RU2684709C1 - Способ акустико-эмиссионной диагностики динамического промышленного оборудования - Google Patents

Способ акустико-эмиссионной диагностики динамического промышленного оборудования Download PDF

Info

Publication number
RU2684709C1
RU2684709C1 RU2018109645A RU2018109645A RU2684709C1 RU 2684709 C1 RU2684709 C1 RU 2684709C1 RU 2018109645 A RU2018109645 A RU 2018109645A RU 2018109645 A RU2018109645 A RU 2018109645A RU 2684709 C1 RU2684709 C1 RU 2684709C1
Authority
RU
Russia
Prior art keywords
equipment
acoustic emission
diagnostics
acoustic
similarity
Prior art date
Application number
RU2018109645A
Other languages
English (en)
Inventor
Игорь Анатольевич Растегаев
Алексей Валериевич Данюк
Эйнар Альбертович Аглетдинов
Дмитрий Львович Мерсон
Алексей Юрьевич Виноградов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет"
Priority to RU2018109645A priority Critical patent/RU2684709C1/ru
Application granted granted Critical
Publication of RU2684709C1 publication Critical patent/RU2684709C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Использование: для акустико-эмиссионной диагностики промышленного оборудования. Сущность изобретения заключается в том, что выполняют запись и обработку данных акустической эмиссии беспороговым способом, при этом распознавание вида повреждения и оценка годности оборудования к эксплуатации проводится на основании сравнения подобия информативных параметров акустической эмиссии за каждый период работы диагностируемого оборудования. Технический результат: обеспечение возможности раннего обнаружения дефектов и повреждений в оборудовании в условиях низкого соотношения сигнал-шум при нескольких одновременно действующих источниках акустической эмиссии (АЭ). 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к акустическим методам неразрушающего контроля, предназначено для технической диагностики промышленного оборудования и подвижных средств с применением метода акустической эмиссии (АЭ) и направлено на раннее обнаружение развивающихся дефектов и повреждений, возникающих в элементах и сборочных единицах диагностируемого оборудования и конструкций во время их эксплуатации при периодически повторяющемся законе изменения нагружающего воздействия. К подобным задачам относятся контроль и диагностика перехода в критическое техническое состояние элементов насосов, компрессоров, роторных установок, двигателей, турбин, донных шаберов, зубчатых передач и др. устройств.
Известны вибродиагностические способы контроля поврежденности динамических систем [1 и др.], основанные на анализе измерения амплитудно-временных и спектральных параметров виброскорости, виброперемещения и виброускорения. Общим недостатком вибродиагностических способов является невозможность контроля тихоходного (низкооборотистого) оборудования и низкая чувствительность. Последнее связано с тем, что вибрация элемента в большинстве случаев реализуется уже на критической стадии его повреждения и является следствием разбалансировки всей динамической системы. Метод АЭ в отличие от вибродиагностического метода (ВДМ) основан на регистрации сигналов от локальных дефектов (коррозия, трещинообразование, выкрашивание контактной поверхности, нарушение условий смазывания/трения и т.д.) в более высокочастотной области с применением более чувствительных преобразователей. АЭ начинает регистрироваться практически одновременно с появлением или началом развития дефекта, т.е. задолго до того, как этот дефект будет способен вызывать вибрацию. Поэтому метод АЭ по сравнению с ВДМ обладает большей чувствительностью к обнаружению начала дефектообразования, позволяет осуществлять более раннее выявление повреждения и отслеживать его развитие вплоть до перехода в критического состояния (мониторинг). Недостатком метода АЭ является трудность принятия решения о дефектности оборудования по АЭ данным, что обусловлено низкой помехоустойчивостью метода и множеством одновременно действующих источников АЭ. На решение данной проблемы и направлено настоящее изобретение.
Известен АЭ-способ диагностики зубчатых передач [2], в котором определяют время длительности выброса максимальных последовательных и неразрывных сигналов АЭ в течение нескольких оборотов колеса зубчатой передачи, по которой определяют размер дефекта на зубьях. Недостатком данного подхода является узкая направленность и, следовательно, применимость способа. Например, при полном изломе зуба сигналы АЭ вообще не будут регистрироваться и способ не распознает потерю зуба шестерни. Кроме того, наличие других периодических источников АЭ приведет к сбою в работе способа, т.к. в нем не заложен алгоритм распознавания источников АЭ.
