RU2684683C1 - Датчик аэрометрических давлений - Google Patents

Датчик аэрометрических давлений Download PDF

Info

Publication number
RU2684683C1
RU2684683C1 RU2017139645A RU2017139645A RU2684683C1 RU 2684683 C1 RU2684683 C1 RU 2684683C1 RU 2017139645 A RU2017139645 A RU 2017139645A RU 2017139645 A RU2017139645 A RU 2017139645A RU 2684683 C1 RU2684683 C1 RU 2684683C1
Authority
RU
Russia
Prior art keywords
membranes
gap
main
perimeter
additional
Prior art date
Application number
RU2017139645A
Other languages
English (en)
Inventor
Иван Васильевич Антонец
Руслан Андреевич Борисов
Геннадий Михайлович Горшков
Алексей Аркадьевич Черторийский
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет"
Priority to RU2017139645A priority Critical patent/RU2684683C1/ru
Application granted granted Critical
Publication of RU2684683C1 publication Critical patent/RU2684683C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Устройство относится к контрольно-измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода. Устройство содержит корпус с двумя отверстиями, две основные мембраны, герметично по периметру прикрепленные к корпусу и образующие зазор путем разнесения по высоте, причем отверстия, сообщающиеся с измеряемой средой, размещены выше и ниже зазора, закрепленные на стойке источник излучения и, кроме того, верхнюю и нижнюю шторки с прорезями. Устройство также содержит две фотоприемные линейки, при этом в геометрических центрах верхней и нижней основных мембран содержатся отверстия, которые с внешних сторон мембран по отношению к зазору перекрыты дополнительными верхней и нижней мембранами, герметично по периметру прикрепленными к внешним сторонам основных мембран, при этом фотоприемные линейки прикреплены соответственно к верхней и нижней дополнительным мембранам и обращены к прорезям верхней и нижней шторок. Технический результат - повышение чувствительности и точности измерения давления и по высоте, и по скорости полета воздушного судна. 1 ил.

