RU2683603C1 - Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели - Google Patents

Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели Download PDF

Info

Publication number
RU2683603C1
RU2683603C1 RU2017146429A RU2017146429A RU2683603C1 RU 2683603 C1 RU2683603 C1 RU 2683603C1 RU 2017146429 A RU2017146429 A RU 2017146429A RU 2017146429 A RU2017146429 A RU 2017146429A RU 2683603 C1 RU2683603 C1 RU 2683603C1
Authority
RU
Russia
Prior art keywords
lens
focusing lens
temperature
thermal imaging
focusing
Prior art date
Application number
RU2017146429A
Other languages
English (en)
Inventor
Вячеслав Алексеевич Панин
Виталий Юрьевич Рудаков
Евгений Николаевич Клименко
Никита Дмитриевич Мазанов
Original Assignee
Публичное акционерное общество "Красногорский завод им. С.А. Зверева", ПАО КМЗ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Красногорский завод им. С.А. Зверева", ПАО КМЗ filed Critical Публичное акционерное общество "Красногорский завод им. С.А. Зверева", ПАО КМЗ
Priority to RU2017146429A priority Critical patent/RU2683603C1/ru
Application granted granted Critical
Publication of RU2683603C1 publication Critical patent/RU2683603C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B7/00Compensating for the effects of temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