Известен АЭ-способ диагностики механических трансмиссий [3], заключающийся в том, что на фиксированной частоте вращения вала в узком диапазоне частот в нескольких точках объекта контроля записывают уровень сигнала (амплитуду) АЭ за несколько оборотов вала и сравнивают его с АЭ от бездефектного объекта, зафиксированного в аналогичной точке измерения при тех же условиях. Данный способ за счет нескольких точек измерения АЭ позволяет распознать местоположение источника АЭ, что при известном наборе возможных дефектов в разных местах конструкции позволяет предположить и тип источника АЭ. Однако использование в качестве информативного параметра только уровня сигнала АЭ резко ограничивает возможности способа и не обеспечивает его помехоустойчивость. Так, например, наличие нескольких дефектов может привести к ложным выводам.
Известен АЭ-способ диагностики подшипников качения букс подвижного состава [4], в котором запись АЭ проводится параллельно нагружению подшипника поперечной нагрузкой с поворотом кольца на угол 180°. О годности подшипника судят путем сравнения числа зарегистрированных сигналов АЭ, отнесенного к углу поворота кольца подшипника с критическим значением данного отношения. Недостатком данного способа является высокая зависимость параметра числа зарегистрированных импульсов от уровня порога дискриминации аппаратуры и качества установки преобразователя АЭ.
Задачей, на решение которой направлено изобретение, является повышение достоверности и обеспечение раннего обнаружения дефектов и повреждений элементов динамического оборудования по АЭ данным.
Указанная задача решается путем распознавания повреждения по изменению самоподобия многомерного параметрического АЭ-образа режима работы оборудования в каждом рабочем/испытательном цикле.
Предлагаемый способ, заключающийся в следующем (Фиг. 1). На корпусе или диагностируемых элементах оборудования устанавливаются один или несколько преобразователей и проводится непрерывная запись АЭ, синхронизированная с периодом работы оборудования. При этом для исключения потери части данных режим регистрации АЭ выбирается беспороговым. Для простоты рассмотрим реализацию способа на примере одного канала регистрации АЭ с которого получаем непрерывный ряд значений амплитудно-волновой формы, описываемый функцией g(t). Далее, при необходимости, проводится предварительная частотная, временная или амплитудная фильтрация данных для устранения шума, помех или сигналов от не исследуемых процессов. После фильтрации g(t) получаем функцию g1(t). Затем покадрово (g1i(Δt), i - номер кадра) оценивается амплитудно-волновая форма АЭ во временной области и спектральная плотность мощности сигнала АЭ в спектральной области. При этом длина кадра (Δt), используемая при обработке сигнала, выбирается в соответствии с принципами: (1) минимальное количество кадров для оптимизации времени расчета; (2) минимальная длина кадра для устойчивого определения параметров событий (дефектов) минимальной длительности.
Для каждого кадра g1i(Δt) записи АЭ вычисляется несколько информативных параметров. Основными информативными параметрами для анализа АЭ выбираются: средняя
Figure 00000001
и пиковая амплитуда (А), энергия (Е), среднеквадратичное значение сигнала (RMS), медианная частота (m), математическое ожидание (М), дисперсия (σ), асимметрия/skewness (s), эксцесс/kurtosis (γ), но могут быть и другие. Последние четыре параметра могут рассчитываться как для амплитудно-временной, так и для спектральной характеристики АЭ. Таким образом, в результате обработки АЭ из исходного ряда данных (g(t) - если не проводиться фильтрация данных или g1(t) - если проводится) получаем несколько параметрических рядов изменения информативных параметров по времени регистрации АЭ (
Figure 00000002
A(t), E(t), RMS(t), M(t), m(t), σ(t), s(t), γ(t)).
Далее, в зависимости от задачи диагностики и чувствительности информативных параметров к определенному виду дефекта или отклонению режима работы выбирается несколько или все указанные параметрические ряды изменения информативных параметров. Параметрические ряды изменения информативных параметров разбиваются на интервалы времени длительностью равной периоду работы оборудования (длительность технологического и/или оборотного цикла) так, чтобы начало (t1) и конец (t2) интервала соответственно совпадало с началом (Ti) и концом (Ti+1) рабочего цикла оборудования. Таким образом получаем массив данных изменения информативных параметров АЭ за рабочий цикл оборудования (f(T)i={
Figure 00000003
A(T)i, E(T)i, RMS(T)i, М(Т)i, m(Т)i, σ(Т)i, s(T)i, γ(Т)i}, где i - порядковый номер рабочего цикла, i∈N). Также в массив анализируемых данных могут быть добавлены данные изменения технологических параметров (давление, расход, температура и т.д.)
Далее проводится анализ изменения информативных параметров АЭ и технологических параметров за рабочие циклы оборудования методами определения подобия и кластеризации числовых рядов.
