DE3101067A1 - "Process for generating ammonia synthesis gas according to the steam-reforming process" - Google Patents

"Process for generating ammonia synthesis gas according to the steam-reforming process"

Info

Publication number
DE3101067A1
DE3101067A1 DE19813101067 DE3101067A DE3101067A1 DE 3101067 A1 DE3101067 A1 DE 3101067A1 DE 19813101067 DE19813101067 DE 19813101067 DE 3101067 A DE3101067 A DE 3101067A DE 3101067 A1 DE3101067 A1 DE 3101067A1
Authority
DE
Germany
Prior art keywords
gas
ammonia synthesis
synthesis gas
furnace
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19813101067
Other languages
German (de)
Inventor
Joachim F. 5628 Heiligenhaus Meckel
Detlef 4300 Essen Messerschmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Didier Engineering GmbH
Original Assignee
Didier Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Didier Engineering GmbH filed Critical Didier Engineering GmbH
Priority to DE19813101067 priority Critical patent/DE3101067A1/en
Publication of DE3101067A1 publication Critical patent/DE3101067A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Industrial Gases (AREA)

Abstract

The invention relates to a novel process for generating ammonia synthesis gas, in which, in particular, the hitherto required autothermal reactor can be dispensed with, since blast-furnace top gas is used as the nitrogen carrier.

Description

"Verfahren zur Erzeugung von Ammoniak-Synthesegas nach"Process for the production of ammonia synthesis gas according to

dem Steam-Reforming-Prozeß" Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1. the steam reforming process "The invention relates to a method according to the preamble of claim 1.

Solche konventionelle Verfahren zur Erzeugung von Ammoniak-Synthesegas arbeiten in der Weise, daß der Einsatzstoff, wie Kokereigas, Erdgas, Raffineriegas, Flüssiggas oder Naphtha in einem Röhrenspaltofen mit Wasserdampf bei Reaktionstemperaturen zwischen 750 und 900° sowie Reaktionsdrücken bis zu 35 bar zu Spaltgas umgesetzt wird. Die Einstellung des Wasserstoff/Stickstoff-Verhältnisses erfolgt in einem nachfolgenden autothermen Reaktor, der bei Reaktionstemperaturen zwischen 900 und 11000 C arbeitet. In diesem Reaktor wird mittels Luft das Spaltgas weiter katalytisch durchgespalten; gleichzeitig wird über den Stickstoffanteil der Luft das erforderliche Wasserstoff/Stickstoff-Verhältnis des Ammoniak-Synthesegases eingestellt. In den folgenden Prozeßstufen: Normalkonvertierung, Tieftemperaturkonvertierung, C02-Wäsche, Methanisierung wird Kohlenmonoxyd weitestgehend zu Wasserstoff umgesetzt, das Kohlendioxyd ausgewaschen sowie die Spuren von CO und C02, die ftir die nachfolgende Ammoniak-Synthese Katalysatorgifte darstellen, zu Methan umgeformt.Such conventional methods of producing ammonia synthesis gas work in such a way that the feedstock, such as coke oven gas, natural gas, refinery gas, Liquid gas or naphtha in a tubular fission furnace with steam at reaction temperatures between 750 and 900 ° and reaction pressures up to 35 bar converted to cracked gas will. The setting of the hydrogen / nitrogen ratio takes place in one subsequent autothermal reactor, which operates at reaction temperatures between 900 and 11000 C works. In this reactor, the cracked gas becomes further catalytic by means of air split through; at the same time, the nitrogen content of the air increases the amount required Hydrogen / nitrogen ratio of the ammonia synthesis gas set. In the following process stages: normal conversion, low temperature conversion, C02 washing, Methanation, carbon monoxide is largely converted into hydrogen, the carbon dioxide washed out as well as the traces of CO and CO 2, which are necessary for the subsequent ammonia synthesis Represent catalyst poisons, transformed into methane.