Изобретение относится к способам автофокусировки оптико-электронных приборов с высоким качеством изображения в широком интервале рабочих температур. Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели, при котором определяют функциональную зависимость величины перемещения фокусирующей линзы от текущей рабочей температуры, далее по сигналу с датчика температуры перемещают фокусирующую линзу объектива оптико-электронной системы в положение, соответствующее данной текущей рабочей температуре, при этом датчик температуры размещают внутри корпуса объектива, определяют функциональную зависимость величины перемещения фокусирующей линзы от текущей рабочей температуры объектива экспериментально, на одном или нескольких образцах для начала и окончания работы тепловизионного канала с учетом глубины резкости и степени нагрева объектива, далее проводят аппроксимацию полученных функций, из которых определяют результирующую функцию, соответствующую наилучшему качеству изображения во всем диапазоне рабочих температур и записывают ее в память блока управления, во время эксплуатации тепловизионного канала оптико-электронной системы поиска и сопровождения цели по сигналу с датчика температуры объектива электропривод в соответствии с результирующей функцией под действием управляющего сигнала с блока управления перемещает фокусирующую линзу в положение, соответствующее данной текущей рабочей температуре. Кроме того, способ предусматривает ручную фокусировку, а для устранения производственных и технологических различий конкретной оптико-электронной системы перед тепловизионным каналом устанавливают тепловизионный коллиматор, при этом фокусирующую линзу в оптико-электронной системе - в положение, соответствующее по результирующей функции внешней температуре, и, если изображение некачественное, перемещают фокусирующую линзу до достижения необходимого качества изображения, определяют новое положение фокусирующей линзы, вычисляют разницу между прежним и новым положениями фокусирующей линзы и смещают результирующую функциональную зависимость по оси перемещения фокусирующей линзы на величину поправки, и в дальнейшем автоматическая фокусировка данного образца будет осуществляться с учетом данной поправки. Технический результат - создание способа автофокусировки, т.е. термокомпенсации тепловизионного канала оптико-электронной системы поиска и сопровождения цели, обеспечивающего качественную настройку оптико-электронной системы в зависимости от температурного воздействия, температура которых меняется по определенному закону по отношению к температуре окружающей среды, и получение хорошего качества изображения во всем диапазоне рабочих температур. 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к способам автофокусировки оптико-электронных приборов с высоким качеством изображения в широком интервале рабочих температур, позволяющим обеспечивать его бесперебойное функционирование. В большой степени это относится к объективам систем, строящих изображения объектов на фоточувствительных площадках различных фотоприемников или работающих в чисто визуальных системах наблюдения и прицеливания.
Одним из способов обеспечения термостабильности тепловизионных объективов оптико-электронных систем является применение механизмов ручной или автоматической фокусировки, предназначенных для компенсации смещения плоскости наилучшего изображения при перепаде температур и для сохранения расчетного качества изображения. Например, способ, описанный в патенте РФ на полезную модель №110509, МПК G02B 7/00, опубликованном 20.11.2011 г., в котором термокомпенсатор оптических устройств содержит корпус, оправу оптических элементов, установленную с возможностью перемещения вдоль оптической оси, и компенсационный элемент, соединенный с корпусом и через шарнирно-рычажный механизм, взаимодействующий с оправой, компенсационный элемент выполнен в виде стержня, установленного в теле корпуса, из материала с температурным коэффициентом линейного расширения, отличным от температурного коэффициента линейного расширения материала корпуса, с соблюдением выполнения следующих условий:
Figure 00000001
где
Figure 00000002
- величина линейного перемещения оправы;
n - соотношение плеч рычага;
(T1-T2) - перепад температур;
12) - разность коэффициентов линейного расширения двух материалов;
Figure 00000003
- длина стержня. При увеличении температуры плоскость изображения смещается относительно первоначального положения. При этом происходит температурное изменение длины компенсационного стержня вдоль оптической оси в заданном направлении и на заданный отрезок за счет разности температурных коэффициентов линейного расширения материалов корпуса и компенсационного стержня. При перемещении стержень давит первым плечом на рычаг передаточного механизма, который поворачивается вокруг шарнирной опоры, закрепленной на корпусе, и вторым плечом на оправу, что приводит к смещению оптического компонента и исключает расфокусировку системы. При обратном изменении температуры оптический компонент занимает исходное положение под воздействием пружины, в результате чего расфокусировка будет отсутствовать.
Для авиационных систем наиболее приемлемым способом термокомпенсации является способ автоматической фокусировки, предполагающий наличие в составе тепловизионного объектива специального привода, имеющего, как правило, электродвигатель, обеспечивающий перемещение фокусирующего элемента под действием управляющего сигнала, пропорционального изменению рабочей температуры окружающей среды.
Наиболее близким аналогом является способ компенсации температурного влияния окружающей среды в оптической системе, описанный в журнале Прикладная физика №2, 2012 в статье Е.О. Ульяновой, К.П. Шатунова «Термокомпенсация в оптической системе тепловизионного прибора». Для автоматической фокусировки объективов оптико-электронных систем необходимо заранее знать положение фокусирующей линзы для конкретной температуры. Такая функциональная зависимость величины перемещения фокусирующей линзы от текущей рабочей температуры, рассчитывается при разработке оптической принципиальной схемы объектива. В простейшем случае, она носит линейный характер. Компенсация терморасфокусировки обеспечена введением подвижек оптических компонентов, использующих перемещение некоторых линз в системе вдоль оптической оси по определенному закону в зависимости от изменения температуры. Для этого производят расчет подвижек через 5 градусов в диапазоне температур от -50 до +50 градусов. Необходимое для термокомпенсации перемещение оптических элементов с прецизионной точностью обеспечивается электромеханическими приводами. В качестве приводов используют шаговые двигатели.
