью, которая должна быть кодирована, модуль 1 разделения на блоки разделяет сигнал изображения на макроблоки и выводит сигнал изображения в единицах макроблоков в модуль 2 прогнозирования в качестве разделенного сигнала изображения.
При приеме разделенного сигнала изображения из модуля 1 разделения на блоки, модуль 2 прогнозирования обнаруживает параметры для формирования сигналов прогнозирования, которые модуль прогнозирования использует для того, чтобы выполнять процесс прогнозирования для разделенного сигнала изображения в кадре или между кадрами. Затем, модуль прогнозирования формирует сигнал прогнозирования, показывающий изображение прогнозирования, с использованием параметров для формирования сигналов прогнозирования.
В частности, модуль прогнозирования обнаруживает вектор движения, который является параметром для формирования сигналов прогнозирования, используемым для выполнения процесса прогнозирования между кадрами, из разделенного сигнала изображения и опорного сигнала изображения, сохраненных в запоминающем устройстве 7.
После получения вектора движения модуль 2 прогнозирования затем формирует сигнал прогнозирования посредством выполнения прогнозирования с компенсацией движения для опорного сигнала изображения посредством использования вектора движения.
После формирования сигнала прогнозирования, показывающего изображение прогнозирования, модуль 2 прогнозирования вычисляет сигнал ошибки прогнозирования, который является разностью между сигналом прогнозирования и разделенным сигналом изображения, и выводит сигнал ошибки прогнозирования в модуль 3 сжатия.
При формировании сигнала прогнозирования, модуль 2 прогнозирования также определяет параметры для формирования сигналов прогнозирования и выводит параметры для формирования сигналов прогнозирования в узел 8 кодирования переменной длины.
Например, параметры для формирования сигналов прогнозирования включают в себя фрагменты информации, к примеру, режим внутреннего прогнозирования, показывающий то, как выполнять пространственное прогнозирование в кадре, и вектор движения, показывающий величину движения между кадрами.
При приеме сигнала ошибки прогнозирования из модуля 2 прогнозирования, модуль 3 сжатия вычисляет DCT-коэффициенты посредством выполнения процесса DCT (дискретного косинусного преобразования) для сигнала ошибки прогнозирования и затем квантует DCT-коэффициенты.
Модуль 3 сжатия затем выводит сжатые данные, которые являются DCT-коэффициентами, квантованными таким образом, в узел 4 локального декодирования и узел 8 кодирования переменной длины.
При приеме сжатых данных из модуля 3 сжатия, узел 4 локального декодирования выполняет обратное квантование сжатых данных и затем переносит процесс обратного DCT для сжатых данных, обратно квантованных таким образом, чтобы вычислять сигнал ошибки прогнозирования, соответствующий сигналу ошибки прогнозирования, выводимому из модуля 2 прогнозирования.
После того, как узел 4 локального декодирования вычисляет сигнал ошибки прогнозирования, сумматор 5 суммирует сигнал ошибки прогнозирования и сигнал прогнозирования, сформированный посредством модуля 2 прогнозирования, чтобы формировать сигнал локального декодированного изображения, показывающий локальное декодированное изображение.
После того, как сумматор 5 формирует сигнал локального декодированного изображения, контурный фильтр 6 выполняет процесс фильтрации для компенсации искажения, накладываемого на сигнал локального декодированного изображения, и сохраняет сигнал локального декодированного изображения, фильтрованный таким образом, в запоминающем устройстве 7 в качестве опорного сигнала изображения.
Контурный фильтр 6 также выводит информацию по фильтру, который контурный фильтр использует при выполнении процесса фильтрации, в узел 8 кодирования переменной длины.
Узел 8 кодирования переменной длины выполняет процесс энтропийного кодирования сжатых данных, выводимых из модуля 3 сжатия, информации фильтра, выводимой из контурного фильтра 6, и параметров для формирования сигналов прогнозирования, выводимых из модуля 2 прогнозирования, чтобы формировать поток битов, показывающий эти кодированные результаты.
В это время, хотя модуль кодирования переменной длины также энтропийно кодирует параметры для формирования сигналов прогнозирования, устройство кодирования изображений альтернативно может мультиплексировать параметры для формирования сигналов прогнозирования в поток битов, который формирует устройство кодирования изображений, и выводить этот поток битов без энтропийного кодирования параметров для формирования сигналов прогнозирования.
Далее конкретно поясняется процесс, выполняемый посредством контурного фильтра 6.
Фиг. 3 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 6 устройства кодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения.
Во-первых, запоминающее устройство 11 кадров контурного фильтра 6 сохраняет только один кадр сигнала локального декодированного изображения, сформированного посредством сумматора 5.
Модуль 12 классификации областей извлекает оценочную величину каждой из областей, которые составляют локальное декодированное изображение, показанное посредством одного кадра сигнала локального декодированного изображения, сохраненного в запоминающем устройстве 11 кадров, и классифицирует каждую из областей на класс, которому область принадлежит, согласно оценочной величине (этап ST1).
Например, для каждой области (каждого блока, имеющего произвольный размер (M×M пикселов)), модуль классификации областей извлекает дисперсию сигнала локального декодированного изображения, DCT-коэффициенты, вектор движения, параметр квантования DCT-коэффициентов и т.п. в области в качестве оценочной величины и выполняет классификацию класса на основе этих фрагментов информации. В этом случае, M является целым числом, равным или превышающим 1.
Например, когда дисперсия сигнала локального декодированного изображения в области используется в качестве оценочной величины в случае, если каждая из областей классифицируется на один из класса 1-N (N является целым числом, равным или превышающим 1), (N-1) пороговых значений подготавливается заранее, и дисперсия сигнала локального декодированного изображения сравнивается с каждым из (N-1) пороговых значений (th1<th2<...<thN-1), и класс, которому область принадлежит, идентифицируется.
Например, когда дисперсия сигнала локального декодированного изображения равна или превышает thN-3 и меньше thN-2, область классифицируется на класс N-2. Кроме того, когда дисперсия сигнала локального декодированного изображения равна или превышает th2 и меньше th3, область классифицируется на класс 3.
В этом случае, хотя пример, в котором (N-1) пороговых значений подготавливается заранее, показывается, эти пороговые значения могут быть изменены динамически для каждой последовательности или каждого кадра.
Например, при использовании вектора движения в области в качестве оценочной величины, модуль классификации областей вычисляет средний вектор, который является средним значением векторов движения, или средний вектор, который является средним значением векторов движения, и идентифицирует класс, которому область принадлежит, согласно величине или направлению вектора.
В этом случае, средний вектор имеет компоненты (компоненты x и y), каждый из которых является средним значением соответствующих компонентов векторов движения.
Напротив, средний вектор имеет компоненты (компоненты x и y), каждый из которых является средним значением соответствующих компонентов векторов движения.
Когда модуль 12 классификации областей классифицирует каждую из областей в один из классов 1-N, модуль 13 составления и обработки фильтра формирует для каждого класса, которому одна или более областей, включенных в области, которые составляют локальное декодированное изображение, принадлежат, фильтр Винера, который минимизирует ошибку, возникающую между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в каждой из одной или более областей, которые принадлежат классу (этапы ST2-ST8).
Например, в случае, если локальное декодированное изображение состоит из четырех областей (область A, область B, область C и область D), как показано на Фиг. 4, когда области A и C классифицируются на класс 3, область B классифицируется на класс 5, и область D классифицируется на класс 6, модуль составления и обработки фильтра формирует фильтр Винера, который минимизирует ошибку, возникающую между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в каждой из областей A и C, принадлежащих классу 3.
Модуль составления и обработки фильтра дополнительно формирует фильтр Винера, который минимизирует ошибку, возникающую между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в области B, принадлежащей классу 5, а также формирует фильтр Винера, который минимизирует ошибку, возникающую между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в области D, принадлежащей классу 6.
Например, в случае составления фильтра с переменным числом отводов при формировании фильтра Винера, который минимизирует ошибку, модуль 13 составления и обработки фильтра вычисляет затраты, как показано ниже, для каждого различного числа отводов и затем определяет число отводов и значения коэффициентов фильтра, которые минимизируют затраты.
Cost=D+λ∙R
Figure 00000002
(2)
- где D является суммой квадратических ошибок между сигналом изображения, который является целью, которая должна быть кодирована в области, к которой применяется целевой фильтр, и фильтрованным сигналом локального декодированного изображения, λ является константой, и R является объемом кодов, которые формируются в контурном фильтре 6.
Хотя в этом случае затраты задаются посредством уравнения (2), этот случай является только примером. Например, только сумма D квадратических ошибок может задаваться как затраты.
Кроме того, другое оцененное значение, к примеру, сумма абсолютных значений ошибки может быть использовано вместо суммы D квадратических ошибок.
После формирования фильтра Винера для каждого класса, которому одна или более областей принадлежат, модуль 13 составления и обработки фильтра определяет то, является или нет каждый из блоков, которые составляют локальное декодированное изображение (например, каждая из локальных областей, которая меньше каждой из областей A-D, которая составляет локальное декодированное изображение), блоком, для которого модуль составления и обработки фильтра должен выполнять процесс фильтрации (этапы ST9-ST16).