Оценка подобия числовых рядов за цикл f(T)i выполняется любым методом кластеризации, который позволяет в результате получить число (характеристику), соответствующее степени подобия циклов друг другу (коэффициент подобия [К]i=0…1, где 0 - числовые ряды абсолютно различны, 1 - числовые ряды идентичны). Методы кластеризации предназначены для разделения временных рядов по степени схожести на кластеры ({C1, C2…CN}), где исходное состояние кластеров может быть предопределено в модельных или имитационных состояниях отклонения от нормальных условий работы, или кластеры формируются в автоматическом адаптивном режиме, т.е. фиксируется отклонение от текущего состояния системы (на момент начала мониторинга).
Обнаружение повреждений элементов динамического оборудования, их оценка и принятие решения о дальнейшей эксплуатации проводится в процессе работы оборудования по достижению коэффициента подобия некоторой установленной критической величины ([К]КР), или по появлению кластера недопустимого вида (СКР), или одновременно по тому и другому признаку.
При этом способ инвариантен к начальному техническому состоянию объекта контроля, т.е. позволяет проводить диагностику не только от начального (годного/бездефектного) технического состояния объекта контроля, но и с произвольного момента эксплуатации (в котором техническое состояние объекта контроля не известно). В последнем случае принимается, что любое отклонение степени схожести последующих циклов от начального, превышающее величину стандартного разброса значений информативных параметров, является изменением состояния системы, требующим проверки.
Кроме этого, оценка поврежденности оборудования может проводиться на разных временных интервалах: 1) по изменениям, происходящим в части цикла (например, только на этапе увеличения нагрузки, а этап снижения нагрузки может не рассматриваться), 2) по изменениям в каждом цикле путем сравнения степени схожести каждого полного рабочего цикла, или 3) по изменениям за несколько рабочих циклов (оценка изменения технического состояния за час, день, месяц, год…). В зависимости от решаемой задачи приведенные варианты оценки повреждаемости могут проводиться все, выборочно, параллельно или последовательно.
Тип (вид) источника АЭ (дефекта, неисправности, отклонения от нормального режима работы) в зависимости от количества возможных дефектных состояний оборудования может устанавливается по величине [К] и/или по параметрическим особенностям АЭ кластера (Ci). Для исключения влияния изменения режима работы оборудования на результат АЭ диагностики, при реализации способа параллельно с вышеописанными действиями определяется корреляция между изменениями технологических параметров и АЭ данными. При наличии нескольких возможных режимов работы оборудования сравниваются циклы, полученные при подобных (идентичных) технологических параметрах работы оборудования. Способ применим, как при одноканальной, так и многоканальной реализации метода АЭ. Также способ может быть применен и для контроля статического промышленного оборудования, работающего в условиях циклического изменения нагрузки.
Способ опробован для анализа АЭ данных мониторинга технического состояния тихоходного редуктора (3 об/мин) донного шабера варочного котла, по результатам чего установлено, что указанный способ позволяет отличить нормальный режим работы редуктора, от режима работы с перекосом оси, сломанным зубом зубчатого колеса и с наличием воды в смазке подшипника редуктора. Также способ позволяет оценить качество сборки редуктора после ремонта, причем применение вибродиагностического метода параллельно методу АЭ не позволило различить указанные режимы работы оборудования. Кроме этого, применение АЭ метода в пороговом режиме контроля также не дало положительных результатов, т.к. происходящие изменения АЭ не приводят к появлению сигналов выше порогового уровня, установленного по правилам [5]. Таким образом, предлагаемый способ практически применим и позволяет достичь заявленный результат.
Источники информации
1. Неразрушающий контроль: Справочник: В 7 т. Под общ. ред. В.В. Клюева. Т. 7: в 2 кн. Кн 1: В.И. Иванов, И.Э. Власов. Метод акустической эмиссии / М.: Машиностроение, 2005, с. 829.
2. Потапенко B.C. Способ диагностики зубчатых передач / Патент RU №2337340, 10.01.2007.
3. Иванов С.Л., Поддубная А.А., Фокин А.С. Способ диагностики механических трансмиссий / Патент RU №2427815, 28.12.2009.
4. Степанова Л.Н., Бехер С.А., Кабанов С.И., Тенитилов Е.С. Акустико-эмиссионный способ диагностирования колец подшипника буксового узла железнодорожного транспортного средства и устройство для его осуществления / Патент RU №2391656, 27.06.2008.
5. ПБ 03-593-03 Правила организации и проведения акустико-эмиссионного контроля сосудов, аппаратов, котлов и технологических трубопроводов / М.: ПИО ОБТ, 2003.