Но в данном способе автоматической фокусировки функциональная зависимость величины перемещения фокусирующей линзы от текущей рабочей температуры, отличается от линейной, поскольку кроме оптических компонентов на форму характеристики оказывают влияние многие другие факторы: конструкция объектива, технология его изготовления, материал корпуса объектива и т.д. Кроме того, не редко тепловизионные объективы конструктивно совмещаются с электронными узлами, выделяющими при работе тепло. Например, объективы совмещаются с устройством преобразования и обработки сигнала, криостатом фотоприемного устройства или холодильной установкой, электроприводом. При длительной работе тепловизионного канала выделяемое от таких узлов тепло нагревает корпус объектива, температура его повышается относительно температуры окружающей среды, что приводит к расфокусировке изображения. В этой связи становится важным в процессе работы контролировать температуру объектива и осуществлять автоматическую фокусировку, а именно компенсировать смещение плоскости наилучшего изображения не с учетом изменения температуры окружающего пространства, а с учетом изменения температуры объектива.
При изготовлении в производстве объективы по своим характеристикам не получаются абсолютно одинаковыми. Датчики температуры, применяемые для контроля температуры объектива, также вносят свою погрешность измерения. Все эти факторы приводят к тому, что функциональные зависимости положения фокусирующей линзы от текущей рабочей температуры для разных образцов объективов будут отличаться.
В связи с этим важно иметь универсальную функциональную зависимость или знать закон ее изменения от температуры, позволяющую обеспечивать высокое качество тепловизионного изображения во всем диапазоне рабочих температур.
Задачей, решаемой данным изобретением, является устранение влияния температурного фактора на точность функционирования оптического прибора и расширение функциональных возможностей тепловизионного канала.
Технический результат - создание способа автофокусировки т.е. термокомпенсации тепловизионного канала оптико-электронной системы поиска и сопровождения цели обеспечивающего качественную настройку оптико-электронной системы в зависимости от температурного воздействия, температура которых меняется по определенному закону по отношению к температуре окружающей среды, и получение хорошего качества изображения во всем диапазоне рабочих температур.
Это достигается тем, что в способе автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели определяют функциональную зависимость величины перемещения фокусирующей линзы от текущей рабочей температуры, далее по сигналу с датчика температуры перемещают фокусирующую линзу объектива оптико-электронной системы в положение, соответствующее данной текущей рабочей температуре, в отличие от известного, датчик температуры для регистрации данной текущей рабочей температуры размещают внутри корпуса объектива, определяют функциональную зависимость величины перемещения фокусирующей линзы от текущей рабочей температуры экспериментально, на одном или нескольких образцах объективов для начала и окончания работы тепловизионного канала с учетом глубины резкости объектива, далее проводят аппроксимацию полученных функций, из которых определяют результирующую функцию, соответствующую наилучшему качеству изображения во всем диапазоне рабочих температур, которую записывают в память блока управления, во время эксплуатации тепловизионного канала оптико-электронной системы поиска и сопровождения цели по сигналу с датчика температуры привод под действием управляющего сигнала с блока управления перемещает фокусирующую линзу в положение, соответствующее данной текущей рабочей температуре.
Кроме того, способ может предусматривать ручную фокусировку, когда оператор управляет приводом фокусировки, перемещает фокусирующую линзу в положение, обеспечивающее качественное изображение, при этом в результирующую функцию вводится поправка, которая приводит к смещению всей функции по оси перемещения фокусирующей линзы на величину поправки, и в дальнейшем автоматическая фокусировка будет осуществляться с учетом данной поправки, а для конкретной оптико-электронной системы перед тепловизионным каналом можно устанавить тепловизионный коллиматор с тепловой мирой, а фокусирующую линзу в объективе оптико-электронной системы - в положение соответствующее по результирующей функции внешней температуре и, если изображение некачественное, перемещают фокусирующую линзу до достижения необходимого качества изображения, определяют новое положение фокусирующей линзы, вычисляют разницу между прежним и новым положениями фокусирующей линзы и смещают результирующую функциональную зависимость по оси перемещения фокусирующей линзы на величину поправки, и в дальнейшем автоматическая фокусировка будет осуществляться с учетом данной поправки.
Изобретение поясняется фиг. 1 и 2.
На фиг. 1 представлена схема установки для экспериментального определения результирующей функциональной зависимости положения фокусирующей линзы объектива от внешней температуры и определения глубины резкости объектива во всем диапазоне рабочих температур.
На фиг. 2 представлена схема установки для определения величины поправки к результирующей функциональной зависимости для получения функциональной зависимости положения фокусирующей линзы объектива от внешней температуры различных образцов однотипных объективов.
Согласно изобретению, фиг. 1, при данном способе автофокусировки т.е. температурной компенсации тепловизионного канала 1 оптико-электронной системы поиска и сопровождения цели измеряют температуру внутри корпуса объектива 2 оптико-электронной системы для регистрации реальной текущей рабочей температуры оптико-электронной системы поиска и сопровождения цели, для чего датчик температуры 3 помещают внутри корпуса объектива 2 оптико-электронной системы. Экспериментально определяют функциональную зависимость величины перемещения фокусирующей линзы 4 от текущей рабочей температуры. Для этого тепловизионный канал 1 помещают в камеру тепла и холода 5, имеющую оптический ИК-люк 6. Оптическую ось тепловизионного канала 1 через оптический ИК-люк 6 камеры тепла и холода 5 совмещают с оптической осью тепловизионного коллиматора 7, содержащего тепловую миру. Тепловизионный коллиматор 7 располагают перед ИК-люком 6 на расстоянии от камеры тепла и холода 5. Настраивают тепловизионный канал 1 и коллиматор 7 таким образом, чтобы на видеосмотровом устройстве 8 отчетливо различалось изображение тепловой миры тепловизионного коллиматора 7.