Более конкретно, для каждого из блоков, которые составляют локальное декодированное изображение, модуль 13 составления и обработки фильтра сравнивает ошибки, возникающие между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в блоке между до и после процесса фильтрации.
Например, в случае, если локальное декодированное изображение состоит из 16 блоков (K) (K=1, 2, ..., и 16), как показано на Фиг. 5, модуль составления и обработки фильтра сравнивает сумму квадратических ошибок, возникающих между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в каждом блоке (K) между до и после процесса фильтрации.
Блок 1, блок 2, блок 5 и блок 6, показанные на Фиг. 5, соответствуют области A, показанной на Фиг. 4, блок 3, блок 4, блок 7 и блок 8, показанные на Фиг. 5, соответствуют области B, показанной на Фиг. 4, блок 9, блок 10, блок 13 и блок 14, показанные на Фиг. 5, соответствуют области C, показанной на Фиг. 4, и блок 11, блок 12, блок 15 и блок 16, показанные на Фиг. 5, соответствуют области D, показанной на Фиг. 4.
Хотя модуль составления и обработки фильтра сравнивает сумму квадратических ошибок между до и после процесса фильтрации, модуль составления и обработки фильтра альтернативно может сравнивать либо затраты (D+λ∙R), показанные посредством уравнения (2), либо сумму абсолютных значений ошибки между до и после процесса фильтрации.
Когда сумма квадратических ошибок, обнаруженная после процесса фильтрации, меньше суммы квадратических ошибок, обнаруженной перед процессом фильтрации, модуль 13 составления и обработки фильтра определяет то, что блок (K) является блоком, который является целью для фильтрации.
Напротив, когда сумма квадратических ошибок, обнаруженная после процесса фильтрации, равна или превышает сумму квадратических ошибок, обнаруженную перед процессом фильтрации, модуль составления и обработки фильтра определяет то, что блок (K) является блоком, который не является целью для фильтрации.
Модуль 13 составления и обработки фильтра затем вычисляет затраты при выполнении процесса фильтрации, который приводит к тому, что затраты становятся минимумом, на этапах ST1-ST16, и затраты при невыполнении процесса фильтрации всего кадра, в настоящее время обрабатываемого, чтобы определять то, выполнять или нет процесс фильтрации всего кадра, в настоящее время обрабатываемого (этапы ST17-ST18).
При определении, на этапе ST18, выполнять процесс фильтрации всего кадра, модуль составления и обработки фильтра задает флаг (frame_filter_on_off_flag) равным 1 (активирован) и затем выполняет процесс фильтрации, который приводит к тому, что затраты становятся минимумом, на этапах ST1-ST16, и выводит сигнал локального декодированного изображения, для которого модуль составления и обработки фильтра выполнил процесс фильтрации, в запоминающее устройство 7 в качестве опорного сигнала изображения (этапы ST19-ST20).
Например, когда область, включающая в себя блок (K), является областью B, и класс, которому область B принадлежит, является классом 5, модуль составления и обработки фильтра выполняет процесс фильтрации в блоке (K) посредством использования фильтра Винера класса 5 и выводит сигнал локального декодированного изображения, для которого модуль составления и обработки фильтра выполнил процесс фильтрации, в запоминающее устройство 7 в качестве опорного сигнала изображения.
В это время, при определении, на этапах ST1-ST16, что затраты минимизируются, когда процесс выбора того, выполнять или нет процесс фильтрации для каждого блока, выполняется (во время флага (block_filter_on_off_flag)=1 (активирован)), модуль составления и обработки фильтра выводит сигнал подлежащего фильтрации локального декодированного изображения для блока (K), для которого модуль составления и обработки фильтра определяет не выполнять процесс фильтрации, в запоминающее устройство 7 в качестве опорного сигнала изображения как есть, без выполнения процесса фильтрации в блоке (K). Напротив, при определении, на этапах ST1-ST16, что затраты минимизируются, когда процесс выбора того, выполнять или нет процесс фильтрации для каждого блока, не выполняется (во время флага (block_filter_on_off_flag)=0 (деактивирован)), модуль составления и обработки фильтра выполняет процесс фильтрации для каждого из всех сигналов локального декодированного изображения в кадре посредством использования фильтра Винера класса, на который область, которой сигнал локального декодированного изображения принадлежит, классифицируется, и выводит сигнал локального декодированного изображения, для которого модуль составления и обработки фильтра выполнил процесс фильтрации, в запоминающее устройство 7 в качестве опорного сигнала изображения.
Напротив, при определении, на этапе ST18, не выполнять процесс фильтрации всего кадра, модуль составления и обработки фильтра задает флаг (frame_filter_on_off_flag) равным 0 (деактивирован) и выводит сигнал подлежащего фильтрации локального декодированного изображения в запоминающее устройство 7 в качестве опорного сигнала изображения как есть (этапы ST21-ST22).
На этапах ST2-ST22 в блок-схеме последовательности операций способа, "min_cost" является переменной для сохранения минимальных затрат, "i" является индексом числа tap[i] отводов фильтра и счетчика циклов, и "j" является индексом размера bl_size[j] блока и счетчика циклов.
Кроме того, "min_tap_idx" является индексом (i) числа отводов фильтра в момент, когда затраты минимизируются, "min_bl_size_idx" является индексом (j) размера блока в момент, когда затраты минимизируются, и "MAX" является начальным значением минимальных затрат (достаточно большое значение).
- tap[i] (i=0-N1)
Последовательность, в которой N1 (N1>=1) различных чисел отводов фильтра, которые определяются заранее и каждый из которых может выбираться, сохраняется.
- bl_size[j] (j=0-N2)
Последовательность, в которой N2 (N2>=1) различных размеров блоков (bl_size[j] × bl_size[j] пикселов), которые определяются заранее и каждый из которых может выбираться, сохраняется.
- block_filter_on_off_flag
Флаг, показывающий то, выполнять или нет процесс выбора того, выполнять или нет процесс фильтрации для каждого блока в кадре, в настоящее время обрабатываемом.
- frame_filter_on_off_flag
Флаг, показывающий то, выполнять или нет процесс фильтрации для кадра, в настоящее время обрабатываемого.
Этап ST2 является этапом установления начальных значений, и этапы ST3-ST8 являются циклом для выполнения процесса выбора числа отводов фильтра.
Кроме того, этап ST9 является этапом установления начальных значений, и этапы ST10-ST16 являются циклом для выполнения процесса выбора размера блока и процесса определения того, выполнять или нет процесс фильтрации для каждого блока, имеющего выбранный размер блока.
Помимо этого, этапы ST17-ST18 являются этапами определения того, выполнять или нет процесс фильтрации всего кадра, в настоящее время обрабатываемого, этапы ST19-ST20 являются этапами выполнения оптимального процесса фильтрации, который определяется на этапах ST1-ST16, при frame_filter_on_off_flag=1 (активирован), и этапы ST21-ST22 являются этапами задания frame_filter_on_off_flag равным 0 (деактивирован) и невыполнения процесса фильтрации для кадра, в настоящее время обрабатываемого.
После формирования фильтра Винера и затем выполнения процесса фильтрации вышеуказанным способом, модуль 13 составления и обработки фильтра выводит информацию фильтра по фильтру Винера в узел 8 кодирования переменной длины.
Информация фильтра включает в себя флаг (frame_filter_on_off_flag), показывающий то, выполнять или нет процесс фильтрации для кадра, в настоящее время обрабатываемого.
Когда этот флаг активирован (показывает, что процесс фильтрации выполняется), информация, как показано ниже, включается в информацию фильтра.
(1) Число фильтров Винера (число классов, каждому из которых одна или более областей принадлежат)
- Число фильтров Винера может отличаться для каждого кадра.
(2) Информация (индекс) по числу отводов каждого фильтра Винера
- Когда все фильтры являются общими в кадре, общее число отводов включается.
- Когда число отводов отличается для каждого фильтра, число отводов каждого фильтра включается.
(3) Информация по коэффициентам фактически используемого фильтра Винера (фильтра Винера каждого класса, которому одна или более областей принадлежат),
- Даже если фильтр Винера формируется, информация по фильтру Винера не включается, когда фильтр Винера фактически не используется.
(4) Информация активации/деактивации и информация размера блока по фильтрам для каждого блока
- Флаг (block_filter_on_off_flag), показывающий то, выполнять или нет операцию активации/деактивации (выполнять или нет процесс фильтрации) для каждого блока в кадре, в настоящее время обрабатываемом.
- Только тогда, когда block_filter_on_off_flag активирован, информация размера блока (индекс) и информация активации/деактивации по процессу фильтрации для каждого блока включается.
В этом варианте осуществления, пример, в котором фрагменты информации (1) к (4) включаются в информацию фильтра, показывается. Число фильтров Винера, число отводов каждого фильтра Винера и размер блока для активации/деактивации могут храниться как посредством устройства кодирования изображений, так и посредством устройства декодирования изображений в качестве информации, определенной совместно в устройстве кодирования изображений и устройстве декодирования изображений, вместо кодирования и передачи фрагментов информации между ними.
Кроме того, хотя в вышеуказанном пояснении Фиг. 3 поясняется в качестве конкретного примера процесса, выполняемого посредством контурного фильтра 6, этапы ST9-ST16 могут опускаться, и процесс невыполнения операции активации/деактивации для процесса фильтрации для каждого блока ((4) не включается в информацию фильтра) может быть включен в качестве части процесса, выполняемого посредством контурного фильтра 6.
Как упомянуто выше, информация фильтра, выводимая из модуля 13 составления и обработки фильтра, энтропийно кодируется посредством узла 8 кодирования переменной длины и передается в устройство декодирования изображений.
Фиг. 6 является пояснительным чертежом, показывающим пример потока битов, сформированного посредством узла 8 кодирования переменной длины.
Фиг. 7 является блок-схемой, показывающей устройство декодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения.
