RU2683744C1 - Method for preparation of ammonia gas and co2 for urea synthesis - Google Patents
Method for preparation of ammonia gas and co2 for urea synthesis Download PDFInfo
- Publication number
- RU2683744C1 RU2683744C1 RU2016127978A RU2016127978A RU2683744C1 RU 2683744 C1 RU2683744 C1 RU 2683744C1 RU 2016127978 A RU2016127978 A RU 2016127978A RU 2016127978 A RU2016127978 A RU 2016127978A RU 2683744 C1 RU2683744 C1 RU 2683744C1
- Authority
- RU
- Russia
- Prior art keywords
- gas
- synthesis
- urea
- ammonia
- variable pressure
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 49
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 47
- 239000004202 carbamide Substances 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title 1
- 239000007789 gas Substances 0.000 claims abstract description 142
- 239000000203 mixture Substances 0.000 claims abstract description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 13
- 239000001257 hydrogen Substances 0.000 claims abstract description 12
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000001179 sorption measurement Methods 0.000 claims description 21
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 claims description 10
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 10
- 239000000571 coke Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 239000007858 starting material Substances 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 2
- 238000003723 Smelting Methods 0.000 abstract 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000000926 separation method Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- -1 for example Chemical compound 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/025—Preparation or purification of gas mixtures for ammonia synthesis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/12—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
- C01C1/0488—Processes integrated with preparations of other compounds, e.g. methanol, urea or with processes for power generation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C273/00—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
- C07C273/02—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
- C07C273/04—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds from carbon dioxide and ammonia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C273/00—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
- C07C273/02—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
- C07C273/10—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds combined with the synthesis of ammonia
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/06—Making pig-iron in the blast furnace using top gas in the blast furnace process
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7022—Aliphatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7027—Aromatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/025—Other waste gases from metallurgy plants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/047—Composition of the impurity the impurity being carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/063—Refinery processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/068—Ammonia synthesis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1258—Pre-treatment of the feed
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/60—Process control or energy utilisation in the manufacture of iron or steel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Combustion & Propulsion (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Industrial Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Изобретение относится к получению аммиака и CO2 для синтеза мочевины.The invention relates to the production of ammonia and CO 2 for the synthesis of urea.
В промышленном масштабе мочевину получают из NH3 и CO2 с образованием в качестве промежуточного продукта карбамата аммония. Указанный карбамат аммония образуется быстро и полностью, если предотвращается диссоциация за счет достаточного высокого давления реакции. Образованный в экзотермическом процессе (с выделением тепла) карбамат аммония в эндотермическом процессе (с поглощением тепла) превращается в мочевину при проведении последующих стадий разложения при низком давлении, при этом обеспечивается возможность рециркуляции избыточного количества газов обратно в реактор. Химическую реакцию образования карбамата аммония осуществляют, используя избыток NH3 с молярным отношением NH3/CO2 приблизительно равным 4, которое обычно выбирают на практике.On an industrial scale, urea is obtained from NH 3 and CO 2 to form ammonium carbamate as an intermediate. Said ammonium carbamate is formed quickly and completely if dissociation is prevented due to a sufficient high reaction pressure. Ammonium carbamate formed in an exothermic process (with heat evolution) in the endothermic process (with heat absorption) is converted into urea during subsequent decomposition stages at low pressure, while it is possible to recirculate excess gases back to the reactor. The chemical reaction for the formation of ammonium carbamate is carried out using an excess of NH 3 with a molar ratio of NH 3 / CO 2 of approximately 4, which is usually chosen in practice.
Исходными веществами для синтеза мочевины являются CO2 и NH3. Поскольку в процессе синтеза аммиака в качестве вторичного компонента получают диоксид углерода, установка для получения мочевины обычно функционирует во взаимосвязи с установкой для получения аммиака. Используются установки, в которых, в конечном счете, получают мочевину из природного газа, воды и воздуха посредством стадий технологического процесса получения водорода, получения аммиака и синтеза мочевины.The starting materials for the synthesis of urea are CO 2 and NH 3 . Since carbon dioxide is produced as a secondary component in the synthesis of ammonia, the urea plant usually functions in conjunction with the ammonia plant. Installations are used in which, ultimately, urea is obtained from natural gas, water and air through the stages of the process for producing hydrogen, ammonia and urea synthesis.