В камере 5 поочередно через равные промежутки устанавливают различные температурные режимы. При каждом температурном режиме, когда температура в камере 5 и внутри объектива 2 тепловизионного канала 1 сравняются, включают тепловизионный канал 1 и путем перемещения фокусирующей линзы 4 объектива 2 с помощью электропривода 9 экспериментально определяют глубину резкости канала, то есть крайние для данной температуры положения фокусирующей линзы 4, при которых изображение будет наиболее резким. При каждом температурном режиме определяют также положение фокусирующей линзы 4, соответствующее наилучшему с точки зрения оператора качеству изображения. Точки с наилучшим качеством изображения всегда будут находиться внутри глубины резкости объектива. По полученным данным строятся экспериментальная функциональная зависимость положения фокусирующей линзы 4 объектива 2 с наилучшим изображением от температуры объектива и область глубины резкости данного объектива во всем диапазоне рабочих температур.
Функции строятся в координатах h=f(tоб), где:
h - положение фокусирующей линзы объектива;
tоб - температура объектива тепловизионного канала
После включения тепловизионного канала 1 и проведения указанных выше измерений канал 1 оставляют во включенном состоянии. Длительность включения определяется условиями практического его применения. За это время корпус объектива 2 нагреется и, как следствие, произойдет расфокусировка изображения. Для каждого температурного режима теперь уже для нагретого объектива 2 вновь экспериментально определяются глубины резкости и точки с наилучшим качеством изображения. По полученным данным в координатах h=f(tоб) строится функциональная зависимость положения фокусирующей линзы 4 объектива 2 с наилучшим изображением от температуры нагретого объектива 2 и область глубины резкости нагретого объектива 2 во всем диапазоне температур.
Полученные экспериментальные характеристики холодного и нагретого объектива аппроксимируют и совмещают на одном графике. Объединенный график дает полное представление об изменении характеристик объектива при его нагревании в процессе эксплуатации и позволяет построить универсальную результирующую функцию положения фокусирующей линзы от температуры объектива, справедливую для непрерывной в течении заданного времени работы тепловизионного канала во всем диапазоне рабочих температур. Например, если на графике область глубин резкости нагретого объектива накладывается на область глубины резкости холодного объектива, то появляется общая для нагретого и холодного объектива зона. Если в этой зоне построить функциональную зависимость положения фокусирующей линзы от температуры и максимально приблизить ее к функциональной зависимость положения фокусирующей линзы объектива с наилучшим изображением, то она будет полностью обеспечивать наилучшее качество изображения тепловизионного канала как с холодным объективом, так и с нагретым.
В общем случае форма результирующей функциональной зависимости положения фокусирующей линзы от температуры объектива будет зависеть от величин глубин резкости нагретого и холодного объективов, их взаимного, друг относительно друга, расположения, а также от относительного расположения функциональных зависимостей положения фокусирующей линзы объектива с наилучшим изображением.
Для самого неблагоприятного случая, особенно когда объектив обладает очень узкой глубиной резкости, результирующая функциональная зависимость может экспериментально строиться индивидуально для каждого отдельного образца.
Полученную результирующую зависимость записывают в память блока управления 10 оптико-электронной системы. Во время эксплуатации тепловизионного канала 1 оптико-электронной системы поиска и сопровождения цели по сигналу с датчика температуры 3 объектива 2 электропривод 9 под действием управляющего сигнала с блока управления 10 перемещает фокусирующую линзу 4 в положение, соответствующее данной текущей рабочей температуре. Эта зависимость может быть использована в других оптико-электронных системах с аналогичным тепловизионным каналом 1. Необходимое для термокомпенсации перемещение оптических элементов с прецизионной точностью осуществляется электромеханическими приводами любого типа, обеспечивающими заданную точность позиционирования.
Если в процессе эксплуатации при какой-либо температуре качество изображения ухудшится, данный способ предусматривает ручную фокусировку оператором от кнопок «Фокус больше», «Фокус меньше» с помощью электроприводов. При нажатии оператором на кнопку привод перемещает фокусирующую линзу в плоскость, обеспечивающую наилучшее изображение. Функциональная характеристика смещается на величину перемещения линзы, дальнейшая фокусировка осуществляется автоматически от датчика температуры.
Существующие особенности производства и технологии не позволяют изготавливать однотипные образцы объективов с абсолютно одинаковыми функциональными зависимостями. Как правило, для однотипных объективов зависимости имеют одинаковый характер, но смещенные друг относительно друга.
Способ устранения возможных существенных различий характеристик тепловизионных каналов, связанных с особенностями производства и технологии представлен на фиг. 2. Способ позволяет уточнить результирующую функциональную зависимость для конкретного образца следующим образом:
- тепловизионный канал 1, включающий в себя объектив 2, встроенный датчик температуры 3 и фокусирующую линзу 4 располагают вне камеры тепла и холода 5 с ИК-люком 6;
- тепловизионным канал 1 устанавливают напротив тепловизионного коллиматора 7 с тепловой мирой и совмещают их оптические оси;
- настраивают тепловизионный канал 1 и коллиматор 7 таким образом, чтобы на видеосмотровом устройстве 8 отчетливо различалось изображение тепловой миры тепловизионного коллиматора 7;
- руководствуясь полученной результирующей функцией, с помощью электропривода 9 устанавливают фокусирующую линзу 4 в объективе 2 в положение соответствующее внешней температуре, проверяют качество изображения;
- если изображение некачественное, перемещают фокусирующую линзу 4 до достижения необходимого качества изображения. Определяют новое положение линзы. Вычисляют разницу (поправку) между прежним и новым положением фокусирующей линзы;
- записывают в память блока управления 10 тепловизионного канала 1 оптико-электронной системы полученную поправку, смещая, таким образом, результирующую функцию на величину поправки.
Таким образом, достигнут технический результат - создан способ автофокусировки т.е. термокомпенсации тепловизионного канала оптико-электронной системы поиска и сопровождения цели обеспечивающего качественную настройку оптико-электронной системы в зависимости от температурного воздействия, температура которых меняется по определенному закону по отношению к температуре окружающей среды, и получение хорошего качества изображения во всем диапазоне рабочих температур.