Description

Изобретение относится к контрольно - измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода.
В распространенных в настоящее время частотных преобразователях давления (Авиационные приборы и пилотажно-навигационные комплексы: учеб. пособие. В 2 ч. / сост.Е.В. Антонец, В.И. Смирнов, Г.А. Федосеева. -Ч. 1. - Ульяновск: УВАУ ГА, 2007. - 119 с. ) изменение измеряемого давления (или разности давлений) вызывает изменение частоты колебаний чувствительного элемента (ЧЭ), в качестве которых используются натянутая струна, тонкостенный цилиндрический резонатор и тому подобные элементы. Изменение частоты колебаний ЧЭ приводит к изменению частоты выходного сигнала преобразователя. Частотные преобразователи обладают преимуществом перед электромеханическими преобразователями давления, потому что частота сигнала практически не изменяется при его усилении и передаче по линиям связи от преобразователя к потребителям или соответствующим указателям. Данные устройства конструктивно выполнены в виде генераторных датчиков давления типа ДДГ, которые, в частности, используются в цифровых системах воздушных сигналов, предназначенных для измерения высотно-скоростных параметров полета самолета и выдачи результатов измерения потребителям.
Известен барометрический высотомер (Патент РФ №1426187 Кл.G01C 5/00; G01C 5/06, 10.06.2005 г. ), содержащий последовательно соединенные преобразователь давления в частоту импульсов тока, формирователь интервала счета, двоичный многоразрядный счетчик с входами предварительной установки и выходной регистр, управляющий вход которого соединен с выходом формирователя интервала счета, генератор опорной частоты и схему. И, первый и второй входы которой соединены соответственно с выходами генератора опорной частоты и формирователя интервала счета.
Существенными недостатками частотных преобразователей давления являются: высокая зависимость от стабильности частоты питающего напряжения и чувствительность к механическим вибрациям; появление температурных погрешностей датчика и относительно большие энергетические затраты, вызванные наличием специального электромагнитного возбудителя колебаний; постоянный уход метрологических характеристик упругого элемента, определяемый большим числом колебаний.
Известно также устройство для измерения барометрических вертикальной скорости и высоты полета (Патент РФ №1292447 Кл. G01P 3/489, 10.06.2005 г. ), содержащее барометрический высотомер, подключенный выходом к первому входу первого вычитателя непосредственно и ко второму входу первого вычитателя через последовательно соединенные первый, второй и третий элементы задержки, второй вычитатель, подсоединенный первым входом к выходу первого элемента задержки, вторым входом к выходу второго элемента задержки и выходом к первому входу первого сумматора, соединенного вторым входом с выходом первого вычитателя, и выходные шины.
Данное устройство обладает, по сравнению с предыдущим, более высокой точностью измерений за счет уменьшения динамической и флуктуационной погрешностей, однако ему также присущи все вышеперечисленные недостатки частотных преобразователей давления.
Технической задачей предлагаемого изобретения является создание датчика аэрометрических давлений.
Технический результат - повышение чувствительности и точности измерения давления и по высоте, и по скорости полета воздушного судна.
Указанный технический результат достигается с тем, что в устройство, содержащее корпус с двумя отверстиями, две основные мембраны, герметично по периметру прикрепленные к корпусу и образующие зазор путем разнесения по высоте, причем отверстия, сообщающиеся с измеряемой средой, размещены выше и ниже зазора, закрепленные на стойке источник излучения и, кроме того, верхнюю и нижнюю шторки с прорезями, а также две фотоприемные линейки, причем в геометрических центрах верхней и нижней основных мембран содержатся отверстия, которые с внешних сторон мембран, по отношению к зазору, перекрыты дополнительными верхней и нижней мембранами, герметично по периметру прикрепленными к внешним сторонам основных мембран, при этом фотоприемные линейки прикреплены соответственно к верхней и нижней дополнительным мембранам и обращены к прорезям верхней и нижней шторок.
Сущность изобретения поясняется схемой устройства представленного на чертеже. Устройство содержит корпус 1 с двумя отверстиями, соответственно для измерения статического (Рст) и полного (Рполн) давлений, внутри которого размещены верхняя и нижняя основные мембраны 2 и 3. Основные мембраны 2 и 3 разнесены по высоте, образуя зазор, из которого выкачан воздух, и герметично по периметру прикреплены к корпусу. Отверстия для измерения статического и полного давлений размещены выше и ниже зазора. В геометрических центрах мембран 2 и 3 выполнены отверстия, которые с внешних сторон мембран, по отношению к зазору, перекрываются дополнительными верхней 4 и нижней 5 мембранами, герметично по периметру прикрепленными к внешним сторонам основных мембран и имеющих кольцевые упоры 6. Дополнительные мембраны 4 и 5 имеют меньшую, по сравнению с основными 2 и 3, жесткость, а, следовательно, большую чувствительность. Внутри безвоздушного зазора к стойке 7 прикреплены источник излучения 8, а также верхняя и нижняя шторки 9 с прорезями 10. Две фотоприемные линейки 11 крепятся к верхней 4 и нижней 5 дополнительным мембранам и обращены к прорезям 10 верхней и нижней шторок 9.
Работа устройства осуществляется следующим образом. В исходном состоянии основные мембраны 2 и 3 и дополнительные мембраны 4 и 5 упругих чувствительных элементов занимают определенное положение. Оптическая энергия от источника излучения 8 через прорези 10 шторок 9 попадает в виде оптических пятен на фотоприемные линейки 11.
В фотоприемных линейках 11 отдельные фоточувствительные элементы (пиксели) расположены вдоль одной координаты. Принцип работы данных устройств заключается в формировании внутри каждого пикселя электрического сигнала, пропорционального поглощенной им оптической энергии. Достигается это благодаря фоточувствительному р-n переходу (как и в обычном фотодиоде), через который происходит разряд конденсатора фотоприемного элемента. Чем больше будет оптическая мощность, попадающая на пиксель, тем больше будет ток фотодиода и, следовательно, тем быстрее будет разряжаться конденсатор. В конце цикла измерения происходит считывание остаточного заряда конденсаторов пикселей.
При изменении статического (Рст) и (или) полного (Рполн) давлений мембраны 2, 3, 4 и 5 упругих чувствительных элементов деформируются, при этом фотоприемные линейки 11, прикрепленные к верхней 4 и нижней 5 дополнительных мембран, смещаются, вызывая перемещения на них оптических пятен от источника излучения 8 через прорези 10 шторок.
Дополнительные мембраны 4 и 5, имеющие большую чувствительность, начинают смещаться уже при давлениях, которые не воспринимаются основными мембранами 2 и 3, а последние начнут интенсивно смещаться лишь после того как кольцевые упоры 6 дополнительных мембран 4 и 5 упрутся во внешние поверхности основных мембран 2 и 3. При последовательном опросе пикселей на выходе фотоприемных многоэлементных устройств будет формироваться электрический сигнал, у которого изменение амплитуды во времени отображает распределение оптической мощности в пространстве фотоприемного устройства. Иными словами, на выходе фотоприемных устройств будут формироваться цифровые сигналы пропорциональные соответственно статическому и полному давлениям.
Предлагаемое устройство обладая всеми достоинствами прототипа, позволяет значительно повысить точность измерения нелинейно изменяющегося давления (статического и полного), а так же чувствительность датчиков давления на первоначальном этапе измерения.
Для расчета аэрометрических параметров: относительной барометрической высоты, приборной скорости, истинной воздушной скорости, вертикальной скорости, отклонения от заданной высоты и числа Маха - в вычислитель непрерывно должна поступать следующая информация: Рст - статическое давление, Рполн - полное давление, Ро -давление, относительно которого измеряется высота (выставляется вручную), Тт - температура заторможенного набегающего воздушного потока. Очевидно, что предлагаемый датчик давления совместно с датчиком температуры, позволяет определить все перечисленные аэрометрические параметры.