На Фиг. 7, при приеме потока битов из устройства кодирования изображений, узел 21 декодирования переменной длины выполняет процесс декодирования переменной длины сжатых данных, информации фильтра и параметров для формирования сигналов прогнозирования, которые включаются в поток битов. Узел 21 декодирования переменной длины составляет модуль декодирования переменной длины.
Модуль 22 прогнозирования выполняет процесс формирования сигнала прогнозирования, показывающего изображение прогнозирования, посредством использования параметров для формирования сигналов прогнозирования, к которым узел 21 декодирования переменной длины применил декодирование переменной длины. В частности, в случае, если вектор движения используется в качестве параметра для формирования сигналов прогнозирования, модуль прогнозирования выполняет процесс формирования сигнала прогнозирования из вектора движения и опорного сигнала изображения, сохраненных в запоминающем устройстве 26.
Модуль 22 прогнозирования составляет модуль формирования изображений прогнозирования.
Модуль 23 декодирования ошибок прогнозирования выполняет процесс выполнения обратного квантования для сжатых данных, к которым узел 21 декодирования применил декодирование переменной длины, и затем выполнения процесса обратного DCT для сжатых данных, обратно квантованных таким образом, чтобы вычислять сигнал ошибки прогнозирования, соответствующий сигналу ошибки прогнозирования, выводимому из модуля 2 прогнозирования, показанного на Фиг. 1.
Сумматор 24 выполняет процесс суммирования сигнала ошибки прогнозирования, вычисленного посредством модуля 23 декодирования ошибок прогнозирования, и сигнала прогнозирования, сформированного посредством модуля 22 прогнозирования, чтобы вычислять сигнал декодированного изображения, соответствующий сигналу декодированного изображения, выводимому из сумматора 5, показанного на Фиг. 1.
Модуль декодирования состоит из модуля 23 декодирования ошибок прогнозирования и сумматора 24.
Контурный фильтр 25 выполняет процесс фильтрации для компенсации искажения, накладываемого на сигнал декодированного изображения, выводимый из сумматора 24, и затем выполняет процесс вывода сигнала декодированного изображения, фильтрованного таким образом, за пределы устройства декодирования изображений и в запоминающее устройство 26 в качестве сигнала фильтрованного декодированного изображения. Контурный фильтр 25 составляет модуль фильтрации.
Запоминающее устройство 26 является носителем записи для сохранения сигнала фильтрованного декодированного изображения, выводимого из контурного фильтра 25, в качестве опорного сигнала изображения.
Фиг. 8 является блок-схемой, показывающей контурный фильтр 25 устройства декодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения.
На Фиг. 8, запоминающее устройство 31 кадров является носителем записи для сохранения только одного кадра сигнала декодированного изображения, выводимого из сумматора 24.
Модуль 32 классификации областей выполняет процесс извлечения оценочной величины каждой из областей, которые составляют декодированное изображение, показанное посредством одного кадра сигнала декодированного изображения, сохраненного в запоминающем устройстве 31 кадров, чтобы классифицировать каждую из областей на класс, которому область принадлежит, согласно оценочной величине, аналогично модулю 12 классификации областей, показанному на Фиг. 2.
Модуль 33 обработки фильтра выполняет процесс формирования фильтра Винера, который применяется к классу, на который каждая из областей классифицируется посредством модуля 32 классификации областей, в отношении информации фильтра, к которой узел 21 декодирования переменной длины применил декодирование переменной длины, чтобы компенсировать искажение, накладываемое на область, посредством использования фильтра Винера.
Хотя в примере по Фиг. 8 контурный фильтр 25, в котором запоминающее устройство 31 кадров устанавливается в качестве его первой стадии, показывается в случае выполнения замкнутого процесса фильтрации для каждого макроблока, контурный фильтр может иметь такую структуру, что запоминающее устройство 31 кадров, расположенное в качестве его первой стадии, удаляется, как показано на Фиг. 9, и модуль 32 классификации областей извлекает оценочную величину каждой из областей, которые составляют декодированное изображение макроблока.
В этом случае, устройство кодирования изображений должно выполнять процесс фильтрации для каждого макроблока независимо.
Далее поясняется работа устройства декодирования изображений.
При приеме потока битов из устройства кодирования изображений узел 21 декодирования переменной длины применяет декодирование переменной длины к сжатым данным, информации фильтра и параметрам для формирования сигналов прогнозирования, которые включаются в поток битов.
При приеме параметров для формирования сигналов прогнозирования модуль 22 прогнозирования формирует сигнал прогнозирования из параметров для формирования сигналов прогнозирования. В частности, при приеме вектора движения в качестве параметра для формирования сигналов прогнозирования, модуль прогнозирования формирует сигнал прогнозирования из вектора движения и опорного сигнала изображения, сохраненных в запоминающем устройстве 26.
При приеме сжатых данных из узла 21 декодирования переменной длины, модуль 23 декодирования ошибок прогнозирования выполняет обратное квантование для сжатых данных и затем выполняет процесс обратного DCT для сжатых данных, обратно квантованных таким образом, чтобы вычислять сигнал ошибки прогнозирования, соответствующий сигналу ошибки прогнозирования, выводимому из модуля 2 прогнозирования, показанного на Фиг. 1.
После того, как модуль 23 декодирования ошибок прогнозирования вычисляет сигнал ошибки прогнозирования, сумматор 24 суммирует сигнал ошибки прогнозирования и сигнал прогнозирования, сформированный посредством модуля 22 прогнозирования, чтобы вычислять сигнал декодированного изображения, соответствующий сигналу локального декодированного изображения, выводимому из сумматора 5, показанного на Фиг. 1.
При приеме сигнала декодированного изображения из сумматора 24, контурный фильтр 25 выполняет процесс фильтрации для компенсации искажения, накладываемого на сигнал декодированного изображения, и выводит сигнал декодированного изображения, фильтрованный таким образом, за пределы устройства декодирования изображений в качестве сигнала фильтрованного декодированного изображения при сохранении сигнала фильтрованного декодированного изображения в запоминающем устройстве 26 в качестве опорного сигнала изображения.
Далее конкретно поясняется процесс, выполняемый посредством контурного фильтра 25.
Фиг. 10 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 25 устройства декодирования изображений в соответствии с вариантом 1 осуществления настоящего изобретения.
Во-первых, запоминающее устройство 31 кадров контурного фильтра 25 сохраняет только один кадр сигнала декодированного изображения, выводимого из сумматора 24.
Когда флаг (frame_filter_on_off_flag), включенный в информацию фильтра, активирован (показывает, что процесс фильтрации выполняется) (этап ST31), модуль 32 классификации областей извлекает оценочную величину каждой из областей, которые составляют декодированное изображение, показанное посредством одного кадра сигнала декодированного изображения, сохраненного в запоминающем устройстве 31 кадров, и классифицирует каждую из областей на класс, которому область принадлежит, согласно оценочной величине, аналогично модулю 12 классификации областей, показанному на Фиг. 2 (этап ST32).
При приеме информации фильтра из узла 21 декодирования переменной длины, модуль 33 обработки фильтра формирует фильтр Винера, который применяется к классу, которому каждая из областей, классифицированных посредством модуля 32 классификации областей, принадлежит, в отношении информации фильтра (этап ST33).
Например, когда число фильтров Винера (число классов, каждому из которых одна или более областей принадлежат) выражается как N, число отводов каждого фильтра Винера выражается как L×L, и значения коэффициентов каждого фильтра Винера выражаются как wi11, wi12, …, wi1L, …, wiL1, wiL2, …, wiLL, N фильтров Wi Винера (i=1, 2, …, N) показано следующим образом.
Figure 00000003
После формирования N фильтров Wi Винера модуль 33 обработки фильтра компенсирует искажение, накладываемое на один кадр сигнала декодированного изображения, посредством использования этих фильтров Винера и выводит сигнал декодированного изображения с компенсацией искажения за пределы устройства декодирования изображений и в запоминающее устройство 26 в качестве сигнала фильтрованного декодированного изображения (этап ST34).
Сигнал s"шляпка" фильтрованного декодированного изображения выражается посредством следующего уравнения (4).
Figure 00000004
Матрица S является группой опорных сигналов в L×L пикселов, включающей в себя сигнал s декодированного изображения, который является целью для фильтрации, и id(s) является номером (номером фильтра) класса, который определяется посредством модуля 32 классификации областей и которому область, включающая в себя сигнал s, принадлежит.
При выполнении вышеуказанного процесса фильтрации модуль 33 обработки фильтра обращается к флагу (block_filter_on_off_flag), включенному в информацию фильтра, и когда флаг (block_filter_on_off_flag) задается равным 1 (активирован), обращается к информации размера блока, включенной в информацию фильтра, и затем идентифицирует множество блоков (K), которые составляют декодированное изображение, и после этого выполняет процесс фильтрации в отношении информации, включенной в информацию фильтра и показывающей то, выполнять или нет процесс фильтрации для каждого блока (K).
Более конкретно, когда флаг (block_filter_on_off_flag) задается равным 1 (активирован), модуль 33 обработки фильтра выполняет процесс фильтрации для сигнала декодированного изображения в блоке (K), в котором модуль фильтрации должен выполнять процесс фильтрации, из блоков, которые составляют декодированное изображение, посредством использования фильтра Винера класса, которому область, включающая в себя блок (K), принадлежит, при выводе сигнала подлежащего фильтрации декодированного изображения в блоке (K), в котором модуль фильтрации не должен выполнять процесс фильтрации, за пределы устройства декодирования изображений и в запоминающее устройство 26 в качестве сигнала фильтрованного декодированного изображения как есть.
Напротив, когда флаг (block_filter_on_off_flag) задается равным 0 (деактивирован), модуль обработки фильтра выполняет процесс фильтрации для каждого из всех сигналов декодированного изображения в кадре, в настоящее время обрабатываемом, посредством использования фильтра, соответствующего классу, на который каждая из областей классифицируется посредством модуля 32 классификации областей.