Die Erfindung hat sich eine Vereinfachung und Verbilligung der Verfahrensführung und Verringerung der Investitionskosten gegenüber dem zuvor beschriebenen konventionellen Ammoniak-Synthesegas-Prozeß zum Ziel gesetzt.The invention has a simplification and cheaper process management and a reduction in investment costs over the conventional one described above Aimed at ammonia synthesis gas process.

Dieses Ziel wird erreicht durch die Zugabe von Hochofengichtgas als Stickstoffträger. Dadurch, daß der erforderliche Stickstoffanteil für das Ammoniak-Synthesegas nicht über Prozeßluft, sondern über Hochofengichtgas eingebracht wird, kann auf den autothermen Reaktor, der üblicherweise dem Röhrenofen nachgeschaltet ist, verzichtet werden.This goal is achieved by adding blast furnace top gas as Nitrogen carriers. Because the required nitrogen content for the ammonia synthesis gas is not introduced via process air, but via blast furnace top gas, can on the autothermal reactor, which is usually located downstream of the tube furnace, is dispensed with will.

Ein weiterer Vorteil dieser Erfindung liegt darin, daß die maximale Prozeßgastemperatur 100-2000 (autothermer Reaktor) niedriger liegt, was Einfluß auf die Materia7kosten haben wird. Auch das erfindungsgemäße Verfahren eignet sich gleichermaßen für Einsatzstoffe wie Koksofengas, Erdgas, Raffineriegas, Flüssiggas und Naphtha.Another advantage of this invention is that the maximum Process gas temperature 100-2000 (autothermal reactor) is lower, what influence on the material costs. The method according to the invention is also suitable equally for input materials such as coke oven gas, natural gas, refinery gas, liquid gas and naphtha.

Wird das Prozeßgichtgas gemäß Anspruch 2 vor der Konvertierung dem Spaltgas zugemischt, so hat diese Prozeßführung den Vorteil, daß der Gaserzeugungsanlagenteil mit den dazugehörenden Wärmeaustauschern kleiner dimensioniert werden kann als im Falle der konventionellen Ammoniak-Synthesegaserzeugung, bei der der Stickstoff über die Luft dem autothermen Reaktor und damit dem Prozeß zugeführt werden muß.If the process furnace gas according to claim 2 before the conversion If cracked gas is mixed in, this process control has the advantage that the gas generation system part with the associated heat exchangers can be dimensioned smaller than in Case of conventional ammonia synthesis gas production, in which the nitrogen must be supplied via the air to the autothermal reactor and thus to the process.

Nachfolgend wird anhand der beiliegenden Zeichnung ein Beispiel für die Ausführung des erfindungsgemäßen Verfahrens mit Koksofengas als Einsatzstoff näher erläutert.An example for the implementation of the method according to the invention with coke oven gas as the feedstock explained in more detail.

Das Koksofengas a wird verdichtet und einer Entschwefelungsstufe 1 zugeführt. Nach der Entschwefelung wird das Koksofengas vorgewärmt. Nach Zumischung von Wasserdampf, der in Abhitzekesseln eines Röhrenofens 2 erzeugt wird, wird das Koksofengas katalytisch im Röhrenspaltofen 2 umgesetzt. Der Röhrenofen 2 wird zweckmäßigerweise mit Koksofengas d und Lösungs-und Entspannungsgas c aus der Ammoniak-Synthese-Stufe 6 unter Verwendung von Verbrenrlullgnluft t unterfeuert.The coke oven gas a is compressed and subjected to a desulfurization stage 1 fed. After desulfurization, the coke oven gas is preheated. After admixture of water vapor that is generated in the waste heat boilers of a tube furnace 2, that Coke oven gas reacted catalytically in the tube furnace 2. The tube furnace 2 is expediently with coke oven gas d and solution and expansion gas c from the ammonia synthesis stage 6 underfired using combustion air t.