Claims (1)

  1. Датчик аэрометрических давлений, содержащий корпус с двумя отверстиями, две основные мембраны, герметично по периметру прикрепленные к корпусу и образующие зазор путем разнесения по высоте, причем отверстия, сообщающиеся с измеряемой средой, размещены выше и ниже зазора, закрепленные на стойке источник излучения и, кроме того, верхнюю и нижнюю шторки с прорезями, а также две фотоприемные линейки, отличающийся тем, что в геометрических центрах верхней и нижней основных мембран содержатся отверстия, которые с внешних сторон мембран по отношению к зазору перекрыты дополнительными верхней и нижней мембранами, герметично по периметру прикрепленными к внешним сторонам основных мембран, при этом фотоприемные линейки прикреплены соответственно к верхней и нижней дополнительным мембранам и обращены к прорезям верхней и нижней шторок.
RU2017139645A 2017-11-14 2017-11-14 Датчик аэрометрических давлений RU2684683C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017139645A RU2684683C1 (ru) 2017-11-14 2017-11-14 Датчик аэрометрических давлений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017139645A RU2684683C1 (ru) 2017-11-14 2017-11-14 Датчик аэрометрических давлений

Publications (1)

Publication Number Publication Date
RU2684683C1 true RU2684683C1 (ru) 2019-04-11

Family

ID=66168498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017139645A RU2684683C1 (ru) 2017-11-14 2017-11-14 Датчик аэрометрических давлений

Country Status (1)

Country Link
RU (1) RU2684683C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712777C1 (ru) * 2019-05-13 2020-01-31 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Датчик аэрометрических давлений
RU2762543C1 (ru) * 2020-11-25 2021-12-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Датчик статического и полного давлений

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU263231A1 (ru) * Г. Г. Смирнов Датчик давления с частотным выходом
SU1076787A1 (ru) * 1982-12-01 1984-02-29 Киевский Ордена Трудового Красного Знамени Институт Инженеров Гражданской Авиации Фотоэлектрический датчик давлени
US4787396A (en) * 1987-06-18 1988-11-29 Fiberoptic Sensor Technologies, Inc. Fiberoptic pressure transducer
SU1500889A1 (ru) * 1987-11-17 1989-08-15 Предприятие П/Я М-5696 Датчик давлени

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU263231A1 (ru) * Г. Г. Смирнов Датчик давления с частотным выходом
SU1076787A1 (ru) * 1982-12-01 1984-02-29 Киевский Ордена Трудового Красного Знамени Институт Инженеров Гражданской Авиации Фотоэлектрический датчик давлени
US4787396A (en) * 1987-06-18 1988-11-29 Fiberoptic Sensor Technologies, Inc. Fiberoptic pressure transducer
SU1500889A1 (ru) * 1987-11-17 1989-08-15 Предприятие П/Я М-5696 Датчик давлени

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712777C1 (ru) * 2019-05-13 2020-01-31 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Датчик аэрометрических давлений
RU2762543C1 (ru) * 2020-11-25 2021-12-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Датчик статического и полного давлений

Similar Documents

Publication Publication Date Title
RU2684683C1 (ru) Датчик аэрометрических давлений
EP0411058B1 (en) Capacitive pressure sensor
US4109147A (en) Optical position sensor
RU2653596C1 (ru) Датчик давления, использующий оптический метод преобразования информации
CN102520209B (zh) 基于激光自混合干涉的石英挠性加速度计
RU2702808C1 (ru) Датчик аэрометрических давлений
JPS6344176A (ja) 多重変換器からディジタル出力を得るシステム及び方法
RU2712777C1 (ru) Датчик аэрометрических давлений
RU2736736C1 (ru) Датчик аэрометрических давлений
RU2785033C1 (ru) Датчик давления, использующий оптический метод преобразования информации
RU2762543C1 (ru) Датчик статического и полного давлений
RU2796818C1 (ru) Измеритель параметров окружающего и набегающего воздушных потоков на летательных аппаратах
CN114111550A (zh) 基于电压积分翻转电容法的微位移测量装置及方法
RU162343U1 (ru) Измеритель угловой скорости
CN110988401A (zh) 一种光电加速度计标定方法及其系统
RU2529593C1 (ru) Измерительный преобразователь разности давлений
UA141046U (uk) Лінійний акселерометр
SU727976A1 (ru) Датчик перемещений
SU1232930A1 (ru) Устройство дл бесконтактного измерени малых перемещений
SU462092A1 (ru) Устройство дл измерени температуры
SU662815A1 (ru) Емкостной уровнемер
CN103543294A (zh) 一种基于附加质量的微米光栅加速度计测试方法
SU800819A1 (ru) Устройство дл измерени плотностижидКОСТи
SU562776A1 (ru) Цифровой измеритель линейных перегрузок
SU134589A1 (ru) Фазочастотный способ телеизмерени и устройство дл его осуществлени

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191115