Когда флаг (frame_filter_on_off_flag), включенный в информацию фильтра, деактивирован (процесс фильтрации не выполняется) (этап ST31), модуль 33 обработки фильтра не выполняет процесс фильтрации для кадра, в настоящее время обрабатываемого, и выводит каждый сигнал декодированного изображения, выводимый из сумматора 24, за пределы устройства декодирования изображений и в запоминающее устройство 26 в качестве сигнала фильтрованного декодированного изображения как есть (этап ST35).
Как можно видеть из вышеприведенного описания, в устройстве кодирования изображений в соответствии с этим вариантом 1 осуществления, контурный фильтр 6 включает в себя модуль 12 классификации областей для извлечения оценочной величины каждой из областей, которые составляют локальное декодированное изображение, показанное посредством сигнала локального декодированного изображения, выводимого посредством сумматора 5, чтобы классифицировать каждую из областей на класс, которому область принадлежит, согласно оценочной величине, и модуль 13 составления и обработки фильтра для, для каждого класса, которому одна или более областей, из областей, которые составляют локальное декодированное изображение, принадлежат, формирования фильтра Винера, который минимизирует сумму квадратических ошибок, возникающих между сигналом изображения, который является целью, которая должна быть кодирована, и локальным декодированным изображением в каждой из одной или более областей, принадлежащих классу, чтобы компенсировать искажение, накладываемое на одну или более областей, посредством использования фильтра Винера. Следовательно, устройство кодирования изображений реализует процесс фильтрации согласно локальным свойствам изображения, тем самым позволяя повышать точность повышения качества изображений.
Кроме того, в устройстве декодирования изображений в соответствии с этим вариантом 1 осуществления, контурный фильтр 25 включает в себя модуль 32 классификации областей для извлечения оценочной величины каждой из областей, которые составляют декодированное изображение, показанное посредством сигнала декодированного изображения, выводимого посредством сумматора 24, чтобы классифицировать каждую из областей на класс, которому область принадлежит, согласно оценочной величине, и модуль 33 обработки фильтра для обращения к информации фильтра, к которой узел 21 декодирования переменной длины применил декодирование переменной длины, чтобы формировать фильтр Винера, который применяется к классу, которому каждая область, классифицированная посредством модуля 32 классификации областей, принадлежит, и для компенсации искажения, накладываемого на область, посредством использования фильтра Винера. Следовательно, устройство декодирования изображений реализует процесс фильтрации согласно локальным свойствам изображения, тем самым позволяя повышать точность повышения качества изображений.
Вариант 2 осуществления
В вышеуказанном варианте 1 осуществления показывается контурный фильтр, в котором модуль 13 составления и обработки фильтра формирует фильтр Винера для каждого класса, которому одна или более областей принадлежат, и выполняет процесс фильтрации для каждого из блоков (K), которые составляют локальное декодированное изображение, посредством использования фильтра Винера класса, которому область, включающая в себя блок (K), принадлежит. В качестве альтернативы, для каждого из блоков контурный фильтр может выбирать фильтр Винера, который минимизирует сумму квадратических ошибок, возникающих между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в блоке (K), из фильтров Винера, которые контурный фильтр формирует для каждого класса, которому одна или более областей принадлежат, и может компенсировать искажение, накладываемое на блок (K), посредством использования фильтра Винера, выбранного таким образом.
Конкретно, контурный фильтр этого варианта осуществления работает следующим образом.
Фиг. 11 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 6 устройства кодирования изображений в соответствии с вариантом 2 осуществления настоящего изобретения.
Модуль 13 составления и обработки фильтра формирует фильтр Винера для каждого класса, которому одна или более областей принадлежат, аналогично модулю составления и обработки фильтра в соответствии с вышеуказанным вариантом 1 осуществления (этапы ST2-ST8).
В соответствии с этим вариантом 2 осуществления, модуль составления и обработки фильтра не использует флаг (block_filter_on_off_flag), показывающий то, выполнять или нет процесс выбора того, выполнять или нет процесс фильтрации для каждого блока в кадре, в настоящее время обрабатываемом, а использует флаг (block_filter_selection_flag), показывающий то, выбирать или нет фильтр, который должен использоваться для каждого блока в кадре, в настоящее время обрабатываемом. Кроме того, флаг (block_filter_selection_flag) первоначально деактивирован на этапе ST40 и активируется только тогда, когда этап ST46 выполняется.
Как упомянуто ниже, только когда флаг (block_filter_selection_flag) активирован, размер блока и информация выбора фильтра по каждому блоку включаются в информацию фильтра.
После формирования фильтра Винера для каждого класса, которому одна или более областей принадлежат, модуль 13 составления и обработки фильтра выбирает оптимальный процесс (например, процесс, который минимизирует сумму квадратических ошибок, возникающих между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в блоке (K)), из процесса выполнения процесса фильтрации для каждого из блоков (K), которые составляют локальное декодированное изображение, посредством выбора фильтра Винера из фильтров Винера, которые модуль составления и обработки фильтра формирует для каждого класса, которому одна или более областей принадлежат, и процесса невыполнения процесса фильтрации для каждого из блоков (этапы ST9 и ST41-ST47).
Более конкретно, в случае формирования четырех фильтров W1, W2, W3 и W4 Винера и выполнения процесса фильтрации с использованием каждого из этих четырех фильтров Винера, модуль составления и обработки фильтра выбирает фильтр W3 Винера, который минимизирует сумму E квадратических ошибок для блока (K), если сумма E квадратических ошибок в блоке (K) имеет следующее неравенство между четырьмя фильтрами.
EW3<EW2<EW4<EW0<EW1
- где EW0 показывает сумму E квадратических ошибок в момент, когда процесс фильтрации вообще не выполняется.
Фиг. 12 является пояснительным чертежом, показывающим пример выбора фильтра Винера для каждого из блоков (K), которые составляют локальное декодированное изображение. Например, фильтр W2 Винера выбирается для блока (1), и фильтр W3 Винера выбирается для блока (2).
При определении выполнять процесс фильтрации для кадра, в настоящее время обрабатываемого, посредством использования выбранных фильтров Винера модуль 13 составления и обработки фильтра задает флаг (frame_filter_on_off_flag) равным 1 (активирован) и выполняет процесс фильтрации, который минимизирует затраты, на этапах ST1-ST9 и ST40-ST47 и выводит сигнал локального декодированного изображения, фильтрованный таким образом, в запоминающее устройство 7 в качестве опорного сигнала изображения (этапы ST17-ST20).
Напротив, при определении не выполнять процесс фильтрации всего кадра, в настоящее время обрабатываемого (этапы ST17-ST18), модуль составления и обработки фильтра задает флаг (frame_filter_on_off_flag) равным нулю (деактивирован) и выводит сигнал подлежащего фильтрации локального декодированного изображения в запоминающее устройство 7 в качестве опорного сигнала изображения (этапы ST21-ST22).
После формирования фильтров Винера и затем выполнения процесса фильтрации вышеуказанным способом, модуль 13 составления и обработки фильтра выводит информацию фильтра по фильтрам Винера в узел 8 кодирования переменной длины.
Флаг (frame_filter_on_off_flag), показывающий то, выполнять или нет процесс фильтрации в кадре, в настоящее время обрабатываемом, включается в информацию фильтра.
Когда этот флаг активирован (показывает, что процесс фильтрации выполняется), информация, как показано ниже, включается в информацию фильтра.
(1) Число фильтров Винера (число классов, каждому из которых одна или более областей принадлежат)
- Число фильтров Винера может отличаться для каждого кадра.
(2) Информация (индекс) по числу отводов каждого фильтра Винера
- Когда все фильтры являются общими в кадре, общее число отводов включается.
- Когда число отводов отличается для каждого фильтра, число отводов каждого фильтра включается.
(3) Информация по коэффициентам фактически используемого фильтра Винера (фильтра Винера каждого класса, которому одна или более областей принадлежат),
- Даже если фильтр Винера формируется, информация по фильтру Винера не включается, когда фильтр Винера фактически не используется.
(4) Информация выбора фильтра по каждому блоку и информация размера блока
- Флаг (block_filter_selection_flag), показывающий то, выбирать или нет фильтр для каждого блока в единицах кадров.
- Только тогда, когда block_filter_on_off_flag активирован, информация размера блока (индекс) и информация выбора по каждому блоку включается.
В этом варианте осуществления, пример, в котором фрагменты информации (1) к (4) включаются в информацию фильтра, показывается. Число фильтров Винера, число отводов каждого фильтра Винера и размер блока могут храниться как посредством устройства кодирования изображений, так и посредством устройства декодирования изображений в качестве информации, определенной совместно в устройстве кодирования изображений и устройстве декодирования изображений, вместо кодирования и передачи фрагментов информации между ними.
Контурный фильтр 25 в устройстве декодирования изображений выполняет следующий процесс.
Фиг. 13 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 25 устройства декодирования изображений в соответствии с вариантом 2 осуществления настоящего изобретения.
Во-первых, запоминающее устройство 31 кадров контурного фильтра 25 сохраняет только один кадр сигнала декодированного изображения, выводимого из сумматора 24.