Claims (2)

1. Способ акустико-эмиссионной диагностики промышленного оборудования, который заключается в записи и обработке данных акустической эмиссии беспороговым способом, отличающийся тем, что распознавание вида повреждения и оценка годности оборудования к эксплуатации проводятся на основании сравнения подобия информативных параметров акустической эмиссии за каждый период работы диагностируемого оборудования.
2. Способ по п. 1, отличающийся тем, что сравнение и определение подобия информативных параметров акустической эмиссии за каждый период работы диагностируемого оборудования происходят в многомерном пространстве с использованием временных рядов нескольких информативных параметров.
RU2018109645A 2018-03-19 2018-03-19 Способ акустико-эмиссионной диагностики динамического промышленного оборудования RU2684709C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018109645A RU2684709C1 (ru) 2018-03-19 2018-03-19 Способ акустико-эмиссионной диагностики динамического промышленного оборудования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018109645A RU2684709C1 (ru) 2018-03-19 2018-03-19 Способ акустико-эмиссионной диагностики динамического промышленного оборудования

Publications (1)

Publication Number Publication Date
RU2684709C1 true RU2684709C1 (ru) 2019-04-11

Family

ID=66168213

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018109645A RU2684709C1 (ru) 2018-03-19 2018-03-19 Способ акустико-эмиссионной диагностики динамического промышленного оборудования

Country Status (1)

Country Link
RU (1) RU2684709C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747473C1 (ru) * 2020-04-03 2021-05-05 Общество С Ограниченной Ответственностью "Про Феррум" Способ прогнозирования стойкости к циклическим нагрузкам пластинчатых и тарельчатых пружин из рессорно-пружинной стали

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU794499A2 (ru) * 1979-02-14 1981-01-07 Предприятие П/Я Р-6542 Способ обнаружени развивающейс ТРЕщиНы
RU2003119465A (ru) * 2003-06-26 2004-12-20 Дмитрий Львович Мерсон (RU) Способ акустоэмиссионого контроля
US8195409B2 (en) * 2009-11-03 2012-06-05 The Trustees Of The Stevens Institute Of Technology Passive acoustic underwater intruder detection system
RU2515423C1 (ru) * 2012-12-20 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ повышения точности локации шумоподобных источников акустической эмиссии на основе спектрально-временного самоподобия