Gichtgas c wird verdichtet und entschwefelt, bevor es bei f vor der Konvertierungsstufe 3 dem Spaltgas aus dem Röhrenofen 2 zugesetzt wird. Es ist auch möglich, das Gichtgas bei f' oder f'', also schon vor der Verdichtung und Entschwefelung bzw. vor dem Spaltofen 2 dem Prozeß zuzuführen. Die Zuführung des Gichtgases bei f" hätte den Vorteil, daß eine separate Entschwefelung sowie der Gichtgaskompressor entfallen kann.Blast furnace gas c is compressed and desulphurized before it is before the at f Conversion stage 3 is added to the cracked gas from the tube furnace 2. It is also possible, the furnace gas at f 'or f' ', i.e. before compression and desulfurization or upstream of the cracking furnace 2 to be supplied to the process. The supply of the furnace gas at f "would have the advantage that a separate desulfurization and the top gas compressor can be omitted.

Die Menge des Gichtgases c wird durch das erforderliche Wasserstoff/Stickstoff-Verhältnis bestimmt. Die nachfolgenden Prozeßstufen: Konvertierung 3, CO2-Wäsche 4, Methanisierung 5 sind wie bei der konventionellen Ammoniäk-Synthesegaserzeugung auch hier erforderlich.The amount of furnace gas c is determined by the required hydrogen / nitrogen ratio certainly. The following process stages: conversion 3, CO2 scrubbing 4, methanation 5 are required here, as in conventional ammonia synthesis gas generation.

In der Zeichnung bedeuten ferner 6 die Ammoniak-Synthese-Stufe, b das erzeugte Ammoniak und g das CO2-Abgas.In the drawing, 6 also denote the ammonia synthesis stage, b the ammonia produced and g the CO2 exhaust gas.

Das nachfolgende Beispiel basiert auf dem Einsatzstoff Koksofengas und soll typische Mengenverhältnisse sowie Betriebsparameter deutlich machen.The following example is based on the raw material coke oven gas and should make typical proportions and operating parameters clear.