Когда флаг (frame_filter_on_off_flag), включенный в информацию фильтра, активирован (показывает, что процесс фильтрации выполняется) (этап ST31), и когда флаг (block_filter_selection_flag), включенный в информацию фильтра, деактивирован (этап ST51), модуль 32 классификации областей извлекает оценочную величину каждой из областей, которые составляют декодированное изображение, показанное посредством одного кадра сигнала декодированного изображения, сохраненного в запоминающем устройстве 31 кадров, и классифицирует каждую из областей на класс, которому область принадлежит, согласно оценочной величине (этап ST32), аналогично модулю классификации областей в соответствии с вышеуказанным вариантом 1 осуществления.
Напротив, когда флаг (frame_filter_on_off_flag), включенный в информацию фильтра, активирован (показывает, что процесс фильтрации выполняется) (этап ST31), и когда флаг (block_filter_selection_flag), включенный в информацию фильтра, активирован (этап ST51), модуль классификации областей обращается к информации по размеру каждого блока, который является единицей для выбора, и информации выбора фильтра по каждому блоку из фрагментов информации, включенных в информацию фильтра, и выполняет классификацию класса для каждого блока (этап ST52).
После того, как модуль 32 классификации областей классифицирует каждую область (каждый блок) на класс, которому область принадлежит, модуль 33 обработки фильтра обращается к информации фильтра, выводимой из узла 21 декодирования переменной длины, и формирует фильтр Винера, который применяется к классу, которому каждая область (каждый блок), классифицированная посредством модуля 32 классификации областей, принадлежит (этап ST33), аналогично модулю обработки фильтра в соответствии с вышеуказанным вариантом 1 осуществления.
После формирования фильтра Винера, который применяется к каждому классу, когда (block_filter_selection_flag) деактивирован, модуль 33 обработки фильтра выполняет процесс фильтрации для каждого из всех сигналов декодированного изображения в кадре, в настоящее время обрабатываемом, посредством использования сформированных фильтров Винера и выводит каждый сигнал декодированного изображения, фильтрованный таким образом, за пределы устройства декодирования изображений и в запоминающее устройство 26 в качестве сигнала фильтрованного декодированного изображения (этап ST53), как в случае, если флаг (block_filter_on_off_flag) деактивирован в вышеуказанном варианте 1 осуществления.
Напротив, когда (block_filter_selection_flag) активирован, модуль 33 обработки фильтра компенсирует искажение, накладываемое на сигнал декодированного изображения в каждом блоке, посредством использования фильтра Винера, который выбирается для блока после формирования фильтра Винера, который применяется к каждому классу, и выводит сигнал декодированного изображения, фильтрованный таким образом, за пределы устройства декодирования изображений и в запоминающее устройство 26 в качестве сигнала фильтрованного декодированного изображения (этап ST53).
Сигнал s"шляпка" фильтрованного декодированного изображения в это время выражается посредством следующего уравнения (5).
Figure 00000005
Матрица S является группой опорных сигналов в L×L пикселов, включающей в себя сигнал s декодированного изображения, который является целью для фильтрации.
- id_2(bl) является информацией выбора фильтра в блоке bl, в который сигнал s декодированного изображения включается, т.е. номером класса (номером фильтра) блока bl.
- id_2(bl)=0 показывает блок, для которого вообще не выполняется процесс фильтрации. Следовательно, процесс фильтрации вообще не выполняется в блоке.
Как можно видеть из вышеприведенного описания, поскольку устройство кодирования изображений в соответствии с этим вариантом 2 осуществления имеет такую структуру, что для каждого из блоков (K), которые составляют декодированное изображение, контурный фильтр выбирает фильтр Винера, который минимизирует сумму квадратических ошибок, возникающих между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом декодированного изображения в блоке (K), из фильтров Винера, которые контурный фильтр формирует для каждого класса, которому одна или более областей принадлежат, и компенсирует искажение, накладываемое на блок (K), посредством использования фильтра Винера, выбранного таким образом, предоставляется преимущество дополнительного повышения точности повышения качества изображений по сравнению с вышеуказанным вариантом 1 осуществления.
Вариант 3 осуществления
В вышеуказанном варианте 2 осуществления показан способ выбора, из процесса выполнения процесса фильтрации для каждого из блоков (K), которые составляют декодированное изображение, посредством использования одного из фильтров Винера, которые формируются для каждого класса, которому одна или более областей в кадре, в настоящее время обрабатываемом, принадлежат, и процесса невыполнения процесса фильтрации для каждого блока, процесса, который минимизирует сумму квадратических ошибок, возникающих между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в блоке (K). В качестве альтернативы, из процесса подготовки одного или более фильтров Винера заранее и использования одного из одного или более фильтров Винера, которые подготовлены заранее, процесса использования одного из фильтров Винера, которые формируются для каждого класса, которому одна или более областей в кадре, в настоящее время обрабатываемом, принадлежат, и процесса невыполнения процесса фильтрации для каждого блока, контурный фильтр может выбирать процесс, который минимизирует сумму квадратических ошибок, возникающих между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в блоке (K).
Фиг. 14 является блок-схемой последовательности операций способа, показывающей процесс, выполняемый посредством контурного фильтра 6 устройства кодирования изображений в соответствии с вариантом 3 осуществления настоящего изобретения.
Поскольку этот вариант 3 осуществления предоставляет более широкий выбор фильтров Винера по сравнению с выбором в вышеуказанном варианте 2 осуществления, вероятность того, что оптимальный фильтр Винера выбирается, увеличивается по сравнению с вышеуказанным вариантом 2 осуществления.
Поскольку способ выбора фильтра Винера является идентичным способу, показанному в вышеуказанном варианте 2 осуществления, пояснение способа далее опускается.
Поскольку процесс, выполняемый посредством устройства декодирования изображений, является идентичным процессу в соответствии с вышеуказанным вариантом 2 осуществления, пояснение процесса далее опускается.
Вариант 4 осуществления
В вышеуказанном варианте 2 осуществления показан способ выбора, из процесса выполнения процесса фильтрации для каждого из блоков (K), которые составляют декодированное изображение, посредством использования одного из фильтров Винера, которые формируются для каждого класса, которому одна или более областей в кадре, в настоящее время обрабатываемом, принадлежат, и процесса невыполнения процесса фильтрации для каждого блока, процесса, который минимизирует сумму квадратических ошибок, возникающих между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в блоке (K). В качестве альтернативы, из процесса использования одного из фильтров Винера, которые формируются для каждого класса, которому одна или более областей в кадре, в настоящее время обрабатываемом, принадлежат, процесса использования одного из фильтров Винера, которые использованы для уже кодированного кадра, и процесса невыполнения процесса фильтрации для каждого блока, контурный фильтр может выбирать процесс, который минимизирует сумму квадратических ошибок, возникающих между сигналом изображения, который является целью, которая должна быть кодирована, и сигналом локального декодированного изображения в блоке (K).
Фиг. 15 является блок-схемой последовательности операций способа, показывающей процесс для первого кадра, который выполняется посредством контурного фильтра 6 устройства кодирования изображений, и является идентичной блок-схеме последовательности операций способа, показанной на Фиг. 11 в вышеуказанном варианте 2 осуществления.
Фиг. 16 является блок-схемой последовательности операций способа, показывающей процесс для второго кадра и последующих кадров, который выполняется посредством контурного фильтра 6.
В качестве эталонного способа обращения к фильтру Винера, который использован для уже кодированного кадра, например, эталонные способы, как показано ниже, могут предоставляться.
Способ (1) обращения к фильтру Винера, который использован для блока в позиции, показанной посредством характерного вектора движения, который вычисляется в блоке, который является целью для фильтрации.
Способ (2) обращения к фильтру Винера, который использован для блока, расположенного в кадре, который является ближайшим во времени к блоку, который является целью для фильтрации и расположен в позиции, идентичной позиции целевого блока.
Способ (3) обращения к фильтру Винера, который использован для блока, имеющего наибольшую взаимную корреляцию между блоками в уже кодированном кадре.
В случае использования способа (3), идентичный процесс поиска блока должен быть выполнен посредством устройства кодирования изображений и устройства декодирования изображений.
Поскольку этот вариант 4 осуществления предоставляет более широкий выбор фильтров Винера по сравнению с выбором в вышеуказанном варианте 2 осуществления, вероятность того, что оптимальный фильтр Винера выбирается, увеличивается по сравнению с вышеуказанным вариантом 2 осуществления.
Поскольку способ выбора фильтра Винера является идентичным способу, показанному в вышеуказанном варианте 2 осуществления, пояснение способа далее опускается.
Поскольку процесс, выполняемый посредством устройства декодирования изображений, является идентичным процессу в соответствии с вышеуказанным вариантом 2 осуществления, пояснение процесса далее опускается.
Промышленная применимость
Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений в соответствии с настоящим изобретением могут улучшать точность повышения качества формирования изображений. Устройство кодирования изображений и способ кодирования изображений являются подходящими для использования в качестве устройства кодирования изображений и т.п. и способа кодирования изображений и т.п. для кодирования со сжатием и передачи изображения, соответственно, и устройство декодирования изображений и способ декодирования изображений являются подходящими для использования в качестве устройства декодирования изображений и т.п. и способа декодирования изображений и т.п. для декодирования кодированных данных, передаваемых посредством устройства кодирования изображений, чтобы восстанавливать изображение, соответственно.

Claims (29)

1. Устройство декодирования изображений, содержащее:
- средство декодирования переменной длины, которое выполняет процесс декодирования переменной длины над кодированным потоком битов для получения параметра для формирования сигналов прогнозирования и сжатого разностного изображения;
- средство фильтрации, которое выполняет процесс фильтрации над декодированным изображением, которое получено посредством суммирования изображения прогнозирования, сформированного посредством использования упомянутого параметра для формирования сигналов прогнозирования, и декодированного разностного изображения, полученного посредством восстановления указанного сжатого разностного изображения;
при этом средство декодирования переменной длины выполняет процесс декодирования переменной длины над информацией, связанной с множеством блоков, которые содержат указанное декодированное изображение, указанная информация представляет собой информацию идентификации, которая указывает для каждого из указанных блоков, следует ли выполнять процесс фильтрации или нет,
при этом указанное средство фильтрации определяет класс каждого из пикселей, которые составляют указанное декодированное изображение в соответствии с множеством пороговых значений, для выполнения процесса фильтрации над указанным декодированным изображением на основании фильтра, полученного в соответствии с определенным классом, и невыполнения процесса фильтрации над блоком, относительно которого информация идентификации указывает, что не следует выполнять процесс фильтрации,
при этом модуль для определения указанного класса отличается от указанного блока, соответствующего информации, которая указывает, следует ли выполнять процесс фильтрации или нет.
2. Способ декодирования изображений, содержащий:
- этап выполнения процесса декодирования переменной длины, на котором выполняют процесс декодирования переменной длины над кодированным потоком битов для получения параметра для формирования сигналов прогнозирования и сжатого разностного изображения;
- этап выполнения процесса фильтрации, на котором выполняют процесс фильтрации над декодированным изображением, которое получено посредством суммирования изображения прогнозирования, которое сформировано посредством использования упомянутого параметра для формирования сигналов прогнозирования, и декодированного разностного изображения, полученного посредством восстановления сжатого разностного изображения;
при этом на этапе выполнения процесса декодирования переменной длины выполняют процесс декодирования переменной длины над информацией, связанной с множеством блоков, которые содержат указанное декодированное изображение, при этом указанная информация представляет собой информацию идентификации, которая указывает для каждого из блоков, следует ли выполнять процесс фильтрации или нет;
причем, при выполнении процесса фильтрации, определяют класс для каждого из пикселей, составляющих указанное декодированное изображение, в соответствии с множеством пороговых значений для выполнения процесса фильтрации над декодированным изображением на основании фильтра, полученного в соответствии с определенным классом, и
не выполнения процесса фильтрации над блоком относительно которого информация идентификации указывает, что не следует выполнять процесс фильтрации,
при этом модуль для определения указанного класса отличается от блока, соответствующего информации, которая указывает, следует ли выполнять процесс фильтрации или нет.
3. Устройство кодирования изображений, содержащее:
- средство прогнозирования для выполнения процесса прогнозирования над каждым из блоков вводимого изображения для получения множества изображений прогнозирования и параметр для формирования сигналов прогнозирования;
- средство сжатия для выполнения процесса сжатия над разностным изображением между указанным изображением прогнозирования и введенным изображением для получения сжатого разностного изображения;
- средство фильтрации для выполнения процесса фильтрации над декодированным изображением, при этом указанное декодированное изображение получают суммированием изображения прогнозирования, которое сформировано с использованием параметра для формирования сигнала прогнозирования и восстановленного разностного изображения, которое сформировано посредством выполнения процесса восстановления над сжатым разностным изображением;
- средство кодирования переменной длины для выполнения процесса кодирования переменной длины над указанным параметром для формирования сигнала прогнозирования и указанным сжатым разностным изображением;
при этом указанное средство фильтрации определяет класс каждого из пикселей, которые составляют указанное декодированное изображение, в соответствии с множеством пороговых значений и выполняет процесс фильтрации с использованием фильтра, соответствующего определенному классу;
при этом средство кодирования переменной длины выполняет процесс кодирования переменной длины над информацией, которая указывает, следует ли выполнять процесс фильтрации над каждым из блоков, содержащих указанное декодированное изображение или не выполнять,
при этом модуль для определения указанного класса отличается от блока, соответствующего информации, которая указывает, следует ли выполнять процесс фильтрации или нет.
4. Способ кодирования изображений, содержащий:
- этап выполнения процесса прогнозирования для выполнения процесса прогнозирования над каждым из блоков вводимого изображения для получения множества изображений прогнозирования и параметр для формирования сигналов прогнозирования;
- этап выполнения процесса сжатия для выполнения процесса сжатия над разностным изображением между указанным изображением прогнозирования и указанным введенным изображением для получения сжатого разностного изображения;
- этап выполнения процесса фильтрации, на котором выполняют процесс фильтрации над декодированным изображением, при этом указанное декодированное изображение получают суммированием изображения прогнозирования, которое сформировано с использованием указанного параметра для формирования сигнала прогнозирования и восстановленного разностного изображения, которое сформировано посредством выполнения процесса восстановления над сжатым разностным изображением;
- этап выполнения процесса кодирования переменной длины для выполнения процесса кодирования переменной длины над указанным параметром для формирования сигнала прогнозирования и указанным сжатым разностным изображением;
при этом на этапе выполнения процесса фильтрации определяют класс каждого из пикселей, которые составляют указанное декодированное изображение, в соответствии с множеством пороговых значений и выполняют процесс фильтрации с использованием фильтра, соответствующего определенному классу;
при этом на этапе выполнения процесса кодирования переменной длины выполняют процесс кодирования переменной длины над информацией, которая указывает, следует ли выполнять процесс фильтрации над каждым из блоков, содержащих указанное декодированное изображение, или не выполнять,
при этом модуль для определения указанного класса отличается от блока, соответствующего информации, которая указывает, следует ли проводить процесс фильтрации или нет.
RU2018130428A 2009-06-19 2018-08-22 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений RU2685981C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-146350 2009-06-19
JP2009146350 2009-06-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2017122533A Division RU2666328C1 (ru) 2009-06-19 2017-06-27 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2019110428A Division RU2702052C1 (ru) 2009-06-19 2019-04-09 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений

Publications (1)

Publication Number Publication Date
RU2685981C1 true RU2685981C1 (ru) 2019-04-23

Family

ID=43356106

Family Applications (7)

Application Number Title Priority Date Filing Date
RU2012101781/08A RU2510592C2 (ru) 2009-06-19 2010-05-25 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2013151253/08A RU2557768C2 (ru) 2009-06-19 2013-11-18 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2015124155A RU2627104C2 (ru) 2009-06-19 2015-06-22 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2017122533A RU2666328C1 (ru) 2009-06-19 2017-06-27 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2018130428A RU2685981C1 (ru) 2009-06-19 2018-08-22 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2019110428A RU2702052C1 (ru) 2009-06-19 2019-04-09 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2019129509A RU2714100C1 (ru) 2009-06-19 2019-09-19 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений

Family Applications Before (4)

Application Number Title Priority Date Filing Date
RU2012101781/08A RU2510592C2 (ru) 2009-06-19 2010-05-25 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2013151253/08A RU2557768C2 (ru) 2009-06-19 2013-11-18 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2015124155A RU2627104C2 (ru) 2009-06-19 2015-06-22 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2017122533A RU2666328C1 (ru) 2009-06-19 2017-06-27 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений

Family Applications After (2)

Application Number Title Priority Date Filing Date
RU2019110428A RU2702052C1 (ru) 2009-06-19 2019-04-09 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
RU2019129509A RU2714100C1 (ru) 2009-06-19 2019-09-19 Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений

Country Status (13)

Country Link
US (2) US20120087595A1 (ru)
EP (1) EP2445216A4 (ru)
JP (1) JP5528445B2 (ru)
KR (1) KR101351709B1 (ru)
CN (5) CN104506877B (ru)
BR (1) BRPI1015984A2 (ru)
CA (1) CA2764868A1 (ru)
HK (5) HK1178355A1 (ru)
MX (1) MX2011013861A (ru)
RU (7) RU2510592C2 (ru)
SG (5) SG10201910966SA (ru)
WO (1) WO2010146771A1 (ru)
ZA (1) ZA201109488B (ru)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627507B2 (ja) * 2011-01-12 2014-11-19 Kddi株式会社 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラム
KR20120118782A (ko) * 2011-04-19 2012-10-29 삼성전자주식회사 적응적 필터링을 이용한 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
EP2700230A4 (en) 2011-04-21 2014-08-06 Mediatek Inc METHOD AND APPARATUS FOR ENHANCED LOOP FILTERING
WO2012177015A2 (ko) * 2011-06-20 2012-12-27 엘지전자 주식회사 영상 부호화/복호화 방법 및 그 장치
JP5653307B2 (ja) * 2011-06-27 2015-01-14 日本電信電話株式会社 画像符号化方法,画像符号化装置およびそのプログラム
US9451271B2 (en) 2011-07-21 2016-09-20 Blackberry Limited Adaptive filtering based on pattern information
EP2735144B1 (en) * 2011-07-21 2020-01-08 BlackBerry Limited Adaptive filtering based on pattern information
CN102316324B (zh) * 2011-08-24 2013-08-21 北京航空航天大学 一种基于局部最小熵的图像编码预测方法
JP2013093662A (ja) * 2011-10-24 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置、画像符号化プログラム及び画像復号プログラム
US9378419B2 (en) 2012-03-16 2016-06-28 Hewlett-Packard Development Company, L.P. Classifying images
KR101847365B1 (ko) * 2012-04-13 2018-04-09 미쓰비시덴키 가부시키가이샤 화상 부호화 장치, 화상 복호 장치, 화상 부호화 방법, 화상 복호 방법 및 기록 매체
US9277222B2 (en) 2012-05-14 2016-03-01 Qualcomm Incorporated Unified fractional search and motion compensation architecture across multiple video standards
FR2996093A1 (fr) * 2012-09-27 2014-03-28 France Telecom Procede de codage et decodage d'images, dispositifs de codage et decodage et programmes d'ordinateur correspondants
CN104871544B (zh) * 2013-03-25 2018-11-02 麦克赛尔株式会社 编码方法以及编码装置
JP5885886B2 (ja) * 2013-06-04 2016-03-16 三菱電機株式会社 画像解析装置及び画像解析方法
JP6087739B2 (ja) * 2013-06-07 2017-03-01 Kddi株式会社 動画像符号化装置、動画像復号装置、動画像システム、動画像符号化方法、動画像復号方法、およびプログラム
JP6037521B2 (ja) * 2015-07-02 2016-12-07 日本電信電話株式会社 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置、画像符号化プログラム及び画像復号プログラム
JPWO2017191749A1 (ja) * 2016-05-02 2019-03-07 ソニー株式会社 画像処理装置及び画像処理方法
WO2017191750A1 (ja) * 2016-05-02 2017-11-09 ソニー株式会社 符号化装置及び符号化方法、並びに、復号装置及び復号方法
CN114520915A (zh) * 2017-01-12 2022-05-20 索尼公司 图像处理装置、图像处理方法和计算机可读记录介质
CN110383836A (zh) * 2017-03-15 2019-10-25 索尼公司 编码装置、编码方法、解码装置和解码方法
EP3454556A1 (en) * 2017-09-08 2019-03-13 Thomson Licensing Method and apparatus for video encoding and decoding using pattern-based block filtering
CN111133757B (zh) * 2017-09-27 2022-04-15 索尼公司 编码设备、编码方法、解码设备和解码方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2093968C1 (ru) * 1995-08-02 1997-10-20 Закрытое акционерное общество "Техно-ТМ" Способ кодирования-декодирования изображений и устройство для его осуществления
US6363119B1 (en) * 1998-03-05 2002-03-26 Nec Corporation Device and method for hierarchically coding/decoding images reversibly and with improved coding efficiency
US6542631B1 (en) * 1997-11-27 2003-04-01 Seiko Epson Corporation Encoding method of a color image and its encoding device and a decoding method of the color image and its decoding device
US6714591B1 (en) * 1998-01-27 2004-03-30 Sharp Kabushiki Kaisha Video image coding device and video image decoding device
WO2009041843A1 (en) * 2007-09-28 2009-04-02 Vsevolod Yurievich Mokrushin Method of encoding digital signals (variants), method of decoding digital signals (variants), device for implementation thereof (variants), and system for image transmission via limited throughput communication channels (variants)