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU794499A2 (ru) * 1979-02-14 1981-01-07 Предприятие П/Я Р-6542 Способ обнаружени развивающейс ТРЕщиНы
RU2003119465A (ru) * 2003-06-26 2004-12-20 Дмитрий Львович Мерсон (RU) Способ акустоэмиссионого контроля
US8195409B2 (en) * 2009-11-03 2012-06-05 The Trustees Of The Stevens Institute Of Technology Passive acoustic underwater intruder detection system
RU2515423C1 (ru) * 2012-12-20 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ повышения точности локации шумоподобных источников акустической эмиссии на основе спектрально-временного самоподобия

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Стрелков Петр Борисович, Разработка методики акустико-эмиссионного контроля оборудования и трубопроводов атомных электростанций, Авто диссертации на соискание ученой степени кандидата технических наук, Москва, 2006, весь документ. Растегаев Игорь Анатольевич, Применение методики спектрального анализа акустических сигналов для исследования трибологических свойств смазочных и контактирующих материалов, Авто диссертации на соискание ученой степени кандидата физико-математических наук, Тольятти, 2009, весь документ. *
Стрелков Петр Борисович, Разработка методики акустико-эмиссионного контроля оборудования и трубопроводов атомных электростанций, Автореферат диссертации на соискание ученой степени кандидата технических наук, Москва, 2006, весь документ. Растегаев Игорь Анатольевич, Применение методики спектрального анализа акустических сигналов для исследования трибологических свойств смазочных и контактирующих материалов, Автореферат диссертации на соискание ученой степени кандидата физико-математических наук, Тольятти, 2009, весь документ. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747473C1 (ru) * 2020-04-03 2021-05-05 Общество С Ограниченной Ответственностью "Про Феррум" Способ прогнозирования стойкости к циклическим нагрузкам пластинчатых и тарельчатых пружин из рессорно-пружинной стали

Similar Documents

Publication Publication Date Title
RU2470280C2 (ru) Способ обнаружения и автоматической идентификации повреждения подшипников качения
Shi et al. Rolling bearing initial fault detection using long short-term memory recurrent network
El-Thalji et al. A summary of fault modelling and predictive health monitoring of rolling element bearings
Safizadeh et al. Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
Gousseau et al. Analysis of the Rolling Element Bearing data set of the Center for Intelligent Maintenance Systems of the University of Cincinnati
US7505852B2 (en) Probabilistic stress wave analysis system and method
Amarnath et al. Exploiting sound signals for fault diagnosis of bearings using decision tree
Nistane et al. Failure evaluation of ball bearing for prognostics
CN111964909A (zh) 滚动轴承运行状态检测方法、故障诊断方法及系统
De Almeida et al. New technique for evaluation of global vibration levels in rolling bearings
RU2684709C1 (ru) Способ акустико-эмиссионной диагностики динамического промышленного оборудования
JP2002181038A (ja) 異常診断装置
Pradhan et al. Fault detection using vibration signal analysis of rolling element bearing in time domain using an innovative time scalar indicator
RU2478923C2 (ru) Способ диагностики технического состояния межроторного подшипника двухвального газотурбинного двигателя
Wan et al. Adaptive asymmetric real Laplace wavelet filtering and its application on rolling bearing early fault diagnosis
KR102034856B1 (ko) 전동기 베어링 고장 및 상태 진단 방법 및 장치
Jiang et al. Rolling bearing quality evaluation based on a morphological filter and a Kolmogorov complexity measure
JP7367535B2 (ja) 回転軸受けの診断方法および装置
Wändell Multistage gearboxes: Vibration based quality control
RU2547504C1 (ru) Способ выявления наличия дефектов узлов и агрегатов автомобиля в реальном времени и устройство для его осуществления
Behzad et al. Defect size estimation in rolling element bearings using vibration time waveform
CN112213104B (zh) 轴承检测方法、装置和系统
Solazzi et al. Vibration based diagnostics on rolling contact fatigue test bench
Fan et al. Diagnosis of gear damage based on coefficient of variation method by analyzing vibration accelerations on one gear tooth
Oh et al. Fast pattern recognition inspection system (FPRIS) for machine vibration