Beispiel: 1. Eintritt Röhrenspaltofen (nach Entschwefelung) Analyse Koksofengas Stoff Vol t (trocken) Schwefelgehalt 1 ppm CO2 0,62 CO 6,03 H2 63,48 25,75 C2H6 1,00 N2 3,12 100,00 Gasmenge: 1060 mn³ (trocken) Wasserdampf-Zugabe: 2540,0 mn³ Temperatur Koksofengas: 450 C Temperatur-Dampf: 4500 C Druck der Reaktionsmedien: 24 bar 2. Austritt Röhrenspaltofen Analyse Spaltgas Stoff Vol % (trocken) CO2 8,35 CO 8,68 H2 80,65 CH4 0,53 N2 1,59 100,00 Reaktionsdruck = 20,0 bar Reaktionstemperatur = 875,00 C Spaitgasmenge = 20 mn3 (trocken) Wasserdampf-Menge 2100 mn³ 3. Mischung Spaltgas + Gichtgas Gichtgasanalyse: Stoff Vol 8 (trocken) Druck: 22 bar CO2 15,00 Temperatur: 200 C (360° C) CO 25,00 H2 4,00 N2 56,00 - 100,00 Gichtgasmenge: 1450 m Analyse nach Mischung Stoff Vol % trocken CO2 10,74 CO 14,54 H2 53,26 CH4 0,34 N2 21,12 - 100,00 Gasmenge zur Konvertierung 3210 in (trocken) Wasserdampf im Mischgas zur Konvertierung Od#O mn3 4. Konvertierung Konvertgasanalyse. Austritt Tieftemperaturkonvertierung Stoff Vol % (trocken) Druck: 17 bar Co2 2i,83 Temperatur: 2400 C CO 0,30 H2 59,08 CH4 0,30 N2 18,49 100,00 Konvertgas Austritt 3670 m (trocken) n Wasserdampf im Konvertgas 1640 5. CO2 -Wäsche Gasanalyse Austritt: Stoff Vol % (trocken) Druck: 16 bar CO2 0,10 Temperatur: 80°C CO 0,38 H2 75,00 CH4 0,38 N2 24,14 100,00 Gereinigtes Gas Austritt 2870 mn³ (trocken) C03-Abqas: 800 m³ (trocken) Druck: 1 bar abs Temperatur: 600 C 6. Synthesegas (nach Methanisierung) Gasanalyse: Stoff Vol t (trocken) Druck: 15,5 bar CO2 10 ppm CO ) * H2 74,70 CH4 0,87 N2 24,43 - 100,00 Synthesegasmenge 2g30 (trocken)Example: 1. Entry into the tube gap furnace (after desulfurization) analysis Coke oven gas substance Vol t (dry) Sulfur content 1 ppm CO2 0.62 CO 6.03 H2 63.48 25.75 C2H6 1.00 N2 3.12 100.00 Amount of gas: 1060 mn³ (dry) Water vapor addition: 2540.0 mn³ Coke oven gas temperature: 450 C Steam temperature: 4500 C Pressure of the reaction media: 24 bar 2nd outlet tube cracking furnace Analysis cracking gas substance Vol% (dry) CO2 8.35 CO 8.68 H2 80.65 CH4 0.53 N2 1.59 100.00 reaction pressure = 20.0 bar reaction temperature = 875.00 C amount of hot gas = 20 mn3 (dry) amount of water vapor 2100 mn³ 3. Mixture of cracked gas + furnace gas furnace gas analysis: substance Vol 8 (dry) pressure: 22 bar CO2 15.00 Temperature: 200 C (360 ° C) CO 25.00 H2 4.00 N2 56.00 - 100.00 Top gas quantity: 1450 m analysis according to mixture substance vol% dry CO2 10.74 CO 14.54 H2 53.26 CH4 0.34 N2 21.12 - 100.00 Amount of gas for converting 3210 into (dry) water vapor in the mixed gas for conversion Od # O mn3 4. Conversion convert gas analysis. Outlet low temperature conversion substance vol% (dry) pressure: 17 bar Co2 2i, 83 Temperature: 2400 C CO 0.30 H2 59.08 CH4 0.30 N2 18.49 100.00 Convert gas outlet 3670 m (dry) n Water vapor in the converting gas 1640 5. CO2 scrubbing Gas analysis outlet: Substance% by volume (dry) Pressure: 16 bar CO2 0.10 Temperature: 80 ° C CO 0.38 H2 75.00 CH4 0.38 N2 24.14 100.00 Purified gas outlet 2870 mn³ (dry) C03 waste gas: 800 m³ (dry) pressure: 1 bar abs temperature: 600 C 6. Synthesis gas (according to Methanation) Gas analysis: substance vol t (dry) pressure: 15.5 bar CO2 10 ppm CO ) * H2 74.70 CH4 0.87 N2 24.43 - 100.00 Synthesis gas quantity 2g30 (dry)

Claims (2)

"Verfahren zur Erzeugung von Ammoniak-Synthesegas nach dem Steam-Reforming-Prozeß" Patentansprüche: 1. Verfahren zur Erzeugung von Ammoniak-Synthesegas aus H2 -haltigen Einsatzstoffen wie Koksofengas, Erdgas, Raffineriegas, Flüssiggas oder Naphtha nach dem Steam-Reforming-Prozeß, gekennzeichnet durch die Zugabe von Hochofengichtgas als Stickstoffträger."Process for the production of ammonia synthesis gas according to the steam reforming process" Claims: 1. Process for the production of ammonia synthesis gas from H2 -containing Input materials such as coke oven gas, natural gas, refinery gas, liquefied petroleum gas or naphtha the steam reforming process, characterized by the addition of blast furnace top gas as a nitrogen carrier. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Gichtgas vor der Konvertierung dem Prozeßgasstrom zugemischt wird.2. The method according to claim 1, characterized in that the furnace gas is admixed with the process gas stream before the conversion.
DE19813101067 1981-01-15 1981-01-15 "Process for generating ammonia synthesis gas according to the steam-reforming process" Withdrawn DE3101067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19813101067 DE3101067A1 (en) 1981-01-15 1981-01-15 "Process for generating ammonia synthesis gas according to the steam-reforming process"