Claims (3)

1. Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели, при котором определяют функциональную зависимость величины перемещения фокусирующей линзы от текущей рабочей температуры, далее по сигналу с датчика температуры перемещают фокусирующую линзу объектива оптико-электронной системы в положение, соответствующее данной текущей рабочей температуре, отличающийся тем, что датчик температуры для регистрации данной текущей рабочей температуры размещают внутри корпуса объектива, определяют функциональную зависимость величины перемещения фокусирующей линзы от текущей рабочей температуры экспериментально, на одном или нескольких образцах объективов для начала и окончания работы тепловизионного канала с учетом глубины резкости объектива, далее проводят аппроксимацию полученных функций, из которых определяют результирующую функцию, соответствующую наилучшему качеству изображения во всем диапазоне рабочих температур, которую записывают в память блока управления, во время эксплуатации тепловизионного канала оптико-электронной системы поиска и сопровождения цели по сигналу с датчика температуры привод под действием управляющего сигнала с блока управления перемещает фокусирующую линзу в положение, соответствующее данной текущей рабочей температуре.
2. Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели по п. 1 предусматривает ручную фокусировку, когда оператор управляет приводом фокусировки, перемещает фокусирующую линзу в положение, обеспечивающее качественное изображение, при этом в результирующую функцию вводится поправка, которая приводит к смещению всей функции по оси перемещения фокусирующей линзы на величину поправки, и в дальнейшем автоматическая фокусировка будет осуществляться с учетом данной поправки.
3. Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели по п. 1, в котором для конкретной оптико-электронной системы перед тепловизионным каналом устанавливают тепловизионный коллиматор с тепловой мирой, а фокусирующую линзу в объективе оптико-электронной системы - в положение, соответствующее по результирующей функции внешней температуре, и, если изображение некачественное, перемещают фокусирующую линзу до достижения необходимого качества изображения, определяют новое положение фокусирующей линзы, вычисляют разницу между прежним и новым положениями фокусирующей линзы и смещают результирующую функциональную зависимость по оси перемещения фокусирующей линзы на величину поправки, и в дальнейшем автоматическая фокусировка будет осуществляться с учетом данной поправки.
RU2017146429A 2017-12-28 2017-12-28 Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели RU2683603C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146429A RU2683603C1 (ru) 2017-12-28 2017-12-28 Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146429A RU2683603C1 (ru) 2017-12-28 2017-12-28 Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели

Publications (1)

Publication Number Publication Date
RU2683603C1 true RU2683603C1 (ru) 2019-03-29

Family

ID=66089843

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146429A RU2683603C1 (ru) 2017-12-28 2017-12-28 Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели

Country Status (1)

Country Link
RU (1) RU2683603C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115665550A (zh) * 2022-10-20 2023-01-31 山东神戎电子股份有限公司 一种低慢小目标跟踪系统中聚焦标定及调整方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059015A1 (en) * 1998-05-08 1999-11-18 Pilkington Pe Limited Dual field-of-view objective system for the infrared
US20080253001A1 (en) * 2005-02-14 2008-10-16 Sagem Defense Securite Actuating Device Comprising Bimetal Disks
RU2348954C1 (ru) * 2007-06-25 2009-03-10 Институт физики полупроводников СО РАН Инфракрасный объектив с переменным фокусным расстоянием
RU110509U1 (ru) * 2011-08-18 2011-11-20 Открытое Акционерное Общество "Производственное Объединение "Уральский Оптико-Механический Завод" Имени Э.С. Яламова" (Оао "По "Уомз") Термокомпенсатор оптических устройств
RU115514U1 (ru) * 2012-01-11 2012-04-27 Татьяна Николаевна Хацевич Объектив для ик-области спектра

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059015A1 (en) * 1998-05-08 1999-11-18 Pilkington Pe Limited Dual field-of-view objective system for the infrared
US20080253001A1 (en) * 2005-02-14 2008-10-16 Sagem Defense Securite Actuating Device Comprising Bimetal Disks
RU2348954C1 (ru) * 2007-06-25 2009-03-10 Институт физики полупроводников СО РАН Инфракрасный объектив с переменным фокусным расстоянием
RU110509U1 (ru) * 2011-08-18 2011-11-20 Открытое Акционерное Общество "Производственное Объединение "Уральский Оптико-Механический Завод" Имени Э.С. Яламова" (Оао "По "Уомз") Термокомпенсатор оптических устройств
RU115514U1 (ru) * 2012-01-11 2012-04-27 Татьяна Николаевна Хацевич Объектив для ик-области спектра

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
УЛЬЯНОВА Е.О., ШАТУНОВ К.П., "ТЕРМОКОМПЕНСАЦИЯ В ОПТИЧЕСКОЙ СИСТЕМЕ ТЕПЛОВИЗИОННОГО ПРИБОРА", ПРИКЛАДНАЯ ФИЗИКА, НОМЕР 2, 20112, С.116-120. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115665550A (zh) * 2022-10-20 2023-01-31 山东神戎电子股份有限公司 一种低慢小目标跟踪系统中聚焦标定及调整方法

Similar Documents

Publication Publication Date Title
US9473691B2 (en) Optoelectronic apparatus and method for the recording of focused images
US8228623B2 (en) Imaging device
US10281700B1 (en) Variable focal length lens system including a focus state reference subsystem
JP5212382B2 (ja) 顕微鏡および収差補正制御方法
CN101776835B (zh) 摄像设备及其控制方法
JP2009013891A (ja) 形状記憶合金の駆動装置およびそれを用いる撮像装置
KR100346865B1 (ko) 줌렌즈장치
CN102739960A (zh) 成像装置和成像系统
US10798362B2 (en) Parallax correction device and method in blended optical system for use over a range of temperatures
RU2683603C1 (ru) Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели
CN113376784B (zh) 一种连续变焦镜头全温度段清晰点的机电主动补偿方法
US20200192006A1 (en) Optoelectronic sensor and method for focusing
JP7478834B2 (ja) 機械視覚アプリケーションにおける焦点追跡の知的方法
JP6873765B2 (ja) レンズ制御装置及びその制御方法
EP3129817B1 (en) Autofocus system
JP7105143B2 (ja) 撮像システムにおける高速可変焦点距離可変音響式屈折率分布型レンズの動作の安定化
RU2689457C1 (ru) Стенд измерения параметров тепловизионных каналов
JP4792269B2 (ja) 顕微鏡のフォーカス維持装置及び顕微鏡装置
JP3940010B2 (ja) 自動合焦機能を有する画像入力装置
RU2343511C2 (ru) Оптическая система с температурной компенсацией фокусировки
KR101558981B1 (ko) 카메라의 자동 초점 조절 장치
US20230160692A1 (en) Temperature compensation for liquid lens
JP2011013426A (ja) 自動焦点撮像装置およびその温度補正方法
KR101558982B1 (ko) 카메라의 자동 초점 조절 방법
Woodhouse Focusing: The difference between an excellent and an “OK” focus position may only be ten microns. The effect on the image is often far greater