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761154B2 (ja) * 1989-10-13 1995-06-28 松下電器産業株式会社 動き補償予測フレーム間符号化装置
JP2868342B2 (ja) * 1991-08-23 1999-03-10 日本電気株式会社 フレーム間予測符号化装置のループ内フィルタ制御方式
US5299174A (en) * 1992-04-10 1994-03-29 Diasonics, Inc. Automatic clutter elimination
JP3326670B2 (ja) * 1995-08-02 2002-09-24 ソニー株式会社 データ符号化/復号化方法および装置、および符号化データ記録媒体
DE69721299T2 (de) * 1996-12-18 2003-11-06 Thomson Consumer Electronics Videosignalprozessor für verschiedene formate
AU717480B2 (en) * 1998-08-01 2000-03-30 Korea Advanced Institute Of Science And Technology Loop-filtering method for image data and apparatus therefor
US6804294B1 (en) * 1998-08-11 2004-10-12 Lucent Technologies Inc. Method and apparatus for video frame selection for improved coding quality at low bit-rates
JP4362895B2 (ja) * 1999-06-21 2009-11-11 ソニー株式会社 データ処理装置およびデータ処理方法、並びに記録媒体
FI117533B (fi) * 2000-01-20 2006-11-15 Nokia Corp Menetelmä digitaalisten videokuvien suodattamiseksi
JP4230636B2 (ja) * 2000-02-29 2009-02-25 株式会社東芝 動画像再生方法および動画像再生装置
US20030026495A1 (en) * 2001-03-07 2003-02-06 Gondek Jay Stephen Parameterized sharpening and smoothing method and apparatus
EP2278817B1 (en) * 2001-09-12 2012-05-23 Panasonic Corporation Transmitting and receiving apparatus
ES2754625T3 (es) * 2001-11-29 2020-04-20 Godo Kaisha Ip Bridge 1 Método de extracción de distorsión de codificación
US7436890B2 (en) * 2002-06-05 2008-10-14 Kddi R&D Laboratories, Inc. Quantization control system for video coding
US20040076333A1 (en) * 2002-10-22 2004-04-22 Huipin Zhang Adaptive interpolation filter system for motion compensated predictive video coding
JP4123356B2 (ja) * 2002-11-13 2008-07-23 富士ゼロックス株式会社 画像処理装置、画像処理プログラム、記憶媒体
US7227901B2 (en) * 2002-11-21 2007-06-05 Ub Video Inc. Low-complexity deblocking filter
US7346224B2 (en) * 2003-11-07 2008-03-18 Mitsubishi Electric Research Laboratories, Inc. System and method for classifying pixels in images
US7551792B2 (en) * 2003-11-07 2009-06-23 Mitsubishi Electric Research Laboratories, Inc. System and method for reducing ringing artifacts in images
US8503530B2 (en) * 2004-05-27 2013-08-06 Zhourong Miao Temporal classified filtering for video compression
JP2008507915A (ja) * 2004-07-20 2008-03-13 クゥアルコム・インコーポレイテッド 映像圧縮のための符号器補助式フレーム速度アップコンバージョンのための方法及び装置
JP4850475B2 (ja) * 2004-10-14 2012-01-11 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド 画像中の画素をフィルタリングする方法
US7995868B2 (en) * 2004-10-19 2011-08-09 Megachips Corporation Image processing method and image processing device
JP2006180470A (ja) * 2004-11-26 2006-07-06 Canon Inc 画像処理装置及び画像処理方法
KR100670495B1 (ko) * 2004-12-20 2007-01-16 엘지전자 주식회사 동영상 압축 부호화 장치 및 방법
JP4543971B2 (ja) * 2005-03-07 2010-09-15 ソニー株式会社 符号化方法、符号化装置、符号化処理のプログラム及び符号化処理のプログラムを記録した記録媒体
KR100703770B1 (ko) * 2005-03-25 2007-04-06 삼성전자주식회사 가중 예측을 이용한 비디오 코딩 및 디코딩 방법, 이를위한 장치
US20070070427A1 (en) * 2005-08-18 2007-03-29 Lexmark International, Inc. Systems and methods for selective dithering using pixel classification
JP2007067625A (ja) * 2005-08-30 2007-03-15 Matsushita Electric Ind Co Ltd カメラシステムにおけるフィルタ補正回路
JP2007129369A (ja) * 2005-11-01 2007-05-24 Matsushita Electric Ind Co Ltd 画像再生装置およびその方法
TW200727598A (en) * 2005-11-18 2007-07-16 Sony Corp Encoding/decoding device/method and the transmission system
US8189688B2 (en) * 2006-02-06 2012-05-29 Panasonic Corporation Image decoding device and image decoding method
JP2007336075A (ja) * 2006-06-13 2007-12-27 Victor Co Of Japan Ltd ブロック歪み低減装置
US9253504B2 (en) * 2006-07-18 2016-02-02 Thomson Licensing Methods and apparatus for adaptive reference filtering
US9001899B2 (en) * 2006-09-15 2015-04-07 Freescale Semiconductor, Inc. Video information processing system with selective chroma deblock filtering
US8139891B2 (en) * 2006-11-03 2012-03-20 Siemens Aktiengesellschaft System and method for structure enhancement and noise reduction in medical images
WO2008075247A1 (en) * 2006-12-18 2008-06-26 Koninklijke Philips Electronics N.V. Image compression and decompression
US8509316B2 (en) * 2007-01-09 2013-08-13 Core Wireless Licensing, S.a.r.l. Adaptive interpolation filters for video coding
US20090003449A1 (en) * 2007-06-28 2009-01-01 Mitsubishi Electric Corporation Image encoding device, image decoding device, image encoding method and image decoding method
US8170121B2 (en) * 2007-11-13 2012-05-01 Harmonic Inc. H.264/AVC based approach to scalable video compression
US8638852B2 (en) * 2008-01-08 2014-01-28 Qualcomm Incorporated Video coding of filter coefficients based on horizontal and vertical symmetry
JP5035029B2 (ja) * 2008-03-03 2012-09-26 ソニー株式会社 信号処理装置および方法、並びにプログラム
KR101591825B1 (ko) * 2008-03-27 2016-02-18 엘지전자 주식회사 비디오 신호의 인코딩 또는 디코딩 방법 및 장치
US8804831B2 (en) * 2008-04-10 2014-08-12 Qualcomm Incorporated Offsets at sub-pixel resolution
US8548041B2 (en) * 2008-09-25 2013-10-01 Mediatek Inc. Adaptive filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2093968C1 (ru) * 1995-08-02 1997-10-20 Закрытое акционерное общество "Техно-ТМ" Способ кодирования-декодирования изображений и устройство для его осуществления
US6542631B1 (en) * 1997-11-27 2003-04-01 Seiko Epson Corporation Encoding method of a color image and its encoding device and a decoding method of the color image and its decoding device
US6714591B1 (en) * 1998-01-27 2004-03-30 Sharp Kabushiki Kaisha Video image coding device and video image decoding device
US6363119B1 (en) * 1998-03-05 2002-03-26 Nec Corporation Device and method for hierarchically coding/decoding images reversibly and with improved coding efficiency
WO2009041843A1 (en) * 2007-09-28 2009-04-02 Vsevolod Yurievich Mokrushin Method of encoding digital signals (variants), method of decoding digital signals (variants), device for implementation thereof (variants), and system for image transmission via limited throughput communication channels (variants)

Also Published As

Publication number Publication date
CN104639942B (zh) 2018-10-02
JP5528445B2 (ja) 2014-06-25
CN104506877A (zh) 2015-04-08
RU2015124155A (ru) 2017-01-10
RU2702052C1 (ru) 2019-10-03
RU2666328C1 (ru) 2018-09-06
RU2013151253A (ru) 2015-05-27
ZA201109488B (en) 2013-03-27
SG10201809929SA (en) 2018-12-28
HK1210556A1 (en) 2016-04-22
CN104506877B (zh) 2018-01-19
CN104539956B (zh) 2018-11-06
CA2764868A1 (en) 2010-12-23
SG10201910966SA (en) 2020-01-30
HK1224111A1 (zh) 2017-08-11
RU2627104C2 (ru) 2017-08-03
US20120087595A1 (en) 2012-04-12
WO2010146771A1 (ja) 2010-12-23
HK1207926A1 (en) 2016-02-12
RU2557768C2 (ru) 2015-07-27
SG10201403250WA (en) 2014-10-30
EP2445216A4 (en) 2013-03-20
HK1207931A1 (en) 2016-03-24
CN104639942A (zh) 2015-05-20
RU2510592C2 (ru) 2014-03-27
KR20120061797A (ko) 2012-06-13
BRPI1015984A2 (pt) 2016-04-19
CN105872541A (zh) 2016-08-17
JPWO2010146771A1 (ja) 2012-11-29
CN102804781A (zh) 2012-11-28
SG176827A1 (en) 2012-01-30
KR101351709B1 (ko) 2014-01-16
CN104539956A (zh) 2015-04-22
RU2714100C1 (ru) 2020-02-11
SG10202012742QA (en) 2021-01-28
CN105872541B (zh) 2019-05-14
US20150043630A1 (en) 2015-02-12
HK1178355A1 (zh) 2013-09-06
CN102804781B (zh) 2016-06-29
MX2011013861A (es) 2012-02-13
RU2012101781A (ru) 2013-07-27
EP2445216A1 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
RU2685981C1 (ru) Устройство кодирования изображений, устройство декодирования изображений, способ кодирования изображений и способ декодирования изображений
US8649431B2 (en) Method and apparatus for encoding and decoding image by using filtered prediction block
JP4334533B2 (ja) 動画像符号化/復号化方法および装置
JP5513740B2 (ja) 画像復号化装置、画像符号化装置、画像復号化方法、画像符号化方法、プログラムおよび集積回路
KR100989296B1 (ko) 아티팩트 평가를 통한 향상된 이미지/비디오 품질
CN107566840B (zh) 针对图像的重建样本的集合提供补偿偏移的方法和装置
KR102287414B1 (ko) 손실 비디오 코딩을 위한 저복잡도 혼합 도메인 협력 인-루프 필터
US20100021071A1 (en) Image coding apparatus and image decoding apparatus
US20110150080A1 (en) Moving-picture encoding/decoding method and apparatus
JP2011515981A (ja) ビデオ信号のエンコーディングまたはデコーディング方法及び装置
RU2684193C1 (ru) Устройство и способ для компенсации движения в видеоизображении
EP1792477A2 (en) Noise filter for video processing
WO2011039931A1 (ja) 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法
KR101375667B1 (ko) 영상의 부호화, 복호화 방법 및 장치
KR20090098214A (ko) 영상의 부호화, 복호화 방법 및 장치
JP2019057900A (ja) 符号化装置及びプログラム、復号装置及びプログラム、並びに、画像処理システム
US20230269399A1 (en) Video encoding and decoding using deep learning based in-loop filter
Meyer et al. Learned Wavelet Video Coding using Motion Compensated Temporal Filtering
CN113132734A (zh) 一种编码、解码方法、装置及其设备
Alain et al. Learning clustering-based linear mappings for quantization noise removal
Kamisli et al. Reduction of blocking artifacts using side information
JPH1141594A (ja) 動画像符号化装置および方法、動画像復号化装置および方法、並びに伝送媒体