В связи с изложенным выше задача настоящего изобретения заключается в обеспечении эффективного способа получения газообразных исходных веществ для синтеза мочевины. Для проведения способа необходимо использовать сырой неочищенный газ, полученный в качестве побочного продукта в процессе промышленного производства. Сырой неочищенный газ и указанные стадии технологического процесса следует выбирать так, чтобы газообразные компоненты, содержащиеся в сыром газе, по существу полностью превращались в аммиак и CO2 в пропорциях, необходимых для синтеза мочевины.In connection with the foregoing, the objective of the present invention is to provide an effective method for producing gaseous starting materials for the synthesis of urea. To carry out the method, it is necessary to use crude crude gas obtained as a by-product in the process of industrial production. The crude crude gas and the indicated process steps should be selected so that the gaseous components contained in the crude gas are substantially completely converted to ammonia and CO 2 in the proportions necessary for the synthesis of urea.
Для решения вышеуказанной задачи изобретение обеспечивает способ, охарактеризованный в п. 1 формулы. Предпочтительные осуществления способа согласно изобретению охарактеризованы в пп. 2-9 формулы изобретения.To solve the above problem, the invention provides a method described in paragraph 1 of the formula. Preferred embodiments of the method according to the invention are characterized in paragraphs. 2-9 of the claims.
В соответствии с изобретением для получения исходных газообразных веществ для синтеза мочевины используется газ металлургического производства, который содержит доменный газ по меньшей мере в качестве компонента смеси или состоит из доменного газа. Доменный газ получают при производстве чугуна в доменной печи. Чугун в доменной печи получают из железной руды, добавок и, кроме того, кокса и других восстанавливающих агентов, таких как уголь, нефть или газ.In accordance with the invention, metallurgical gas is used to obtain the starting gaseous substances for the synthesis of urea, which contains blast furnace gas at least as a component of the mixture or consists of blast furnace gas. Blast furnace gas is produced in the production of pig iron in a blast furnace. Cast iron in a blast furnace is obtained from iron ore, additives and, in addition, coke and other reducing agents, such as coal, oil or gas.
В качестве продуктов реакций восстановления неизбежно образуются CO2, водород и водяной пар. Доменный газ, отводимый в ходе доменного процесса, характеризуется, помимо наличия вышеупомянутых компонентов, высоким содержанием азота. Состав доменного газа зависит от исходного сырья и режима работы печи и подвержен колебаниям. Однако обычно доменный газ содержит от 35 до 60 объем. % N2, от 20 до 30 объем. % CO, от 20 до 30 объем. % CO2 и от 2 до 15 объем. % H2.As products of reduction reactions, CO 2 , hydrogen and water vapor are inevitably formed. The blast furnace gas discharged during the blast furnace process is characterized, in addition to the presence of the above components, by a high nitrogen content. The composition of the blast furnace gas depends on the feedstock and the operating mode of the furnace and is subject to fluctuations. However, typically a blast furnace gas contains between 35 and 60 volumes. % N 2 , from 20 to 30 volume. % CO, 20 to 30 vol. % CO 2 and from 2 to 15 vol. % H 2 .
Кроме того, в способе, соответствующему настоящему изобретению, может быть использован металлургический газ, который состоит из газовой смеси, образованной из доменного газа и конвертерного газа, или из газовой смеси, образованной из доменного газа, конвертерного газа и коксового газа. Конвертерный газ, который образуется в агрегатах-конвертерах сталелитейных заводов при переработке чугуна в нерафинированную сталь, имеет высокое содержание CO и, кроме того, содержит азот, водород и CO2. Типичный состав конвертерного газа содержит от 50 до 70 объем. % CO, от 10 до 20 объем. % N2, приблизительно 15 объем. % CO2 и приблизительно 2 объем. % H2. Коксовый газ получают при коксовании угля, и он характеризуется высоким содержанием водорода и содержанием заметных количеств CH4. Обычно коксовый газ содержит от 55 до 70 объем. % H2, от 20 до 30 объем. % CH4, от 5 до 10 объем. % N2, от 5 до 10 объем. % CO. Дополнительно в состав коксового газа входят проценты CO2, NH3 и H2S.In addition, in the method according to the present invention, metallurgical gas can be used, which consists of a gas mixture formed from blast furnace gas and converter gas, or from a gas mixture formed from blast furnace gas, converter gas and coke oven gas. The converter gas, which is formed in the converters of steel mills during the processing of cast iron into unrefined steel, has a high CO content and, in addition, contains nitrogen, hydrogen and CO 2 . A typical converter gas composition contains from 50 to 70 volume. % CO, 10 to 20 vol. % N 2 , approximately 15 volume. % CO 2 and approximately 2 vol. % H 2 . Coke oven gas is obtained by coking coal, and it is characterized by a high hydrogen content and an appreciable amount of CH 4 . Typically, coke oven gas contains between 55 and 70 volumes. % H 2 , from 20 to 30 vol. % CH 4 , 5 to 10 vol. % N 2 , from 5 to 10 volume. % CO. Additionally, the composition of coke oven gas includes percentages of CO 2 , NH 3 and H 2 S.
В способе согласно изобретению технологический газ, содержащий в качестве основных компонентов азот, водород и диоксид углерода, получают из металлургического газа, и этот технологический газ подвергают затем разделению с получением газового потока, содержащего CO2, и газовой смеси, состоящей, по существу из N2 и H2. Газообразный аммиак, подходящий для синтеза мочевины, получают из указанной газовой смеси посредством синтеза аммиака. CO2 отводят из указанного газообразного потока, содержащего CO2, со степенью чистоты и в количестве, подходящих для синтеза мочевины. Описанные выше обработка металлургического газа и стадии разделения могут быть согласованы одна с другой таким образом, что аммиак и CO2 образуются в соотношениях, необходимых для синтеза мочевины, и металлургический газ практически полностью может быть использован для получения газообразных исходных веществ, необходимых для синтеза мочевины.In the method according to the invention, a process gas containing nitrogen, hydrogen and carbon dioxide as the main components is obtained from a metallurgical gas, and this process gas is then separated to obtain a gas stream containing CO 2 and a gas mixture consisting essentially of N 2 and H 2 . Ammonia gas suitable for the synthesis of urea is obtained from said gas mixture by means of ammonia synthesis. CO 2 is removed from said gaseous stream containing CO 2 with a degree of purity and in an amount suitable for the synthesis of urea. The metallurgical gas processing described above and the separation stages can be coordinated with one another in such a way that ammonia and CO 2 are formed in the ratios necessary for the synthesis of urea, and metallurgical gas can be almost completely used to obtain gaseous starting materials necessary for the synthesis of urea.
Использованию металлургического газа для получения технологического газа предпочтительно предшествует процесс очистки газа. Очистка газа служит для отделения нежелательных компонентов, в частности, смолы, серы и соединений серы, ароматических углеводородов (бензол, толуол, ксилол (ВТХ)) и углеводородов с высокой температурой кипения. Компонент металлургического газа, представляющий собой CO, может быть превращен в CO2 и H2 посредством реакции конверсии водяного газа, в результате проведения которой образуется технологический газ, который в качестве основных компонентов содержит азот, водород и диоксид углерода.The use of metallurgical gas for the production of process gas is preferably preceded by a gas purification process. Gas purification is used to separate unwanted components, in particular resin, sulfur and sulfur compounds, aromatic hydrocarbons (benzene, toluene, xylene (BTX)) and high boiling hydrocarbons. The metallurgical gas component, which is CO, can be converted to CO 2 and H 2 through a water gas conversion reaction, resulting in the formation of a process gas, which contains nitrogen, hydrogen and carbon dioxide as the main components.
Технологический газ затем подвергают разделению, предпочтительно посредством адсорбции при переменном давлении (PSA) с получением газовой смеси, состоящей по существу из азота, водорода и отходящего газа, называемого также отходящим газом процесса PSA, содержащим CO2. Назначение адсорбции при переменном давлении (PSA), которая известна в уровне техники, представляет собой отделение и очистку водорода. Применительно к способу, соответствующему изобретению, адсорбция при переменном давлении осуществляется в комбинации с предшествующей обработкой газа с тем, чтобы устанавливалось желаемое отношение концентраций H2 и N2. Один аспект способа согласно изобретению заключается, таким образом, в объединении процессов обработки газа, в частности, процесса реакции конверсии водяного газа с адсорбцией при переменном давлении для получения синтез-газа, подходящего для синтеза аммиака, из металлургического газа, который содержит доменный газ, по меньшей мере в качестве компонента смеси или состоит из доменного газа. Помимо этого, вторичные компоненты, которые являются нежелательными для синтеза аммиака, например, аргон, метан или моноксид углерода, могут быть удалены, или их концентрация может быть уменьшена с помощью адсорбции при переменном давлении.The process gas is then separated, preferably by means of pressure swing adsorption (PSA), to produce a gas mixture consisting essentially of nitrogen, hydrogen and off-gas, also called off-gas from the PSA process, containing CO 2 . The purpose of variable pressure adsorption (PSA), which is known in the art, is the separation and purification of hydrogen. In relation to the method according to the invention, adsorption at variable pressure is carried out in combination with a previous gas treatment so that the desired ratio of the concentrations of H 2 and N 2 is established . One aspect of the method according to the invention thus consists in combining gas processing processes, in particular a water gas conversion reaction process with pressure swing adsorption, to produce synthesis gas suitable for the synthesis of ammonia from a metallurgical gas that contains a blast furnace gas, at least as a component of the mixture or consists of blast furnace gas. In addition, secondary components that are undesirable for the synthesis of ammonia, for example, argon, methane or carbon monoxide, can be removed, or their concentration can be reduced by adsorption under variable pressure.
Адсорбция при переменном давлении производит богатый энергией отходящий газ (отходящий газ PSA) и в состав которого входит компонент технологического газа, представляющий собой CO2, и остаточные концентрации CO. Диоксид углерода (CO2) для синтеза мочевины получают из упомянутого отходящего газа PSA. В предпочтительном осуществлении способа в соответствии с настоящим изобретением компонент, содержащий CO2, отделяют от отходящего газа адсорбции при переменном давлении (отходящего газа PSA) и затем разделяют на газ, содержащий высокую концентрацию CO2, для синтеза мочевины, и хвостовой газ с более низкой концентрацией CO2.Adsorption at variable pressure produces an energy-rich off-gas (PSA off-gas) and which includes a process gas component, which is CO 2 , and residual CO concentrations. Carbon dioxide (CO 2 ) for the synthesis of urea is obtained from the said PSA off-gas. In a preferred embodiment of the method according to the invention, the component containing CO 2 is separated from the adsorption off-gas at variable pressure (off-gas PSA) and then separated into a gas containing a high concentration of CO 2 for the synthesis of urea, and a tail gas with a lower concentration of CO 2 .
Настоящее изобретение обеспечивает также способ получения мочевины, в котором карбамат аммония получают из газообразного аммиака и CO2, используя избыток аммиака, и этот карбамат аммония подвергают разложению на воду и мочевину. Согласно изобретению газообразный аммиак, необходимый для синтеза мочевины, и CO2, который также необходим для синтеза мочевины, получают из металлургического газа, содержащего доменный газ, по меньшей мере в качестве компонента смеси, или состоящего из доменного газа. Для способа в соответствии с изобретением существенно, чтобы газообразные исходные вещества для синтеза мочевины были полностью получены из металлургического газа. Газообразные исходные вещества для синтеза мочевины могут быть получены также посредством способа, описанного выше.The present invention also provides a method for producing urea, in which ammonium carbamate is obtained from ammonia gas and CO 2 using excess ammonia, and this ammonium carbamate is decomposed into water and urea. According to the invention, gaseous ammonia necessary for the synthesis of urea and CO 2 , which is also necessary for the synthesis of urea, are obtained from metallurgical gas containing blast furnace gas, at least as a component of the mixture, or consisting of blast furnace gas. For the method in accordance with the invention, it is essential that the gaseous starting materials for the synthesis of urea are completely obtained from metallurgical gas. Gaseous starting materials for the synthesis of urea can also be obtained by the method described above.
Изобретение будет иллюстрировано ниже с помощью чертежа, отображающего всего лишь один иллюстративный пример. На единственной фигуре схематически представлен, в виде весьма упрощенной блок-схемы, способ получения газообразных исходных материалов для синтеза мочевины.The invention will be illustrated below with a drawing showing only one illustrative example. The only figure schematically presents, in the form of a very simplified flowchart, a method for producing gaseous starting materials for the synthesis of urea.
Технологический газ 2, содержащий азот (N2), водород (H2) и диоксид углерода (CO2) в качестве основных компонентов, получают из металлургического газа 1, который содержит доменный газ, по меньшей мере в качестве компонента смеси, и в иллюстративном примере состоит из доменного газа, с помощью способа, иллюстрируемого на фигуре.Process gas 2 containing nitrogen (N 2 ), hydrogen (H 2 ) and carbon dioxide (CO 2 ) as main components is obtained from metallurgical gas 1, which contains blast furnace gas, at least as a component of the mixture, and in illustrative example consists of blast furnace gas, using the method illustrated in the figure.
Доменный газ 1 имеет, например, типичный состав, содержащий 50 объем. % N2, 24 объем. % CO2, 21 объем. % СО и приблизительно 4 объем. % H2. После процесса очистки 3 газа, в котором отделяются нежелательные компоненты, например, смола, сера и соединения серы, ароматические углеводороды (ВТХ) и высококипящие углеводороды, металлургический газ 1, состоящий из доменного газа, с помощью процесса обработки 4 газа превращается в технологический газ 2, который состоит по существу из N2, H2 и CO2.Указанная обработка 4 газа включает, в частности, конверсию CO, в ходе которой компонент металлургического газа 1, представляющий собой CO, превращается в CO2 и H2 посредством реакции конверсии водяного газа:Blast furnace gas 1 has, for example, a typical composition containing 50 volume. % N 2 , 24 volume. % CO 2 , 21 volume. % CO and approximately 4 volume. % H 2 . After a
CO+H2O=CO2+H2.CO + H 2 O = CO 2 + H 2 .
После проведения конверсии или реакции конверсии водяного газа технологический газ имеет состав, содержащий приблизительно 37 объем. % CO2, 21 объем. % H2 и 42 объем. % N2.After carrying out the conversion or the reaction of the conversion of water gas, the process gas has a composition containing approximately 37 volume. % CO 2 , 21 volume. % H 2 and 42 vol. % N 2 .
Технологический газ 2 разделяют с помощью адсорбции 16 при переменном давлении (PSA) с получением газовой смеси 5, состоящей по существу из N2 и H2, и отходящего газа 6, содержащего CO2.Газообразный аммиак 8, подходящий для синтеза мочевины, получают из указанной газовой смеси, содержащей N2 и H2, путем синтеза 7 аммиака. При синтезе 7 аммиака газовая смесь, образованная из водорода и азота, может, например, реагировать в присутствии смешанного катализатора на основе оксида железа, при давлениях в диапазоне от 150 до 200 бар и при реакционной температуре от 350 до 550°C.The process gas 2 is separated by
CO2 для синтеза 9 мочевины получают из отходящего газа 6, отводимого из процесса адсорбции при переменном давлении. В соответствии с блок-схемой процесса, иллюстрируемой на фигуре, компонент 11, содержащий CO2, отделяют от отходящего газа 6 процесса адсорбции при переменном давлении на первой стадии 10 разделения. После этого разделение на газ 13, имеющий более высокую концентрацию диоксида углерода, и хвостовой газ 14, имеющий более низкую концентрацию CO2, осуществляют на второй стадии 12 разделения. Указанный газ 13 представляет собой, в частности, диоксид углерода с чистотой, необходимой для синтеза мочевины.CO 2 for the synthesis of 9 urea is obtained from the
CO2 и NH3 направляют в установку для получения мочевины в пропорциях, необходимых для синтеза 9 мочевины. В установке для получения мочевины производят карбамат аммония, используя избыток аммиака, и этот карбамат аммония превращается в мочевину 15 на последующих стадиях разложения при низком давлении.CO 2 and NH 3 are sent to the urea plant in the proportions necessary for the synthesis of 9 urea. In the urea plant, ammonium carbamate is produced using excess ammonia, and this ammonium carbamate is converted to
Способ, иллюстрируемый с помощью фигуры, может быть также реализован с использованием в качестве металлургического газа 1 газовой смеси из доменного газа и конвертерного газа или с использованием газовой смеси, образованной из доменного газа, конвертерного газа и косового газа.The method illustrated by the figure can also be implemented using metallurgical gas 1 as a gas mixture of blast furnace gas and converter gas, or using a gas mixture formed of blast furnace gas, converter gas and oblique gas.
Claims (19)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013113980.9A DE102013113980A1 (en) | 2013-12-12 | 2013-12-12 | Process for the production of ammonia gas and CO2 for a urea synthesis |
DE102013113980.9 | 2013-12-12 | ||
PCT/EP2014/003315 WO2015086149A1 (en) | 2013-12-12 | 2014-12-11 | Method for preparation of ammonia gas and co2 for a urea synthesis process |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2683744C1 true RU2683744C1 (en) | 2019-04-01 |
Family
ID=52134103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016127978A RU2683744C1 (en) | 2013-12-12 | 2014-12-11 | Method for preparation of ammonia gas and co2 for urea synthesis |
Country Status (12)
Country | Link |
---|---|
US (2) | US10519102B2 (en) |
EP (1) | EP3129324B1 (en) |
KR (1) | KR102258543B1 (en) |
CN (1) | CN106029570B (en) |
AU (1) | AU2014361204B2 (en) |
BR (1) | BR112016012533B1 (en) |
CA (1) | CA2930263C (en) |
DE (1) | DE102013113980A1 (en) |
MX (1) | MX2016006799A (en) |
RU (1) | RU2683744C1 (en) |
UA (1) | UA120174C2 (en) |
WO (1) | WO2015086149A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013113958A1 (en) | 2013-12-12 | 2015-06-18 | Thyssenkrupp Ag | Plant network for steelmaking and process for operating the plant network |
DE102013113913A1 (en) | 2013-12-12 | 2015-06-18 | Thyssenkrupp Ag | Plant network for steelmaking and process for operating the plant network |
DE102013113921A1 (en) | 2013-12-12 | 2015-06-18 | Thyssenkrupp Ag | Plant network for steelmaking and process for operating the plant network |
DE102013113950A1 (en) | 2013-12-12 | 2015-06-18 | Thyssenkrupp Ag | Plant network for steelmaking and process for operating the plant network |
DE102013113933A1 (en) | 2013-12-12 | 2015-06-18 | Thyssenkrupp Ag | Process for the production of synthesis gas in association with a metallurgical plant |
DE102015121756A1 (en) | 2015-12-14 | 2017-06-14 | Thyssenkrupp Ag | Process for providing carbon dioxide for the synthesis of urea |
EP3573165A1 (en) | 2016-04-01 | 2019-11-27 | NS Co., Ltd. | Method for manufacturing electrode assembly |
EP3398935A1 (en) * | 2017-05-05 | 2018-11-07 | Casale Sa | Process and plant for the synthesis of urea |
CN107352558B (en) * | 2017-07-12 | 2019-11-15 | 华陆工程科技有限责任公司 | A kind of device and method of blast furnace gas comprehensive utilization production synthesis ammoniuria element |
EP3604210A1 (en) | 2018-08-02 | 2020-02-05 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO | Production of carbon dioxide and ammonia from residual gases in the steel and metal industries |
CN111100716B (en) * | 2018-10-26 | 2022-03-25 | 苏州盖沃净化科技有限公司 | Method and device for preparing natural gas |
US20230160080A1 (en) * | 2021-11-23 | 2023-05-25 | Halliburton Energy Services, Inc. | Methods of forming aqueous urea utilizing carbon dioxide captured from exhaust gas at wellsite |
KR20240058008A (en) | 2022-10-25 | 2024-05-03 | 한국화학연구원 | A method for preparing plastic monomers by using steel by-product gas |
US20240167170A1 (en) * | 2022-11-23 | 2024-05-23 | Dioxycle | Reactors and Methods for Production of Sustainable Chemicals using Carbon Emissions of Metallurgical Furnaces |
WO2024189095A1 (en) * | 2023-03-16 | 2024-09-19 | Thyssenkrupp Uhde Gmbh | Combined system for producing steel, and method for operating the combined system |
LU103089B1 (en) * | 2023-03-16 | 2024-09-16 | Thyssenkrupp Ag | Plant network for steel production and a method for operating the plant network |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1064863A3 (en) * | 1973-02-14 | 1983-12-30 | Мицуи Тоацу Кемикалз,Инкорпорейтед (Фирма) | Process for producing urea |
EP1031534A1 (en) * | 1999-02-25 | 2000-08-30 | Praxair Technology, Inc. | Use of cryogenic rectification for the production of ammonia |
JP2002161303A (en) * | 2000-11-24 | 2002-06-04 | Kawasaki Heavy Ind Ltd | Method and equipment for utilizing gas discharged from melting reduction furnace |
RU2254331C1 (en) * | 2001-05-03 | 2005-06-20 | ДСМ Ай Пи ЭССЕТС Б.В. | Method for preparing urea (variants), method for enhancing output of process |
RU2283832C2 (en) * | 2000-09-15 | 2006-09-20 | Хальдор Топсеэ А/С | Method for simultaneous production of ammonia and urea |
CN102101644A (en) * | 2010-12-20 | 2011-06-22 | 昆明理工大学 | Method for preparing ammonia synthesis gas from iron alloy smoke |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL25057C (en) | 1927-10-05 | 1931-04-15 | ||
GB586650A (en) * | 1944-09-18 | 1947-03-26 | Power Gas Ltd | Process for the production of hydrogen-nitrogen mixtures |
US2852344A (en) * | 1952-11-13 | 1958-09-16 | Rheinpreussen Ag | Production of ammonia from blast furnace gas |
US3005849A (en) | 1958-06-17 | 1961-10-24 | Toyo Koatsu Ind Inc | Urea synthesis using excess ammonia |
DE1467202A1 (en) | 1963-03-21 | 1969-03-13 | Linde Eismasch Ag | Method and device for regulating the cold balance when producing NH3 synthesis gas |
US3872025A (en) | 1969-10-31 | 1975-03-18 | Bethlehem Steel Corp | Production and utilization of synthesis gas |
US4013454A (en) * | 1975-03-04 | 1977-03-22 | Robert Kenneth Jordan | Coproduction of iron with methanol and ammonia |
DE3044478A1 (en) * | 1980-11-26 | 1982-06-03 | Didier Engineering Gmbh, 4300 Essen | PROCESSING PROCESS FOR COOKING OVEN GAS AND GASKEY GAS |
DE3101067A1 (en) | 1981-01-15 | 1982-07-22 | Didier Engineering Gmbh, 4300 Essen | "Process for generating ammonia synthesis gas according to the steam-reforming process" |
DE3335087A1 (en) * | 1983-09-28 | 1985-04-11 | Didier Engineering Gmbh, 4300 Essen | Process for the production of ammonia synthesis gas |
DE3515250A1 (en) * | 1985-04-27 | 1986-10-30 | Hoesch Ag, 4600 Dortmund | METHOD FOR PRODUCING CHEMICAL RAW MATERIALS FROM COOKING OVEN GAS AND CABINET GASES |
US5523483A (en) * | 1995-06-16 | 1996-06-04 | The M. W. Kellogg Company | Integrated urea/ammonia process |
MXPA05012242A (en) * | 2003-05-15 | 2006-02-08 | Hylsa Sa | Method and apparatus for improved use of primary energy sources in integrated steel plants. |
FR2884305A1 (en) * | 2005-04-08 | 2006-10-13 | Air Liquide | Carbon dioxide separating method for iron and steel industry, involves receiving flow enriched in carbon dioxide from absorption unit, sending it towards homogenization unit and subjecting carbon dioxide to intermediate compression stage |
KR101628664B1 (en) * | 2009-12-29 | 2016-06-10 | 재단법인 포항산업과학연구원 | Method for producing ammonia and urea by using the converter gas |
CN102101643B (en) * | 2010-12-20 | 2013-11-27 | 昆明理工大学 | Method for preparing ammonia synthesis gas from oxygen-enriched blast furnace gas |
CN103303863A (en) * | 2013-06-13 | 2013-09-18 | 黄家鹄 | Method for producing ammonia synthesis gas from coke-oven gas |
-
2013
- 2013-12-12 DE DE102013113980.9A patent/DE102013113980A1/en not_active Withdrawn
-
2014
- 2014-12-11 AU AU2014361204A patent/AU2014361204B2/en active Active
- 2014-12-11 BR BR112016012533-9A patent/BR112016012533B1/en active IP Right Grant
- 2014-12-11 EP EP14815578.1A patent/EP3129324B1/en not_active Revoked
- 2014-12-11 CA CA2930263A patent/CA2930263C/en active Active
- 2014-12-11 UA UAA201607703A patent/UA120174C2/en unknown
- 2014-12-11 MX MX2016006799A patent/MX2016006799A/en unknown
- 2014-12-11 RU RU2016127978A patent/RU2683744C1/en active
- 2014-12-11 CN CN201480067678.XA patent/CN106029570B/en active Active
- 2014-12-11 KR KR1020167018497A patent/KR102258543B1/en active IP Right Grant
- 2014-12-11 US US15/103,875 patent/US10519102B2/en active Active
- 2014-12-11 WO PCT/EP2014/003315 patent/WO2015086149A1/en active Application Filing
-
2017
- 2017-03-29 US US15/472,558 patent/US20170210703A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1064863A3 (en) * | 1973-02-14 | 1983-12-30 | Мицуи Тоацу Кемикалз,Инкорпорейтед (Фирма) | Process for producing urea |
EP1031534A1 (en) * | 1999-02-25 | 2000-08-30 | Praxair Technology, Inc. | Use of cryogenic rectification for the production of ammonia |
RU2283832C2 (en) * | 2000-09-15 | 2006-09-20 | Хальдор Топсеэ А/С | Method for simultaneous production of ammonia and urea |
JP2002161303A (en) * | 2000-11-24 | 2002-06-04 | Kawasaki Heavy Ind Ltd | Method and equipment for utilizing gas discharged from melting reduction furnace |
RU2254331C1 (en) * | 2001-05-03 | 2005-06-20 | ДСМ Ай Пи ЭССЕТС Б.В. | Method for preparing urea (variants), method for enhancing output of process |
CN102101644A (en) * | 2010-12-20 | 2011-06-22 | 昆明理工大学 | Method for preparing ammonia synthesis gas from iron alloy smoke |
Also Published As
Publication number | Publication date |
---|---|
UA120174C2 (en) | 2019-10-25 |
CN106029570B (en) | 2019-01-04 |
KR20160097312A (en) | 2016-08-17 |
CA2930263A1 (en) | 2015-06-18 |
DE102013113980A1 (en) | 2015-06-18 |
BR112016012533A2 (en) | 2017-08-08 |
AU2014361204B2 (en) | 2018-09-06 |
BR112016012533B1 (en) | 2022-06-28 |
AU2014361204A1 (en) | 2016-06-30 |
CA2930263C (en) | 2019-07-09 |
WO2015086149A1 (en) | 2015-06-18 |
MX2016006799A (en) | 2016-11-25 |
CN106029570A (en) | 2016-10-12 |
US10519102B2 (en) | 2019-12-31 |
EP3129324A1 (en) | 2017-02-15 |
KR102258543B1 (en) | 2021-05-31 |
US20170210703A1 (en) | 2017-07-27 |
EP3129324B1 (en) | 2020-09-16 |
US20160318855A1 (en) | 2016-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2683744C1 (en) | Method for preparation of ammonia gas and co2 for urea synthesis | |
AU2014361206B2 (en) | Method for generating synthesis gas in conjunction with a smelting works | |
JP2012528212A (en) | Syngas production method | |
CN102642810B (en) | Combined process for preparing Fischer-Tropsch synthetic oil raw material gas by utilizing coke-oven gas | |
JPS61275101A (en) | Manufacture of chemical substance | |
US20140343339A1 (en) | Method for obtaining olefins from furnace gases of steel works | |
CN101284761A (en) | Process for combined preparing methylic alcohol, natural gas for automobile and synthesis ammonia form industrial end gas rich in carbon and hydrogen | |
KR101351317B1 (en) | A method for preparing reducing gas by using cokes oven gas and by-product gas from steel works | |
WO2012145910A1 (en) | Method and device for producing methanol | |
EA202193148A1 (en) | METHOD OF OPERATION OF BLAST FURNACE | |
CN105883851A (en) | Novel gasification and pyrolysis coupling gas poly-generation process | |
KR20110076103A (en) | Method for producing ammonia and urea by using the converter gas | |
JP5384798B2 (en) | Method for producing liquefiable storage fuel from by-product gas of steelworks | |
CN109280000B (en) | Method and device for utilizing coal gas | |
US9139492B2 (en) | Method for processing coke oven gas | |
KR20180119007A (en) | A Hydrogen Generator Using by-product gas and Preparation Method of Hydrogen Using the Same | |
JP5939189B2 (en) | How to operate steelworks | |
CN118437253A (en) | Method and system for co-producing LNG and methanol from coke oven gas and blast furnace gas | |
SU1682308A1 (en) | Method of ammonia production | |
KR20240150864A (en) | Devices and methods for removing carbon dioxide using psa tail gas | |
CN116216742A (en) | Improved method for preparing synthetic ammonia from coke oven gas | |
RU2373027C1 (en) | Carbonyl iron manufacturing method | |
GB190814971A (en) | Improvements in and relating to the Manufacture of Methane or Mixtures of Methane and Hydrogen. |