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19813101067 DE3101067A1 (en) 1981-01-15 1981-01-15 "Process for generating ammonia synthesis gas according to the steam-reforming process"

Publications (1)

Publication Number Publication Date
DE3101067A1 true DE3101067A1 (en) 1982-07-22

Family

ID=6122662

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19813101067 Withdrawn DE3101067A1 (en) 1981-01-15 1981-01-15 "Process for generating ammonia synthesis gas according to the steam-reforming process"

Country Status (1)

Country Link
DE (1) DE3101067A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988490A (en) * 1988-09-14 1991-01-29 Air Products And Chemicals, Inc. Adsorptive process for recovering nitrogen from flue gas
US20160348196A1 (en) * 2013-12-12 2016-12-01 Thyssenkrupp Ag Method for generating synthesis gas in conjunction with a smelting works
US20170210703A1 (en) * 2013-12-12 2017-07-27 Thyssenkrupp Ag Method for preparation of ammonia gas and co2 for a urea synthesis process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988490A (en) * 1988-09-14 1991-01-29 Air Products And Chemicals, Inc. Adsorptive process for recovering nitrogen from flue gas
US20160348196A1 (en) * 2013-12-12 2016-12-01 Thyssenkrupp Ag Method for generating synthesis gas in conjunction with a smelting works
US20170210703A1 (en) * 2013-12-12 2017-07-27 Thyssenkrupp Ag Method for preparation of ammonia gas and co2 for a urea synthesis process
US10519102B2 (en) 2013-12-12 2019-12-31 Thyssenkrupp Ag Method for preparation of ammonia gas and CO2 for a urea synthesis process
US10697032B2 (en) * 2013-12-12 2020-06-30 Thyssenkrupp Ag Method for generating synthesis gas in conjunction with a smelting works

Similar Documents

Publication Publication Date Title
DE10334590B4 (en) Process for the production of hydrogen from a methane-containing gas, in particular natural gas and plant for carrying out the process
EP0200880A2 (en) Process for the preparation of chemical raw materials
DE69309010T2 (en) Process for the production of a carbon dioxide-rich gas
DE69702581T2 (en) Steam reforming process
DE102009022509A1 (en) Process for the production of synthesis gas
DE19625093A1 (en) Process for the production of carbon monoxide and hydrogen
EP3176152B1 (en) Method for preparing urea
DE1542648B2 (en) Method and device for the production of a mixture of hydrogen and steam according to the steam-iron process
EP3323786B1 (en) Method for the combined preparation of methanol and ammonia
DE102019214812A1 (en) Process and plant for the production of synthesis gas
CN105883851A (en) Novel gasification and pyrolysis coupling gas poly-generation process
CH637903A5 (en) METHOD FOR THE PRODUCTION OF CARBON MONOXIDE AND HYDROGEN FUEL GAS.
DE3805397A1 (en) Process for producing fuel methanol (motor fuel) from coke oven gas and metallurgical plant gas
DE3047257A1 (en) METHOD FOR PRODUCING AMMONIA SYNTHESIS GAS
DE3101067A1 (en) "Process for generating ammonia synthesis gas according to the steam-reforming process"
DE2449448C2 (en) Process for the production of gases containing carbon monoxide and / or hydrogen
DE1920001A1 (en) Process for the production of a synthesis gas for the production of ammonia
DE2711991B2 (en) Process for the direct production of a gas mixture consisting of hydrogen and carbon monoxide
DE3521304A1 (en) Process for generating a synthesis gas
US4061475A (en) Process for producing a gas which can be substituted for natural gas
DE102021210549A1 (en) Process for the synthesis of ammonia and plant for the production of ammonia
DE3336649A1 (en) Process for the combined preparation of methanol and ammonia
DE2943356A1 (en) Combined ammonia and methanol synthesis - from air and hydrocarbon(s), using high purity hydrogen and nitrogen
DE3501459A1 (en) Process for generating H2/CO synthesis gas and CO
DE3206514C2 (en) Process for the production of ammonia synthesis gas

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal